Cornering natural SUSY at a Tera-Z factory

Alessandro Valenti

University of Basel

Based on 2507.xxxxx in collaboration with Admir Greljo, Ben A. Stefanek

Marseille July 7th, 2025

Universität Basel

EPS 2025

Outline

- 1. Motivation
- 2. Heavy Higgses
- 3. Stops
- 4. Higgsino and Gauginos
- 5. Conclusion

Alessandro Valenti | University of Basel

Natural SUSY at Tera-Z

Why?

Tera-Z allows in-depth exploration of the TeV scale at *loop-level*

Natural SUSY at Tera-Z

Why?

Tera-Z allows in-depth exploration of the TeV scale at *loop-level* Tera-Z: $\frac{\delta O_Z}{O_7} \sim 10^{-6} \sim \left(\frac{g_{\rm NP}^2}{16\pi^2}\right)^{n_{\rm loop}} \frac{g_{\rm NP}^2 v_{\rm EW}^2}{\Lambda_{\rm NP}^2} \implies \frac{1-1000}{\Lambda_{\rm NP}} \Lambda_{\rm NP} \sim 10 \, {\rm TeV} \, (g_{\rm NP} = 1)$

Natural SUSY at Tera-Z

Why?

 $\int \cdots \cdots h \qquad \delta m_h^2 = \frac{3y_t^2}{4\pi^2} \Lambda_{\rm NP}^2 \qquad \Lambda_{\rm NP} \gtrsim \text{TeV's} \Longleftrightarrow \left(\frac{\delta m_h^2}{m_h^2}\right)^{-1} \lesssim 1 \%$

Key benchmark for future Z and Higgs factories

Why?

Tera-Z allows in-depth exploration of the TeV scale at *loop-level*

Natural SUSY remains one of the best motivated theoretical frameworks (despite past disappointments)

Natural SUSY at Tera-Z

Steps

Steps

Pick concrete natural SUSY scenario: 1. \rightarrow R-parity conserving MSSM with MFV

- See e.g. Martin (1997)
- Well-known, simple, allows focusing on Z and Higgs factory physics

Steps

Pick concrete natural SUSY scenario: 1. \rightarrow R-parity conserving MSSM with MFV

2. Assess realistic sensitivity of observables: experiment+theory precision

\rightarrow FCC-ee: Scenarios 1 (theory conservative) to 3 (exp. only) Greljo, Stefanek, AV (2025) FSR (2025) PDG EW WG (WIP)

e.g. $\Delta R_h/R_h : 2 \times 10^{-4}$ (S1) to 1.8×10^{-6} (S3)

- See e.g. Martin (1997)
- Well-known, simple, allows focusing on Z and Higgs factory physics

Steps

- 1. Pick concrete natural SUSY scenario: \rightarrow **R-parity conserving MSSM with MFV** See e.g. Martin (1997)
- 2. Assess realistic sensitivity of observables: experiment+theory precision
 - → FCC-ee: Scenarios 1 (theory conservative) to 3 (exp. only) Greljo, Stefanek, AV (2025) FSR (2025) PDG EW WG (WIP)
 - e.g. $\Delta R_b/R_b: 2 \times 10^{-4}$ (S1) to 1.8×10^{-6} (S3)
- 3. Identify and study key sectors efficiently probed at these facilities: \rightarrow Heavy Higgs doublet, Stops, Higgsino & Gauginos

Well-known, simple, allows focusing on Z and Higgs factory physics

Outline

- 1. Motivation
- 2. Heavy Higgs doublet
- 3. Stops
- 4. Higgsino and Gauginos
- 5. Conclusion

Alessandro Valenti | University of Basel

2. Heavy Higgs doublet

Heavy Higgs doublet

Natural SUSY at Tera-Z

2. Heavy Higgs doublet

Heavy Higgs doublet

Only field coupling linearly to SM: **TL + 1-loop effects**

2. Heavy Higgs doublet

Heavy Higgs doublet

Only field coupling linearly to SM: **TL + 1-loop effects**

Outline

- 1. Motivation
- 2. Heavy Higgs doublet
- 3. Stops
- 4. Higgsino and Gauginos
 5. Conclusion

Natural SUSY at Tera-Z

Alessandro Valenti | University of Basel

3. Stops

Natural SUSY at Tera-Z

Stops

Stops (MSSM TL: $m_h \leq m_7$) See e.g. Carena, Haber (2002)

18

Natural SUSY at Tera-Z

Stops (MSSM TL: $m_h \leq m_Z$) Crucial to accomodate $m_h \simeq 125$ GeV: need $m_{\tilde{t}_1,\gamma} \gtrsim 1$ TeV and $X_t \simeq X_t^{\max}$ See e.g. Primary source of fine-tuning within MSSM (little hierarchy) Carena, Haber (2002) $\delta \lambda_H \propto \prod_{H^{-1}} \prod_{y_t^4} \prod_{H^{-1}} \prod_{y_t^2 X_t^2} \prod_{H^{-1}} \prod_{y_t^2 X_t^2} \prod_{y_t^4 X_t^4} \prod_{y_t^4$ $y_t^2 X_t^2$ $R_b \propto$ **`**∙ *H* q_L q_L $y_t^4 X_t^2$

Higgsino depedence (μ) _{Alessandro} Valenti | University of Basel

3. Stops

Crucial to accomodate $m_h \simeq 125$ GeV: need $m_{\tilde{t}_1,2} \gtrsim 1$ TeV and $X_t \simeq X_t^{\max}$ See e.g. Primary source of fine-tuning within MSSM (little hierarchy) Carena, Haber (2002)

 \blacksquare S+T \blacksquare Zh $(h \to gg, \gamma\gamma)$

Natural SUSY at Tera-Z

Stops

 $\blacksquare S+T \blacksquare Zh \ (h \to gg, \gamma\gamma) \blacksquare Zbb$

Outline

- 1. Motivation
- 2. Heavy Higgs doublet
- 3. Stops
- 4. Higgsino and Gauginos
 5. Conclusion

Alessandro Valenti | University of Basel

4. Higgsinos & Gauginos

Higgsinos & EW Gauginos

Easily evade direct searches (compressed spectra): typical LCF benchmark

Naturally light ($\Delta(\mu) = 4\mu^2/m_Z^2$), classical DM candidate (LSP)

4. Higgsinos & Gauginos

Higgsinos & EW Gauginos

Naturally light ($\Delta(\mu) = 4\mu^2/m_Z^2$), classical DM candidate (LSP)

Easily evade direct searches (compressed spectra): typical LCF benchmark

Tera-Z: S, T, W, Y

$$\hat{W} = \frac{\alpha_L m_W^2}{30\pi} \left(\frac{1}{\mu^2} + \frac{2}{M_2^2} \right)$$

leading and *additive:* inescapable reach on μ , M_2 up to 500 GeV!

- Closes compressed gaps (uncompressed LHC $M_2 \gtrsim$ TeV)
- Better reach than 1 TeV LCF!

Outline

- 1. Motivation
- 2. Heavy Higgs doublet
- 3. Stops
- 4. Higgsino and Gauginos
- 5. Conclusion

Alessandro Valenti | University of Basel

- Motivates the search for NP in the TeV range at future colliders
- Employed them to study the discovery potential of key MSSM sectors: Heavy Higgs doublet, Stops, Higgsinos & EW Gauginos
- FCC-ee can exhaustively probe MSSM in multi-TeV range, testing sub-permille naturalness!

Thank you for your attention!

Natural SUSY remains a leading candidate for microscopic theory of Higgs boson.

• We assessed and elaborated three FCC-ee scenarios for reach on EWPO at Tera-Z

Backup

Natural SUSY at Tera-Z

	Scenario S1	Scenario S2	Scenario S3
Observable	TH PO+TH agg.+EXP (10^{-5})	TH agg.+EXP (10^{-5})	EXP Only (10^{-5})
Γ_Z	1.55	0.820	0.510
$\sigma_{ m had}$	4.33	2.06	1.93
R_e	2.21	1.05	0.410
$ R_{\mu} $	2.20	1.02	0.330
$R_{ au}$	2.20	1.03	0.350
R_b	20.1	1.63	0.180
R_c	100	1.19	0.260
$A^e_{ m FB}$	126	25.7	25.2
$A^{\mu}_{ m FB}$	125	21.1	20.6
$ig A_{ m FB}^{ au^-}$	126	23.3	22.8
$A^b_{ m FB}$	87.8	6.42	5.50
$A_{ m FB}^{c}$	89.1	10.2	9.62
$A^s_{ m FB}$	88.2	10.7	10.2
$\sin^2 heta_W$	6.87	0.780	0.730
A_e	87.9	9.78	9.20
A_{μ}	90.1	22.1	21.8
$A_{ au}$	90.5	23.4	23.2
$ A_b $	11.7	10.5	10.5
$ A_c $	16.9	9.00	8.99
$ A_s $	14.2	13.2	13.2
M_W	0.490	0.320	0.300
$ \Gamma_W $	16.1	16.1	16.1

EWPO scenarios

EWPO scenarios

$$S2 \qquad S3$$

$$= \pm \begin{pmatrix} 1.74 \\ 0.73 \\ 0.47 \\ 1.55 \end{pmatrix} \times 10^{-5} \qquad \begin{pmatrix} \hat{S} \\ \hat{T} \\ \hat{W} \\ \hat{Y} \end{pmatrix} = \pm \begin{pmatrix} 1.71 \\ 0.63 \\ 0.46 \\ 1.55 \end{pmatrix} \times 10^{-5}$$

$$(\hat{Y} \end{pmatrix} = \pm \begin{pmatrix} 1.71 \\ 0.63 \\ 0.46 \\ 1.55 \end{pmatrix} \times 10^{-5}$$

$$(\hat{Y} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1.0.885 \\ 0.414 \\ 0.952 \end{pmatrix} \times 10^{-5}$$

$$\rho = \begin{pmatrix} 1.0.885 \\ 0.885 \\ 1.0.365 \\ 0.749 \\ 0.414 \\ 0.365 \\ 1.0.211 \\ 0.952 \\ 0.749 \\ 0.211 \\ 1.0 \end{pmatrix}$$

27

Stops: additonal plots

 $\blacksquare S+T \blacksquare Zh \ (h \to gg, \gamma\gamma) \blacksquare M_h \text{ too light} \blacksquare Zbb$

 $\sin 2\theta_{\tilde{t}} = \frac{2m_t X_t}{m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2}$

