Accuracy Complements Energy

Electroweak Precision Tests and the Higgs Self-Coupling at FCC-ee

Victor Maura Breick

Based on VM, B. Stefanek and T. You, 2412.14241 and 2503.13719

EPS-HEP 2025, 8 July 2025

Standard Model Effective Field Theory

Effective Field Theory:

- Non-renormalizable QFT with clear separation between UV and IR modes and a power counting
- Allows Separation of scales:
 - Operators: IR interactions
 - Size of WC: UV physics

 $\mathscr{L} = \mathscr{L}_{SM} + \sum_{i \in S_2} \left(\frac{1}{\Lambda_{UV}} \right)^2 c_i(\mu) O_i + \mathcal{O}(\Lambda^{-3})$ Warsaw Basis

Increasing the Energy:

1. Direct (LO) access to New Physics

Increasing the Energy:

1. Direct (LO) access to New Physics

2. New Physics effects may be energy-enhanced

Energy Helps Accuracy! See: Farina et al. 1609.08157 Corbett et al. 2503.19962

Naive Expectation

	Z-pole	WW	Zh	tī
Energy [GeV]	91.2	163	240	365
"Accuracy"	$6 \cdot 10^{12} Z$	$2.4 \cdot 10^8 WW$	$2.2 \cdot 10^6 h$	$2 \cdot 10^6 t\overline{t}$

$$\Delta_{Z/WW}^{LO/LO} = \frac{m_Z^2}{E_{WW}^2} \frac{\epsilon_Z}{\epsilon_{WW}} \sqrt{\frac{N_Z}{N_{WW}}} \gtrsim \mathcal{O}(1)$$

Naive Expectation

	Z – pole	WW	Zh	tī
Energy [GeV]	91.2	163	240	365
"Accuracy"	$6 \cdot 10^{12} Z$	$2.4 \cdot 10^8 WW$	$2.2 \cdot 10^6 h$	$2 \cdot 10^6 t\overline{t}$

$$\Delta_{Z/ZH}^{NLO/LO} = \frac{1}{16\pi^2} \frac{\epsilon_Z}{\epsilon_{ZH}} \sqrt{\frac{N_Z}{N_{ZH}}} \gtrsim \mathcal{O}(1)$$

Can the unprecedented sensitivity of a Tera-Z run compensate the relative suppression?

$$\Delta_{Z/WW}^{LO/LO} = \frac{m_Z^2}{E_{WW}^2} \frac{\epsilon_Z}{\epsilon_{WW}} \sqrt{\frac{N_Z}{N_{WW}}} \gtrsim \mathcal{O}(1)$$

Yes!

 ${\cal C}_{H\square}$ ${\cal C}_H$ ${\cal C}_{HW}$ ${\cal C}_{HB}$ ${\cal S}_{3W}$ ${\cal S}_{HW}$ ${\cal S}_{HB}$ ${\cal S}_{2W}$ ${\cal S}_{2B}$ $[\mathcal{C}_{lq}^{(1)}]_{1133}$ $[\mathcal{C}_{lq}^{(1)}]_{3333}$ $[\mathcal{C}_{lq}^{(3)}]_{1133}$ $[\mathcal{C}_{lq}^{(3)}]_{3333}$ $[\mathcal{C}_{lq}]_{1133}$ $[\mathcal{C}_{lu}]_{3333}$ $[\mathcal{C}_{eu}]_{1133}$ $[\mathcal{C}_{eu}]_{3333}$ $[{\cal C}_{qe}]_{3311}$ $[{\cal C}_{qe}]_{3333}$ $[{\cal C}_{ll}]_{1122}$ $[{\cal C}_{ll}]_{1133}$ $[{\cal C}_{ll}]_{1331}$ $[{\cal C}_{ll}]_{3333}$ $[\mathcal{C}_{ee}]_{1133}$ $[{\cal C}_{ee}]_{3333}$ $[{\cal C}_{le}]_{1133}$ $[{\cal C}_{le}]_{3333}$ $[{\cal C}_{qq}^{(1)}]_{3333} \ [{\cal C}_{qq}^{(3)}]_{3333}$ $[{\cal C}_{qu}^{(1)}]_{3333} \ [{\cal C}_{qd}^{(1)}]_{3333} \ [{\cal C}_{uu}]_{3333}$ $[\mathcal{C}_{dd}]_{3333}$ $[{\cal C}^{(1)}_{ud}]_{3333}$

Four Fermion Operators

- Sensitive to a plethora of 4F operators
- e^+e^- operators enter at LO and are energy enhanced
- Strongest bounds from top enhanced running

Best studied: e.g. Bellafronte et al. 2304.00029, Allwicher et al. 2311.00020, 8 Stefanek 2407.09593, Greljo 2411.02485...

 \leftarrow Above-pole On-pole \rightarrow

Gauge Operators

Higgs Operators

10

 $\Lambda_i^{
m eff} \ [{
m TeV}]$

Real Singlet Scalar

• Real Singlet Scalar with \mathbb{Z}_2 -symmetry

$$\mathscr{L} \supset \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} - \frac{1}{2} \kappa \phi^{2} |H|^{2} - \frac{1}{4!} \lambda \phi^{2}$$

- Only generates $C_{\!H}$ and $C_{\!H\square}$ at NLO
- Simplest extension of the SM that allows for a first order EW phase transition Jiang et al. 1811.08878, Haisch et al. 2003.05936
- Hardest "loryon" to probe experimentally

Banta et al. 2110.02967, Crawford and Sutherland 2409.18177

• Z pole covers Loryon parameter space!

11

The Higgs Self-Coupling at FCC-ee

Motivation

- One of the few remaining parameters to be determined precisely
- Slight modifications have severe phenomenological implications!
- Because we can! Thanks to Asteriadis et al. 2409.11466
- Constrained indirectly at NLO in e McCullough 1312.3322 Di Vita et al. 1711.03
- Meaningful interpretation only in consistent framework
 - => SMEFT at NLO allowing for all possible variations!

$$^+e^- \rightarrow ZH$$

The indirect way

 $C_W, C_{H\Box}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB} C_H

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{Hl}^{(1)}]_{11}, [C_{Hl}^{(1)}]_{22}, [C_{Hl}^{(1)}]_{33}$ $[C_{Hl}^{(3)}]_{11}, [C_{Hl}^{(3)}]_{22}, [C_{Hl}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Hq}^{(1)}]_{11}, [C_{Hq}^{(1)}]_{22}, [C_{Hq}^{(1)}]_{33},$ $[C_{Hq}^{(3)}]_{11}, [C_{Hq}^{(3)}]_{22}, [C_{Hq}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{lq}^{(3)}]_{1111}, [C_{lq}^{(3)}]_{1122},$ $[C_{lq}^{(3)}]_{1133}, [C_{lq}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

The indirect way

 $C_W, C_{H\Box}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB} C_H

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{HI}^{(1)}]_{11}, [C_{HI}^{(1)}]_{22}, [C_{HI}^{(1)}]_{33}$ $[C_{Hl}^{(3)}]_{11}, [C_{Hl}^{(3)}]_{22}, [C_{Hl}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Hq}^{(1)}]_{11}, [C_{Hq}^{(1)}]_{22}, [C_{Hq}^{(1)}]_{33},$ $[C_{Hq}^{(3)}]_{11}, [C_{Hq}^{(3)}]_{22}, [C_{Hq}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{lq}^{(3)}]_{1111}, [C_{lq}^{(3)}]_{1122},$ $[C_{la}^{(3)}]_{1133}, [C_{la}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

VS $\sigma(e^+e^- \rightarrow ZH) \times 2$

The indirect way

 $C_W, C_{H\square}, C_{HD}$ C_{HB}, C_{HW}, C_{HWB} C_{H}

 $[C_{uW}]_{33}, [C_{uB}]_{33}$

 $[C_{HI}^{(1)}]_{11}, [C_{HI}^{(1)}]_{22}, [C_{HI}^{(1)}]_{33}$ $[C_{HI}^{(3)}]_{11}, [C_{HI}^{(3)}]_{22}, [C_{HI}^{(3)}]_{33},$ $[C_{He}]_{11}, [C_{He}]_{22}, [C_{He}]_{33},$ $[C_{Ha}^{(1)}]_{11}, [C_{Ha}^{(1)}]_{22}, [C_{Ha}^{(1)}]_{33},$ $[C_{Ha}^{(3)}]_{11}, [C_{Ha}^{(3)}]_{22}, [C_{Ha}^{(3)}]_{33},$ $[C_{Hu}]_{11}, [C_{Hu}]_{22}, [C_{Hu}]_{33},$ $[C_{Hd}]_{11}, [C_{Hd}]_{22}, [C_{Hd}]_{33},$

 $[C_{ll}]_{1111}, [C_{ll}]_{1122}, [C_{ll}]_{1133}, [C_{ll}]_{1221}, [C_{ll}]_{1331},$ $[C_{lq}^{(1)}]_{1111}, [C_{lq}^{(1)}]_{1122}, [C_{lq}^{(1)}]_{1133},$ $[C_{la}^{(3)}]_{1111}, [C_{la}^{(3)}]_{1122},$ $[C_{la}^{(3)}]_{1133}, [C_{la}^{(3)}]_{2233},$ $[C_{ee}]_{1111}, [C_{ee}]_{1122}, [C_{ee}]_{1133},$ $[C_{eu}]_{1111}, [C_{eu}]_{1122}, [C_{eu}]_{1133},$ $[C_{ed}]_{1111}, [C_{ed}]_{1122}, [C_{ed}]_{1133},$ $[C_{le}]_{1111}, [C_{le}]_{1122}, [C_{le}]_{1133}, [C_{le}]_{2211}, [C_{le}]_{3311},$ $[C_{lu}]_{1111}, [C_{lu}]_{1122}, [C_{lu}]_{1133},$ $[C_{ld}]_{1111}, [C_{ld}]_{1122}, [C_{ld}]_{1133},$ $[C_{qe}]_{1111}, [C_{qe}]_{2211}, [C_{qe}]_{3311}$

Flavour Symmetries

$\sigma(e^+e^- \rightarrow ZH) \times 2$

VS

Top, Higgs, Diboson, Drell-Yan from **HL-LHC**

Di-fermion, Diboson and EWPO from **FCC-ee**

> Di-fermion, Diboson from **LEP**

Current Flavour data

"Boundary Condition"

FCC-ee projected sensitivity

Scenario	$\sigma_H [\text{TeV}^{-2}]$	68%
C_H Only	0.39	-
Bosonic Only	0.52	
$U(3)^5$	0.57	6
$U(2)_q \times U(2)_u \times U(3)^3$	0.61	
$U(2)^{5}$	0.62	6
$U(2)^{3}_{q,u,d} \times U(1)^{3}_{e,\mu,\tau}$	0.68	e
$U(2)^5$ (3rd-gen. dominance)	0.54	

Single Operator Bosonic Only $U(3)^{5}$ $U(2)_q \times U(2)_u \times U(3)^3$ $U(2)^{5}$ $U(2)^{3}_{q,u,d} \times U(1)^{3}_{e,\mu,\tau}$ ---- $U(2)^5$ (3rd-gen dom.) 0.6

HL-LHC

0.4

17

Conclusion

- energy enhancement in the cross section
- A Tera-Z run is **extremely versatile**
- Any FCC-ee fit needs to include NLO Z-pole observables + RGE
- Higgs Self-Coupling bound robustly to $\delta \kappa_{\lambda} \lesssim 30\%$ at FCC-ee
- Beautiful complementarity between all FCC-ee runs!

Extreme precision at Z-pole can compensate for a loop suppression or

Conclusion

- energy enhancement in the cross section
- A Tera-Z run is **extremely versatile**
- Any FCC-ee fit needs to include NLO Z-pole observables + RGE
- Higgs Self-Coupling bound robustly to $\delta \kappa_{\lambda} \lesssim 30\%$ at FCC-ee
- Beautiful complementarity between all FCC-ee runs!

Thank you for your attention!

Extreme precision at Z-pole can compensate for a loop suppression or

Backup Slides

Warsaw Basis

X ³		H^6 and H^4D^2		$\psi^2 H^3$		
\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	${\cal O}_{\scriptscriptstyle H}$	$(H^{\dagger}H)^3$	$\mathcal{O}_{_{eH}}$	$(H^{\dagger}H)(ar{l}_{p}e_{r}H)$	
$\mathcal{O}_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)_{\square}(H^{\dagger}H)$	${\cal O}_{{}_{uH}}$	$(H^\dagger H)(ar q_p u_r \widetilde H)$	
$\ \mathcal{O}_{W} \ $	$arepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$\mathcal{O}_{_{HD}}$	$\left \left(H^{\dagger}D^{\mu}H ight) ^{\star}\left(H^{\dagger}D_{\mu}H ight) ight. ight $	${\cal O}_{_{dH}}$	$(H^\dagger H)(ar q_p d_r H)$	
$\ \mathcal{O}_{\widetilde{W}} \ $	$arepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$					
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	
$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(ar{l}_p \sigma^{\mu u} e_r) au^I H W^I_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle l}}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$	
${\cal O}_{_{H\widetilde{G}}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(ar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle l}}^{(3)}$	$(H^{\dagger}i D^{I}_{\underline{\mu}} H) (\bar{l}_{p} au^{I} \gamma^{\mu} l_{r})$	
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uG}$	$(ar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{H} G^A_{\mu u}$	${\cal O}_{_{He}}$	$(H^\dagger i D_\mu H) (ar e_p \gamma^\mu e_r)$	
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uW}	$(ar{q}_p \sigma^{\mu u} u_r) au^I \widetilde{H} W^I_{\mu u}$	$\mathcal{O}_{{}_{Hq}}^{(1)}$	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
\mathcal{O}_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	${\cal O}_{uB}$	$(ar q_p \sigma^{\mu u} u_r) \widetilde H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}q}^{(3)}$	$\left((H^{\dagger}i \widetilde{D}^{I}_{\mu} H) (ar{q}_{p} au^{I} \gamma^{\mu} q_{r}) ight)$	
$\mathcal{O}_{H\widetilde{B}}$	$H^\dagger H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{{}_{dG}}$	$(ar{q}_p \sigma^{\mu u} T^A d_r) H G^A_{\mu u}$	$\mathcal{O}_{_{Hu}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (ar{u}_p \gamma^{\mu} u_r)$	
\mathcal{O}_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	\mathcal{O}_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I H W^I_{\mu u}$	${\cal O}_{{}_{Hd}}$	$(H^\dagger i \overleftrightarrow{D_\mu} H) (ar{d}_p \gamma^\mu d_r)$	
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} au^{I} H \widetilde{W}^{I}_{\mu u} B^{\mu u}$	$\mathcal{O}_{_{dB}}$	$(ar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$	${\cal O}_{{\scriptscriptstyle H}{\scriptscriptstyle u}{\scriptscriptstyle d}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
$\mathcal{O}_{\iota\iota}$	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	
$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	
$\mathcal{O}_{_{qq}}^{_{(3)}}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	${\cal O}_{_{dd}}$	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	${\cal O}_{\iota d}$	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$\mathcal{O}_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	\mathcal{O}_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	${\cal O}_{qe}$	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$\left\ \mathcal{O}_{lq}^{(3)} ight\ $	$\left((ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t) ight)$	${\cal O}_{ed}$	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$	
		$\mathcal{O}_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
		$\mathcal{O}_{ud}^{(8)}$	$\left \ (ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t) \ ight $	${\cal O}_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				${\cal O}_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
\mathcal{O}_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha})^{T}Cu_{r}^{\beta}\right]\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}\right]$			
$\mathcal{O}_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	$\mathcal{O}_{_{qqu}}$	$\left[arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight] \left[(u_s^{\gamma})^T C e_t ight] ight]$			
$\mathcal{O}^{(8)}$	$(=i\pi A_{i}) = (=k\pi A_{i})$	0	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
- quqa	$(q_p^{s_1} \cdots u_r) \varepsilon_{jk} (q_s^{s_1} \cdots a_t)$	U_{qqq}	$\epsilon + \varepsilon_{jn} \varepsilon_{km} \lfloor (q $	$_p$) $\cup q_r$	$ \lfloor (q_s) \cup \iota_t \rfloor $	
$\mathcal{O}_{lequ}^{(1)}$	$(q_p^j I^{+i} u_r) arepsilon_{jk} (q_s^i I^{+i} a_t) \ (ar l_p^j e_r) arepsilon_{jk} (ar q_s^k u_t)$	$\mathcal{O}_{_{qqq}} \ \mathcal{O}_{_{duu}}$	$arepsilon^{arepsilon+arepsilon_{jn}arepsilon_{km}} \left[(q) \ arepsilon^{lphaeta\gamma} \left[(d^{lpha}_p) ight] ight]$	$\left[{{}^{p}Cu_{r}^{eta}} ight] \left[{{}^{T}Cu_{r}^{eta}} ight] \left[{}^{T}Cu_{r}^{eta} ight] $	$\begin{bmatrix} u_s^{\gamma} \end{bmatrix}^T Ce_t \end{bmatrix}$	

The Future Circular e^+e^- collider

	Z – pole	WW	Zh
Energy [GeV]	91.2	163	240
"Accuracy"	$6 \cdot 10^{12} Z$	$2.4 \cdot 10^8 WW$	$2.2 \cdot 10^6 h$

On Pole:

$$O_{\text{on-pole}} = \left\{ \Gamma_Z, \sigma_{\text{had}}, R_l, A_{\text{FB}}^{0,l}, R_b, R_c, A_b^{\text{FB}}, A_c^{\text{FB}}, A_l, A_b \right\}$$

Above pole:

$$O_{\text{above-pole}} = \Big\{ \sigma \left(e^+ e^- \to W^+ W^- \right), \sigma \left(e^+ e^- \to Z H \right), \\$$

 $,, A_c, A_s, m_W, \Gamma_W$

 $\Gamma_Z \equiv \sum \Gamma \left(Z \to f \bar{f} \right)$ $\sigma_{\text{had}} \equiv \frac{12\pi}{m_Z^2} \frac{\Gamma(Z \to e^+ e^-) \Gamma(Z \to q\bar{q})}{\Gamma_Z^2}$ $R_l \equiv \frac{\sum_q \Gamma(Z \to q\bar{q})}{\Gamma(Z \to l^+ l^-)}$

$$A_{\mathsf{FB}}^{0,l} \equiv \frac{3}{4} A_e A_l$$

$$A_f \equiv \frac{\Gamma(Z \to f_L^+ f_L^-) - \Gamma(Z \to f_R^+ f_R^-)}{\Gamma(Z \to f^+ f^-)}$$

$$R_q \equiv \frac{\Gamma(Z \to q\bar{q})}{\sum_{q_i} \Gamma(Z \to q_i \bar{q}_i)}$$

ACE in action: WIMPs

- Higher dimensional Representations of $SU(2)_L$
- Could be Dark Matter
- Can **significantly improve upon HL-LHC** constraints

Real Scalar

n

Custodial Quadruplet

	-	-
	Name	
	Z/W-pole	Elect
Cee	Single H	Inclusive
Ŭ	Diboson	Total cr
	Di-fermion	Cross sect
ТБО	Diboson	Diboson 1
	Di-lepton	Di-le
ری	Top	$t, t \bar{t}, t \bar{t} V$
CH(Higgs	Higgs s
HL-J	Diboson	Fiducia
	Drell-Yan	Di- a
	Flavour	$\Delta F = 2$

Description

troweak Precision Observables $e e^+e^- \to ZH, \nu\bar{\nu}H \text{ cross sections}$ $\cos s$ sections at 163, 240, 365 GeV tions and $A_{\rm FB}$ at 163, 240, 365 GeV total and differential cross sections pton production for $\sqrt{s} > m_Z$ (, $t\bar{t}t\bar{t}$ and $b\bar{b}t\bar{t}$ (diff.) cross section signal strengths and STXS data l differential dist. for VV and Zjj and mono-lepton high- $p_{\rm T}$ tails 2, $b \to c \tau \nu$, $b \to s \ell \ell$, and $b \to s \nu \nu$

