Analysing the $B
ightarrow K^{(*)} E_{
m miss} \; q^2$ -spectra in terms of light new physics

Based on: arXiv:2403.13887, 2503.19025 Patrick Bolton, Svjetlana Fajfer, Jernej F. Kamenik, <u>Martín Novoa-Brunet</u>

EPS-HEP 2025, Marseille, July 10, 2025

Introduction

We are interested in Flavour Changing Neutral Currents (FCNC)

- Powerful indirect probes of New Physics (NP)
- Loop and CKM suppressed in the SM
- Usual problem at low energies: Hadronic Uncertainties
 - Form factors
 - Non-local contributions from $c\bar{c}$ loops

- We are interested in Flavour Changing Neutral Currents (FCNC)
 - Powerful indirect probes of New Physics (NP)
 - Loop and CKM suppressed in the SM
 - Usual problem at low energies: Hadronic Uncertainties
 - Form factors
 - Non-local contributions from $c\bar{c}$ loops

What about $b\to s\nu\bar\nu$

Introduction

- Theoretically cleaner than charged lepton FCNC [A. Buras 2020; A. J. Buras et al. 2015]
 - Hadronic matrix elements (local form factors) are fairly well understood [Bečirević et al. 2023; Gubernari et al. 2023; Athron et al. 2023]
 - No non-local hadronic matrix elements involved
- Undetected particles (neutrinos) in the final state
 - You can only measure $b \to s E_{\rm miss}$
 - Experimentally challenging compared to charged leptons

- Average Belle II (362 fb⁻¹, combined) 2.3 ± 0.7 This analysis Belle II (362 fb⁻¹ hadronic) 1.1+1.1 This analysis Belle II (362 fb⁻¹, inclusive) 2.7 ± 0.7 This analysis Belle II (63 fb⁻¹, inclusive) Belle (711 fb⁻¹, semileptonic) 1.0 ± 0.6 PRD96. 091101 Belle (711 fb⁻¹, hadronic) 2.9 ± 1.6 PRD87, 111103 BABAR (418 fb⁻¹, semileptonic) 0.2 ± 0.8 PRD82 112002 BABAR (429 fb⁻¹, hadronic) 1.5+1.3 PRD87, 112005 0 $\mathbf{2}$ 8 10 4 6 $10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$
- SM prediction: $\mathcal{B}(B \to K \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [Parrott et al. 2023]
- Recent Belle II measurement $\mathcal{B}(B \to K E_{\rm miss}) = (2.3 \pm 0.7) \times 10^{-5}$ [Adachi et al. 2024]
 - "New" inclusive tag (ITA) vs hadronic or semileptonic tags
 - Assuming $\nu \bar{\nu} \Rightarrow E_{\text{miss}}$ tension of 2.7 σ w.r.t. SM

- SM prediction: ${\cal B}(B o K \nu \bar{
 u}) = (5.58 \pm 0.37) imes 10^{-6}$ [Parrott et al. 2023]
- Recent Belle II measurement $\mathcal{B}(B \to K E_{\text{miss}}) = (2.3 \pm 0.7) \times 10^{-5}$ [Adachi et al. 2024]
 - "New" inclusive tag (ITA) vs hadronic or semileptonic tags
 - Assuming $\nu \bar{\nu} \Rightarrow E_{\text{miss}}$ tension of 2.7 σ w.r.t. SM
 - $-q^2$ distribution available
 - \dot{q}^2 approxed by $q^2_{\rm rec}$ since 4-momentum of tagged B meson not reconstructed in ITA

- SM prediction: ${\cal B}(B o K \nu ar
 u) = (5.58 \pm 0.37) imes 10^{-6}$ [Parrott et al. 2023]
- Recent Belle II measurement $\mathcal{B}(B \to KE_{\text{miss}}) = (2.3 \pm 0.7) \times 10^{-5}$

[Adachi et al. 2024]

- "New" inclusive tag (ITA) vs hadronic or semileptonic tags
- Assuming $\nu \bar{\nu} \Rightarrow E_{\text{miss}}$ tension of 2.7σ w.r.t. SM
- $-q^2$ distribution available
- \bar{q}^2 approxed by $q^2_{\rm rec}$ since 4-momentum of tagged B meson not reconstructed in ITA
- Complementary bounds on $b \to s \nu \bar{\nu}$:
 - BaBar $\mathcal{B}(B \to K^* E_{\text{miss}}) < 11 \times 10^{-5}$
 - ALEPH Recast $\mathcal{B}(B_s \to E_{\rm miss}) < 5.4 \times 10^{-4}$ (90% CL)
 - Other BaBar and Belle constraints on ${\cal B}(B o K^{(*)}E_{
 m miss})$ available however no q^2 distribution

[Lees et al. 2013]

[Alonso-Álvarez et al. 2023; Barate et al. 2001]

- SM prediction: $\mathcal{B}(B \to K \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [Parrott et al. 2023]
- Recent Belle II measurement $\mathcal{B}(B \to KE_{\text{miss}}) = (2.3 \pm 0.7) \times 10^{-5}$

[Adachi et al. 2024]

- "New" inclusive tag (ITA) vs hadronic or semileptonic tags
- Assuming $\nu \bar{\nu} \Rightarrow E_{\text{miss}}$ tension of 2.7 σ w.r.t. SM
- $-q^2$ distribution available
- $-\dot{q}^2$ approxed by $q^2_{\rm rec}$ since 4-momentum of tagged B meson not reconstructed in ITA

How can we explain this?

- Heavy NP vs Light NP
- EFT approach for Light New Physics (Invisible Extended LEFT/SMEFT)

Theoretical Framework: Heavy NP EFT

One approach: Heavy NP \Rightarrow LEFT/WET

[Allwicher et al. 2024; Rosauro-Alcaraz et al. 2024]

$$\mathcal{L}_{\text{eff}}^{\text{b} \to \text{s}\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + \text{h.c.} \qquad \mathcal{O}_{L(R)}^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} (\bar{s}_{L(R)} \gamma_\mu b_{L(R)}) (\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j)$$

- No anomalous effects on q^2 spectrum
- NP act as rescaling in $B \to K$ (same form factor dependence)

Theoretical Framework: Heavy NP EFT

One approach: Heavy NP \Rightarrow LEFT/WET

[Allwicher et al. 2024; Rosauro-Alcaraz et al. 2024]

$$\mathcal{L}_{\text{eff}}^{\text{b} \to \text{s}\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + \text{h.c.} \qquad \mathcal{O}_{L(R)}^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} (\bar{s}_{L(R)} \gamma_\mu b_{L(R)}) (\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j) (\bar{\nu}_i \gamma^\mu$$

- No anomalous effects on q^2 spectrum
- NP act as rescaling in $B \to K$ (same form factor dependence)
- Combined constrains adding $B \rightarrow K^*$ prefer right handed currents

$$\begin{split} \delta \mathcal{B}_{K^{(*)}}^{\nu \bar{\nu}} &= \sum_{i} \frac{2 \text{Re}[C_{L}^{\text{SM}} \left(\delta C_{L}^{\nu_{i} \nu_{i}} + \delta C_{R}^{\nu_{i} \nu_{i}} \right)]}{3 | C_{L}^{\text{SM}} |^{2}} + \sum_{i,j} \frac{|\delta C_{L}^{\nu_{i} \nu_{j}} + \delta C_{R}^{\nu_{i} \nu_{j}} |^{2}}{3 | C_{L}^{\text{SM}} |^{2}} \\ &- \eta_{K^{(*)}} \sum_{i,j} \frac{\text{Re}[\delta C_{R}^{\nu_{i} \nu_{j}} (C_{L}^{\text{SM}} \delta_{ij} + \delta C_{L}^{\nu_{i} \nu_{j}})]}{3 | C_{L}^{\text{SM}} |^{2}} \end{split}$$

 $\eta_K = 0$ and $\eta_{K^*} = 3.33(7)$

[Allwicher et al. 2024]

Theoretical Framework: Heavy NP EFT

One approach: Heavy NP \Rightarrow LEFT/WET

$$\mathcal{L}_{\text{eff}}^{\text{b} \to \text{s}\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \,\mathcal{O}_a + \text{h.c.} \qquad \mathcal{O}_{L(R)}^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} (\bar{s}_{L(R)} \gamma_\mu b_{L(R)}) (\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j) (\bar{\nu}_i \gamma^$$

- No anomalous effects on q^2 spectrum
- NP act as rescaling in $B \to K$ (same form factor dependence)
- Combined constrains adding $B \xrightarrow{\sim} K^*$ prefer right handed currents
 - Right handed curents $\Rightarrow ~~b \to s \ell^+ \ell^-$ and $b \to s \nu \nu$ are correlated in SMEFT

$$\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \left[\mathcal{C}_{ld}\right]_{ij} \left(\overline{s}_R \gamma^{\mu} b_R\right) \left[\left(\overline{\nu}_{Li} \gamma_{\mu} \nu_{Lj}\right) + \left(\overline{e}_{Li} \gamma_{\mu} e_{Lj}\right) \right]$$

– Constrains from $b
ightarrow s \mu^+ \mu^-$ require LFUV (NP only on au and $u_ au$)

[[]Allwicher et al. 2024]

IFIC VNIVERSITAT BY VALENCIA CSIC

Theoretical Framework: Heavy NP EFT

One approach: Heavy NP \Rightarrow LEFT/WET

[Allwicher et al. 2024; Rosauro-Alcaraz et al. 2024]

$$\mathcal{L}_{\text{eff}}^{\text{b} \to s\nu\nu} = \frac{4G_F}{\sqrt{2}} \lambda_t \sum_a C_a \mathcal{O}_a + \text{h.c.} \qquad \mathcal{O}_{L(R)}^{\nu_i \nu_j} = \frac{e^2}{(4\pi)^2} (\bar{s}_{L(R)} \gamma_\mu b_{L(R)}) (\bar{\nu}_i \gamma^\mu (1 - \gamma_5) \nu_j) (\bar{\nu}_i \gamma^\mu (1$$

- No anomalous effects on q^2 spectrum
- NP act as rescaling in $B \to K$ (same form factor dependence)
- Combined constrains adding $B \to K^*$ prefer right handed currents
 - Right handed curents $\Rightarrow \quad b \to s \ell^+ \ell^-$ and $b \to s \nu \nu$ are correlated in SMEFT

$$\mathcal{L}_{\text{SMEFT}}^{(6)} \supset \left[\mathcal{C}_{ld} \right]_{ij} \left(\bar{s}_R \gamma^\mu b_R \right) \left[\left(\bar{\nu}_{Li} \gamma_\mu \nu_{Lj} \right) + \left(\bar{e}_{Li} \gamma_\mu e_{Lj} \right) \right]$$

- Constrains from $b
 ightarrow s \mu^+ \mu^-$ require LFUV (NP only on au and $u_{ au}$)
- What about light NP?

[Allwicher et al. 2024]

Theoretical Framework: Invisible Extended SMEFT

- Consider additional invisible final states $(\sum X)$
 - One or two particle final states (avoid phase space suppression)
- $X \in \{\phi, \psi, V_{\mu}, \Psi_{\mu}\}$ massive particles of spin $J = \{0, 1/2, 1, 3/2\}$

 $\sum X \in \{\phi, V, \phi\bar{\phi}, \psi\bar{\psi}, V\bar{V}, \Psi\bar{\Psi}\}$

- Neutral under the SM gauge (can be charged under dark gauge or global symmetry)
 - Only interactions involving gauge-invariant combinations of SM fields
- Interactions through dim-4 operators (portals) or dim>4 effective operators (mediated by heavy NP)

SMEFT + invisibles

$$\mathcal{H}_{mat} = \frac{c_{RL}^{IJ}}{\Lambda^n} H^{\dagger} \bar{D}^I Q^J \times X + \frac{c_{LR}^{IJ}}{\Lambda^n} H \bar{Q}^I D^J \times X + \frac{c_{LL}^{IJ}}{\Lambda^n} \bar{Q}^I Q^J \times X + \frac{c_{RR}^{IJ}}{\Lambda^n} \bar{D}^I D^J \times X$$

Theoretical Framework: Invisible Extended LEFT/WET

IFIC VNIVERSITAT D VALÈNCIA COMENTATORIA D'ALÈNCIA MERCIA MERCIA COMENTATORIA D'ALÈNCIA MERCIA MERCI

- $B \text{ decays} \Rightarrow \text{LEFT/WET}$ (EW and top integrated out)
- New light states generate different q^2 -distributions depending on spin, mass and coupling.

Parity vs Chiral basis

- Parity basis (f_{VV}) :
 - $B \rightarrow K$ and $B \rightarrow K^*$ mostly independent
 - Unnatural in UV complete models
- Chiral basis $(C_{d\psi}^{V,LL})$:
 - $\ B \rightarrow K$ and $B \rightarrow K^*$ correlated
 - Comes naturally from SM structure

Likelihood Reconstruction

$$\frac{dN_{\rm SM}(X)}{dq_{\rm rec}^2} = N_B \int dq^2 f_{q_{\rm rec}^2}(q^2) \epsilon(q^2) \frac{d\mathcal{B}_{\rm SM}(X)}{dq^2}$$
Smearing of $q_{\rm rec}^2$ Detector efficiency

• Experimental input, recasting is not trivial, important effect for two-body decays

$$\begin{split} L_{\mathsf{SM}+X} &= \prod_{i}^{N_{\mathsf{bins}}} \mathsf{Poiss}\left[n_{\mathsf{obs}}^{i}, \ n_{\mathsf{exp}}^{i}(\mu, m_{X}, c_{X}, \boldsymbol{\theta}_{x}, \tau_{b})\right] \\ &\times \left[\prod_{x = \mathrm{SM}, X, b} \mathcal{N}\left(\boldsymbol{\theta}_{x}; \mathbf{0}, \Sigma_{x}\right) \times \prod_{b} \mathcal{N}\left(\tau_{b}; 0, \sigma_{b}^{2}\right)\right] \end{split}$$

Nuisance parameters of theory and backgrounds

Signal Hypotheses / Best Fit Points

- Three types of signal hypotheses considered:
 - 1. SM
 - 2. Multiplicatively re-scaled SM
 - 3. SM + NP (each $\sum X$ and c_X separetely).
- First two hypotheses :
 - Crosscheck of Recast
 - Benchmark for NP

Profile Likelihoods - 2D couplings

Implications for other measurements

- Different hypotheses give raise to substantially different signatures in other observables
- When considering new dof, considering q^2 -distribution is fundamental

Integrated vs differential fit

- 2-body decays: less compatible with "Integrated branching fraction", substantially lower $\Delta\chi^2$
- Bias in the integrated branching fraction introduced by SM signal shape in Belle II analysis
- Even when correcting for smearing /efficiency effects (triangles) a naive fit is not enough

Conclusion

- Invisible Extended EFT provides a systematic way of considering light NP with minimal assumptions
 - Can be matched to specific models
- New light final states provide a better description of the shape of data than SM rescaling and Heavy NP Significance of up to 4.5 σ
- Can the best fit points provide information on potential missing backgrounds? ($\phi \bar{\phi}$ close to kaon mass)
- Naive analysis without differential information creates an important bias
- Potentially a connection with a new hidden sector

Analysing the $B
ightarrow K^{(*)} E_{
m miss} \; q^2$ -spectra in terms of light new physics

Based on: arXiv:2403.13887, 2503.19025 Patrick Bolton, Svjetlana Fajfer, Jernej F. Kamenik, <u>Martín Novoa-Brunet</u>

EPS-HEP 2025, Marseille, July 10, 2025

Likelihood Reconstruction

• Total expected event count in *i*-bin

$$n_{\exp}^{i} = \mu \left(1 + \frac{\theta_{\mathsf{SM}}^{i}}{\theta_{\mathsf{SM}}^{i}}\right) s_{\mathsf{SM}}^{i} + \left(1 + \frac{\theta_{X}^{i}}{\theta_{X}^{i}}\right) s_{X}^{i}(m_{X}, c_{X}) + \sum_{b} \tau_{b} \left(1 + \frac{\theta_{b}^{i}}{\theta_{b}^{i}}\right) b^{i}$$

- $-\mu$ signal strength parameter (SM rescaling)
- $rac{s^i_{\mathsf{SM}(X)}}{s^i_{\mathsf{SM}(X)}}$ Expected SM(NP) signals (NP depends on mass m_X and coupling c_X)
- $-b^i$ Expected background signal for the background b
- au_b Overall background normalisation for the background b
- θ_x Nuisance parameters for Monte-Carlo / theory uncertainties

Full combined likelihood

$$L_{\mathsf{SM}+X} = \prod_{i}^{N_{\mathsf{bins}}} \mathsf{Poiss}\left[n_{\mathsf{obs}}^{i}, n_{\mathsf{exp}}^{i}(\mu, m_{X}, c_{X}, \boldsymbol{\theta}_{x}, \tau_{b})\right] \times \prod_{x \in \mathsf{SM}, X, b} \mathcal{N}\left(\boldsymbol{\theta}_{x}; \mathbf{0}, \Sigma_{x}\right) \times \prod_{b} \mathcal{N}\left(\tau_{b}; 0, \sigma_{b}^{2}\right)$$

Likelihood Reconstruction: Bin Correlations

$$L_{\mathsf{SM}+X} = \prod_{i}^{N_{\mathsf{bins}}} \mathsf{Poiss}\left[n_{\mathsf{obs}}^{i}, n_{\mathsf{exp}}^{i}(\mu, m_{X}, c_{X}, \boldsymbol{\theta}_{x}, \tau_{b})\right] \times \prod_{x = |\mathsf{SM}|, |X|, |b|} \mathcal{N}\left(\boldsymbol{\theta}_{x}; \mathbf{0}, |\boldsymbol{\Sigma}_{x}|\right) \times \prod_{b} \mathcal{N}\left(\tau_{b}; 0, \sigma_{b}^{2}\right)$$

Correlation treatment

- Correlations relevant since q^2 smearing introduces correlations among $q^2_{\rm rec}$ bins
- Σ_{SM}: obtained through Monte-Carlo simulation of SM Signal
 - We include uncertainties on efficiency and form factors
- Σ_X : Similar to SM but we neglect correlations between bins
 - Speeds up calculation
 - We check that it doesn't have an impact in the minimum
- Σ_b : SD obtained from MC statistical uncertainties, while correlations, are estimated by re-scaling SM correlations.

Likelihood Reconstruction

• We determine the distribution of Belle II and BaBar events in the reconstructed momentum transfer, $q^2_{\rm rec}$

$$\frac{dN_{\text{SM}(X)}}{dq_{\text{rec}}^2} = N_B \int dq^2 f_{q_{\text{rec}}^2}(q^2) \epsilon(q^2) \frac{d\mathcal{B}_{\text{SM}(X)}}{dq^2}$$

$$- N_B \text{ : number of } BB \text{ pairs}$$

$$- f_{q_{
m rec}^2}(q^2)$$
 : smearing of $q_{
m rec}^2$

- $\epsilon(q^2)$: detector efficiency
- SM (X) signal for *i*-bin

$$s^i_{\mathsf{SM}(X)} = \int_{q^2_{\mathrm{rec},i}}^{q^2_{\mathrm{rec},i+1}} dq^2_{\mathrm{rec}} \frac{dN_{\mathsf{SM}(X)}}{dq^2_{\mathrm{rec}}}$$

- Important experimental input, recasting is not trivial
 - Collaborations should provide methods of recasting (for instance reweigthing methods) [Gärtner et al. 2024]

2D Profile Likelihoods - couplings

- Allowed values for 2d combinations of couplings (parity vs chiral bases)
- ALEPH $B_s \to E_{\rm miss}$ constrains relevant for new scalar $X = \phi \bar{\phi}$
- $B \to K$ and $B \to K^*$ orthogonal in parity basis except for tensor couplings for X = V

Implications for other measurements

2-body decays

- Effect in a single bin around the mass of your new dof
- Ideal bin size depends on smearing/resolution

3-body decays

- Sensitivity depends on nature spin and couplings of new dof
- Substantial effect on F_L for scalar currents

Implications for other measurements

