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lntroduction

HEP has been using ML tor decades (mainly tor classification and regression), but
what is happening recently is not just an improvement.

* \We have qualitatively new capabilities

e \WWhat are they and why do they matter?

There is enormous hype around “Al” — is it physics?

 Focus on new capabilities, what they enable, & patterns of use

How does “"Al4HEP"” fit into broader trends around “Al4Science”?

e Important for arguing HEP's relevance to society, funding, etc.
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ImageNet Classification with Deep Convolutional

Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-35 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
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Geoffrey E. Hinton
University of Toronto

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-35 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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ML Publications in Science

Domain Domain

—— Materials Science 3.5
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Ben Blaiszik, “2021 Al/ML Publication Statistics and Charts”. Zenodo, Sep. 07, 2022. doi: 10.5281/zenodo.7057437.



Deep Learning’s new capability
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Tabular data Richly-structured data

e "High-level features” / observables e Low-level objects

* angles, energies, inv. masses, ... e cells, clusters, tracks, ...
e Fixed number of features e Variable number
e ~5-30 observables e 100s-1000s ot objects

e Underlying geometry



A zoo of architectures




The ML4Jets Workshops
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Isaac Henrion, Johann Brehmer, Joan Bruna,

Kyunghyun Cho, Kyle Cra

Courant Institute & Center for Data Science
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Hammers & Nails - Machine Learning & HEP | panmerss PETS

Nails 2023

Swiss Edition N\

July 19-28, 2017 | Weizmann Institute of Science, Israel

Ti : i~ P versity -l - ;
Flena Gavagnin, Zurich University of Assiie - P :
Peter Bottaghio, )le Deep Mir e = ’l//
o 7
|

eepMind  C>ONSTRUCTOR

2017

Topics include:

1. Generative models, high-dimensional density estimation, and likelihood-free inference | " Thanks Eilam and Toby'
2. Sublinear-time pattern recognition and online learning
3. Domain adaptation and systematic uncertainty . . 20 1 9
. Topics include:
4. Anomaly detection
5. Optimal experiment design and black box optimization 1. Generative models, high-dimensional density estimation, and likelihood-free inference 7077
6. Generative Adversarial Network (GAN) Sublinear-time pattern recognition and online learning
5 J J Topics include:
7. icD L ' omain adaptation and systematic uncertain
Geometric Deep Learning P Y R4 1. Transformers, Attention, large language models (LLM), etc.
8. U-Net Anomaly detection

New types of generative models

Optimal experiment design and black box optimization Molecules (symmetries, graphs, generative models, etc)

Generative Adversarial Network (GAN) Uncertainty quantification and Bayesian NNs

N O 0o M W N

Geometric Deep Learning Algorithmic reasoning

Optimal transport
Implicit layers

Variational inference / probabilistic reconstruction

© © 4 O 0~ W N

https://conterences.weizmann.ac.il/SRitp/Aug2022/hammers-nails-2022-0 Self-supervised learning



https://conferences.weizmann.ac.il/SRitp/Aug2022/hammers-nails-2022-0
https://conferences.weizmann.ac.il/SRitp/Aug2022/hammers-nails-2022-0

Machme Leammg and the Physmal Soenc:@s

Workshop at the 39th conference on Neu ral Informatlon Processung Systems(Neu r1PS)
December 6 or7, 2025



A new journal focusing on ML tor Physics

MACHINE LEARNING

Science and Technology

PAPER - OPEN ACCESS
Stochastic black-box optimization using multi-fidelity score
function estimator

Atul Agrawal’, Kislaya Ravi, Phaedon-Stelios Koutsourelakis and Hans-Joachim Bungartz
Published 31 January 2025 « © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Focus on ML and the Physical Sciences
Citation Atul Agrawal et al 2025 Mach. Learn.: Sci. Technol. 6 015024
DOI 10.1088/2632-2153/ad8e2b

OPEN ACCESS
Comparing Al versus optimization workflows for simulation-
based inference of spatial-stochastic systems

Michael Alexander Ramirez Sierra” and Thomas R Sokolowski
Published 14 February 2025 - © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Citation Michael Alexander Ramirez Sierra and Thomas R Sokolowski 2025 Mach. Learn.: Sci. Technol. 6 010502

DOI110.1088/2632-2153/ada0a3

PAPER - OPEN ACCESS
Simulation-based inference with approximately correct
parameters via maximum entropy

Rainier Barrett, Mehrad Ansari, Gourab Ghoshal and Andrew D White
Published 27 April 2022 « © 2022 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 3, Number 2

Citation Rainier Barrett et al 2022 Mach. Learn.: Sci. Technol. 3 025006

DOI 10.1088/2632-2153/ac6286

Disclaimer: I'm Editor-in-Chief

LETTER - OPEN ACCESS
DIGS: deep inference of galaxy spectra with neural posterior
estimation

Gourav Khullar, Brian Nord, Aleksandra Ciprijanovi¢, Jason Poh and Fei Xu
Published 28 December 2022 - © 2022 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 3, Number 4

Citation Gourav Khullar et al 2022 Mach. Learn.: Sci. Technol. 3 04LT04
DOI10.1088/2632-2153/ac98f4

PAPER - OPEN ACCESS
Evidence Networks: simple losses for fast, amortized, neural
Bayesian model comparison

Niall Jeffrey and Benjamin D Wandelt

Published 17 January 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 5, Number 1

Citation Niall Jeffrey and Benjamin D Wandelt 2024 Mach. Learn.: Sci. Technol. 5 015008
DOI 10.1088/2632-2153/ad1a4d

PAPER - OPEN ACCESS
Simulation-based inference on virtual brain models of
disorders

Meysam Hashemi, Abolfazl Ziaeemehr, Marmaduke M Woodman, Jan Fousek, Spase Petkoski and
Viktor K Jirsa
Published 19 July 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on Explainable Machine Learning_in Sciences
Citation Meysam Hashemi et al 2024 Mach. Learn.: Sci. Technol. 5 035019
DOI 10.1088/2632-2153/ad6230

PAPER - OPEN ACCESS

Importance nested sampling with normalising flows
Michael J Williams, John Veitch and Chris Messenger

Published 25 July 2023 - © 2023 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 4, Number 3

Citation Michael J Williams et al 2023 Mach. Learn.: Sci. Technol. 4 035011

DOl 10.1088/2632-2153/acd5aa

http://iopscience.iop.org/mlst

PAPER - OPEN ACCESS
Multi-fidelity Gaussian process surrogate modeling for
regression problems in physics

Kislaya Ravi’, Vladyslav Fediukov', Felix Dietrich, Tobias Neckel, Fabian Buse, Michael Bergmann and

Hans-Joachim Bungartz
Published 15 October 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 4

Focus on ML and the Physical Sciences
Citation Kislaya Ravi et al 2024 Mach. Learn.: Sci. Technol. 5 045015
DOI 10.1088/2632-2153/ad7ad5

PAPER - OPEN ACCESS
Efficient Bayesian inference using physics-informed invertible

neural networks for inverse problems

Xiaofei Guan, Xintong Wang, Hao Wu, Zihao Yang and Peng Yu
Published 23 July 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on Generative Al in Science
Citation Xiaofei Guan et al 2024 Mach. Learn.: Sci. Technol. 5 035026
DOI 10.1088/2632-2153/ad5f74

PAPER - OPEN ACCESS
DiffLense: a conditional diffusion model for super-resolution
of gravitational lensing data

Pranath Reddy’, Michael W Toomey, Hanna Parul and Sergei Gleyzer
Published 19 September 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on ML and the Physical Sciences
Citation Pranath Reddy et al 2024 Mach. Learn.: Sci. Technol. 5 035076
DOI110.1088/2632-2153/ad76f8
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Insight of data generating process informs
inductive bias on architecture
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Geometric Deep Learning

HEP’s problems, experience, and
contributions were recognized by the
Al/ML community

Grids Groups Graphs Geodesics & Gauges

Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

Michael M. Bronstein', Joan Bruna?, Taco Cohen?, Petar Veli¢kovié

May 4, 2021

arXiv:2104.134/8

112 | BRONSTEIN, BRUNA, COHEN & VELICKOVIC

Particle physics and astrophysics High energy physicists were perhaps
among the first domain experts in the field of natural sciences to embrace
the new shiny tool, graph neural networks. In a recent review paper, Shlomi

' et al. (2020) note that machine learning has historically been heavily used in
® particle physics experiments, either to learn complicated inverse functions
¥ allowing to infer the underlying physics process from the information mea-
| sured in the detector, or to perform classification and regression tasks. For
= the latter, it was often necessary to force the data into an unnatural repre-
.. sentation such as grid, in order to be able to used standard deep learning
¢ architectures such as CNN. Yet, many problems in physics involve data in

: the form of unordered sets with rich relations and interactions, which can

Collider detectors.

Example of a particle jet.

be naturally represented as graphs.

One important application in high-energy physics is the reconstruction and
classification of particle jets — sprays of stable particles arising from multiple
successive interaction and decays of particles originating from a single initial
event. In the Large Hardon Collider, the largest and best-known particle
accelerator built at CERN, such jet are the result of collisions of protons at
nearly the speed of light. These collisions produce massive particles, such as
the long though-for Higgs boson or the top quark. The identification and
classification of collision events is of crucial importance, as it might provide
experimental evidence to the existence of new particles.

Multiple Geometric Deep Learning approaches have recently been proposed
for particle jet classification task, e.g. by Komiske et al. (2019) and Qu and
Gouskos (2019), based on DeepSet and Dynamic Graph CNN architectures,
respectively. More recently, there has also been interest in developing spe-
cialsed architectures derived from physics consideration and incorporating
inductive biases consistent with Hamiltonian or Lagrangian mechanics (see
e.g. Sanchez-Gonzalez et al. (2019); Cranmer et al. (2020)), equivariant to
the Lorentz group (a fundamental symmetry of space and time in physics)
(Bogatskiy et al., 2020), or even incorporating symbolic reasoning (Cran-
mer et al.,, 2019) and capable of learning physical laws from data. Such
approaches are more interpretable (and thus considered more ‘trustworthy’
by domain experts) and also offer better generalisation.

Besides particle accelerators, particle detectors are now being used by as-
trophysicist for multi-messenger astronomy — a new way of coordinated obser-
vation of disparate signals, such as electromagnetic radiation, gravitational
waves, and neutrinos, coming from the same source. Neutrino astronomy is
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Rapid progress

The Machine Learning Landscape of Top Taggers
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Challenges

The Machine Learning Landscape of Top Taggers
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Data Science at the Singularity

by David Donoho

Published on Jan 29, 2024 //doi.org/10.1162/99608f92.691339ef

e |n the last decade, frictionless services became available thanks to the
modern information ecosystem

* Those frictionless services were applied by scientists and technologists to
data sharing, code sharing, and challenges

e Some communities of researchers started frictionlessly sharing research
artifacts — code, data, results — and building on each others’ work.

* |nvolved research communities are progressing much faster.

Al is one of those communities where people are working this way.
There is a singularity, but it is not Al.


https://doi.org/10.1162/99608f92.b91339ef

The Evolution of Deep Learning

Predictive Models — Generative Models



2016: Generative Model for Images

volcano



2018: Generative Model for Images

How an A.l. ‘Cat-and-Mouse Game’
Generates Believable Fake Photos

By CADE METZ and KEITH COLLINS JAN. 2, 2018

)

This one is computer-generated This one is also computer-generated




2018: Large Language Models

In 2018, a new approach to modeling History of ChatGPT
language was introduced: G
2)

* The “transtormer 2018|2018 2019 | 2020 | 2022 | 2023 | 2023

,W =

* Dramatic improvements

Understanding by

* Emergent capabilities \ s

* e.g.coding, “reasoning”, ...

Transformers aren't specific to language,
but they provide bridge to domain
knowledge in literature



Multimodal modals

Major advance in creating models that can consume multiple data modalities
and represent that data in a shared semantic embedding space

Multimodal Embeddings

e 14

“A cute cat”

m\ —> @3 _> Embeo!o(?ng

L W\O\fye I Mage encoder

Dim 2

“Best pet in the world”

“A cute puppy”

“A good boy” &

“Funny cat meme” r

Dim 1

-————’ @) . Embeo(ohng

Text Text encoder

Figure source: 10.1007/s11042-020-09251-4



Multimodal modals

Major advance in creating models that can consume multiple data modalities
and represent that data in a shared semantic embedding space

Query Caption

A person who is on his
motorcycle in the air.

A small child standing in a
field of green grass playing
with a frisbee.

1

Retrieved Images

(a) Text-to-image retrieval

Figure source: 10.1007/s11042-020-09251-4

Query Image

Retrieved Captions

A group of flamingos standing next to each other in
water.
A flock of pink flamingos standing in shallow water.

A flock of flamingos standing in a pond.

A Lufthansa jumbo-jet at some airport during the day.
A commercial airplane on a runway at an airport.
A large jumbo jet on the runway of an airport.

(b) Image-to-text retrieval



What are the dominant themes in Al for Science?

How does HEP fit in?



Simulators are the modern manifestation of theories

Particle Neuro _ Gravitational Evolution of
lensing the Universe
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=
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colliders activity
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Arm cavity

Arm cavity

The torefront of scientific knowledge is often encapsulated in simulators

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Simulators are the modern manifestation of theories

Particle Neuron . , Gravitational Evolution of
Epidemics . .
lensing the Universe

colliders activity
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Length scale [m]

i

Arm cavity

Arm cavity

/

Unfortunately, simulators are poorly suited for many downstream tasks,
e.g. statistical inference, experimental design, decision making, ...

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

"The underlying physical laws necessary
for the mathematical theory of a large part
ot physics and the whole of chemistry are
thus completely known, and the difficulty
is only that the exact application of
these laws leads to equations much too
complicated to be soluble.”

—-PAUL DIRAC
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5. Al/ML + Simulation + Data

Al4Science to empower the fifth
paradigm of scientific discovery

Published July 7, 2022

By Christopher Bishop, Technical Fellow and Director, Microsoft Research Al4Science

Share this page f y m 6

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

~ TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE




Simulation & Emulators

Ameortigation through Simalation

EuCAIFCon 2024

Simulate train NN surrogate emulate JENAA

Joint ECFA-NUPECC-APPEC Activities

simulate  SCIENCE
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In fusion energy

o%%o Research

Accelerating fusion

science through learned
plasma control

February 16, 2022

Successfully controlling the nuclear fusion plasma in a tokamak with deep
reinforcement learning



Al/ML is providing dramatically enhanced capabilities

Fast Al/ML emulators of classical numerical simulations enable these systems to
be used tfor decisions, control, & design where it was previously inteasible

e Numerical weather prediction / fusion / ...

e Butalsoin HEP

Patterns in Al for Science

Resource of
Inspiration

Data Analysis
& Inference

Exploration
with Confirmation

Agent of
Understanding

Computational
Microscope

¢

Decisions,
Control & Design
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Verena Kain's talk @ EuCAIF

Differentiable simulation codes @)

NS
Optimisation algorithms work best and are most sample-efficient with gradient
information of the objective function.

Vlachine Learning Applications '
for Particle Accelerator : 3 ME CONFERENCES CONTACT US
* Cheetah’s differentiability allows efficient acquisition

v ! ; e . R function optimisation using gradient descent methods in
'y modern BO packages like BoTorch.

Cheetah — A High-speed Differentiable @ Q .
Beam Dynamics Simulation for - /

A physics-informed prior can help improve the performance

of BO by preventing over-exploitation.
Machine Learning Applications -

o
—_

Gradient-based Tuning + Has well-defined behaviour and does not need data to train

/ -
A I r p a [t I CI e Transverse beam tuning at ARES like neural network priors.
.
\ / b

L « Tune magnet settings or lattice parameters using the gradient of the « Can be used in combination with gradient-based system
differentiation. identification to overcome model inaccuracies.

p beam dynamics model computed through automatic
- -
> | ¥ » __eer)
— - « Seamless integration with PyTorch tools tuning neural networks. 1
c ce e r .t w « Becomes very useful for high-dimensional tuning tasks (see
’ neural network training).
v
B A
4 v - )

e -

N A ?’l: hh

Objective value

Model

Input variable

Deviation from target /
ground truth
0l
\‘%ﬂ

Actuator / unknown variable

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Reinforcement Learning (RL) )
RL4AA - workshop <)

Learn dynamics (once and for all) through trial-and-error, no

. . ) e
Pushing the frontiers of RL for accelerators — autonomous accelerators. exploration after training!
reward . 7
Cae - . j - o
(RLAGENT | ETOTEC R | Next generation accelerators to be built for
(5,3) | RL:
l action . . . -
Reinforcement Learningfor 5| 4 A A > CORRECTORS — faSt executlng (accurate) S|mU|at|On / d|g|tal
Autonomous Accelerators L 1 A tWIn
parameter 0 .
for training
\ J . J
RL 4 A A' 2 4 observation — instrumentation designed with control
RL setup for trajectory steering algorithm
COLLABORATIC RL4AA Collaboration — -

The Reinforcement Learning for Autonomous

Accelerators international collaboration aims to RL elegant (if not ideal) solution, but online training often not possible!

consolidate the existing knowledge in the
community, exchange experience and ideas, and

— ik £..3 work together towards accelerator-specific ® Not sam p | e-eﬁ:i cient enou g h
: 5-7 February 2024 solutions using the latest advances in RL
JOIN NOW Salzburg, Austria LyoUbe.Com ® Safety constraints

— RL (like MPC) needs to be built into accelerator design.

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024

AT for particle accelerators, EuCAIF, V. Kain, 01-May-2024



RL tor accelerator operations at DESY

RL can tune 4x faster than human operators

MATTER AND m
TECHNOLOGIES

Reinforcement learning: From ARES Sinbad to the European XFEL

Reinforcement learning-trained optimization at
ARES

* Deploy a RL-trained optimization algorithm trained
purely in simulation to the real-world with zero-
shot learning thanks to domain randomization.

» The trained policy outperforms other
optimization algorithms and expert human
operators.

e —
Optimiser ]

—— Human operators ]
—— RLO ]

0 5 10 15 20
Time (min)

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025
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J Kaiser, O Stein, A Eichler. Learning-based Optimisation of Particle Accelerators Under Partial

Observability Without Real-World Training. In International Conference on Machine Learning, 2022.

J Kaiser, C Xu, A Eichler, et. al. Reinforcement learning-trained optimisers and Bayesian Page 16
optimisation for online particle accelerator tuning. In Scientific reports 14 (1), 2024 9

Cheetah: Speeding up simulations by 108

Linear beam dynamics simulation python package

Why we need it? Training of RL agents would
require 3 years of beam time on the real machine,
11 days with Ocelot, 1 hour with Cheetah.

Main features in support of ML applications:

« Ultra-fast compute (at the cost of fidelity)
« Differentiability
« GPU support

TABLE I. Step computation times of simulation codes in milliseconds

Code Comment Laptop HPC node
ASTRA space charge 264 000.00 3 605000.00
no space charge 109 000.00 183 000.00
Parallel ASTRA  space charge 39000.00 17300.00
no space charge 16 900.00 12600.00
Ocelot space charge 22100.00 21700.00
no space charge 182.00 119.00
Bmad-X 40.50 74.30
Cheetah ParticleBeam 0.79 0.72
ParticleBeam + GPU - 0.09
ParameterBeam 0.02 0.04

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025

MATTER AND m
TECHNOLOGIES

Making use of Cheetah’s  Making use of Cheetah’s

differentiability speed
» Bayesian optimization » Reinforcement learning
prior .

Integration of modular
» Gradient-based tuning / network surrogate

system identification

) 2[-] = #ir < =[] g
ﬁ./ 1 1l

Physical Surrogate wrapped in Physical
Cheetah

Deviation from target /
ground truth

Actuator / unknown variable

bl ‘ h NATIONAL

—— = @ ACCELERATOR

Cheetah in daily operation TN, /CCELERATO

at LCLS:

Now deployed to daily operations at LCLS for 6D-
phase space reconstruction module.

Jan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia. Bridging the Gap Between Machine
Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations. In Physical Page 17
Review Accelerators and Beams, 2024.




RL tor accelerator operations at DESY

RL can tune 4x faster than human operators rechnotocies L] KL Cheetah: Speeding up simulations by 103 rechwoLocies L) B

Reinforcement learning: From ARES Sinbad to the European XFEL Linear beam dynamics simulation python package
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Similar pattern with @) FBPIC
Open-Source 5Mb
plasma accelerators.
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Accelerating experimental design

JENAA

1S

7

Jont ECFA-NUPECC-APPEC Activibe

s

Programming for

Third MODE Workshop on
Differentiable

~

Experiment Design

Princeton University
24-26 July, 2023

Experiment Design

Automatically learn to arrange
sensors given a physics target

Example tuning positions of
detectors for a gamma ray
= observatory
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https://mode-collaboration.github.io/'; Dorigo et al 2310.01857

/

Differentiable versions
of all steps in the particle
physics processing chain

Either as ML-based
surrogate models

Or via e.qg. differentiable
programming

What can we do with this?

Heinrich, Kagan 2308.16680
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Slides from Gregor Kasieczka's talk @ EuCAIFCon2024



https://indico.nikhef.nl/event/4875/contributions/21153/

Patterns in Al for Science

Patterns in Al for Science
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Adapted from tigure by Mario Krenn, et. al. in https://arxiv.org/abs/2204.01467


https://arxiv.org/abs/2204.01467

Exploration with Confirmation



Drug & Materials Discovery

Many uses of Al aimed at accelerating drug discovery and materials discovery

e Experimental follow up needed to contirm the predicted properties

e OK if the predictions are wrong as long as it accelerates the discovery process

Image credits: RFDiffusion from Baker Lab, Institute for Protein Design, U Washington;

Molecular Dynamics

Molecular Modeling Lipinski’s rule-of-5

Protein Structure Prediction . o
Chemical similarity search

X-ray Crystallography

Pharmacophore search
Assay Development
Target Identification

& Characterization Molecular Docking

Biochemical Pathway Analysis
Low/High-Throughput Screening

Virtual Combinatorial Chemistry

Hit Identification De novo Design

Scaffold Hopping

QSAR Modeling
Lead Generation

and Optimization Experimental ADMET analysis
In silico ADMET analysis
Physiologically Based Pharmacokinetic Modeling

Clinical Trials

Quantum Mechanics

Pre-Clinical Studies

FDA Approval

Chanin Nantasenamat from Towards reproducible computational drug discovery. J Cheminform 12, 9 (2020). https://doi.org/10.1186/s13321-020-0408-x

, Pushmeet Kohli
@pushmeet

We at @GoogleDeepMind are excited to announce #GNoME - an Al tool
that has discovered 2.2 million new materials, and helps to predict
material stability.

We're releasing 381K stable materials to help scientists pursue materials
discovery breakthroughs.

https://dpmd.ai/PK-materials
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Automated Theorem Proving

Theorem proving is another example ot exploration paired with confirmation

Selection Expansion Back-propagation

Figure 5: HyperTree Proof Search. We aim at finding a proof of the root theorem g with HTPS. Proving
either {g5}, {90, 91}, or {gs, g7} would lead to a proof of g by tactic to, t1, or 2. The figure represents the
three steps of HTPS that are repeated until a proof 1s found. Guided by the search policy, we select a hypertree
whose leaves are unexpanded nodes. The selected nodes are then expanded, adding new tactics and nodes to the
hypergraph. Finally, during back-propagation we evaluate the node values of the hypertree, starting from the
leaves back to the root, and update the visit counts and total action values.




Al for Amplitudes

Garrett Merz Tianji Cai Lance Dixon Matthias Wilhelm Niklas Nolte  Francois Charton

Similarly, we are using generative Al to help compute multi-loop scattering amplitudes
e the answer is hard to find, but easy to check.

We don't need the model to be provably correct, we just need it to be good at
guessing because we can get a certificate of correctness

 The problem is inherently discrete, so transtormers are a natural choice
We see ~99% accuracy in predicting the coefficients of the amplitude!

MACHINE
SITEARNING

ience and Technology

PAPER

Transforming the bootstrap: using transformers to compute
scattering amplitudes in planar N = 4 super Yang-Mills theory

P NATIONAL
Tianji Cai">* (), Garrett W Merz>>* (), Frang¢ois Charton™ (), Niklas Nolte’(2), Matthias Wilhelm" (), WI S( ONSIN —‘- ‘_'! A Z® ACCELERATOR
b "N\ | ABORATORY

2 * 1
Kyle Cranmer” (" and Lance ] Dixon UNIVERSITY OF WISCONSIN-MADISON

UNIVERSITY OF
COPENHAGEN i




Experimental Physics, Astrophysics, Cosmology
In contrast, Al/ML in experimental physics, astrophysics, and cosmology is often a
component of a hypothesis testing / statistical inference pipeline.
e Robustness to systematic uncertainty (distribution shift) is important!

e Mistakes matter — we need to be able to calibrate & pertorm uncertainty

guantification!
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Simulation-based Inference



Statistical Framing

0

parameters of interest

forward modeling
generation

simulation

p(x,z]|0)

ya
latent variables

inverse problem

measurement
parameter estimation

X
observed data
simulated data
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Simulating particle physics processes

Theory
parameters

0

e ————————— e ——————————
Evolution



Simulating particle physics processes

Parton-level Theory
momenta parameters
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Simulating particle physics processes

Theory
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Parton-level
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Simulating particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon
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Evolution
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — y — 25 — Z; —— )

A ———————————————————————
Evolution



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from plzlz4) p(2al2s) p(2s2) p(2p16)

MADGRAPHS _aMCO@ENLDO

X X
X X X X
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Prediction (simulation)



Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous space!

Inference



Simulation-Based Inference

Deep learning and neural density estimation are effective at learning approximate
surrogates for the fully ditterential likelihood (and posterior).
This is revolutionizing principled statistical inference in science!

e Removes the need tfor hand-engineered summary statistics that sacrifice power

nature / 0

parameter 1

latent 2

observable

L —— I — ML pipeline

component

arg min L|g] — 7(x|0) —>
g

Data / Simulation Machine Learning Inference



Impact on Studies of The Higgs Boson

Potential for massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors
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Impact on Studies of The Higgs Boson

Potential for massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors
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Bl at EUuCAIFCon 2024

Simulation-based Inference was well represented at EUCAIFCon2024!

Simulation of Z2 model using Variational Autoregressive Network (VAN). Vaibhav Chahar @
UVA 1, Hotel CASA 13:30 - 13:33
Artificial Intelligence techniques in KM3NeT Evangelia Drakopoulou @
UVA 1, Hotel CASA 13:33 - 13:36
ML-based Unfolding Techniques for High Energy Physics Nathan Huetsch @
UVA 1, Hotel CASA 13:36 - 13:39

Building sparse kernel methods via dictionary learning. Expressive, regularized and interpretable models for statistical @

Gaia Grosso

pop-cosmos: comprehensive forward modelling of photometric galaxy survey data Stephen Thorp @
UVA 1, Hotel CASA 13:42 - 14:02
Calibrating Bayesian Tension Statistics with Neural Ratio Estimators Harry Bevins @
UVA 1, Hotel CASA 14:02 - 14:22
Machine learning for radiometer calibration in global 21cm cosmology Mr Samuel Alan Kossoff Leeney @
UVA 1, Hotel CASA 14:22 - 14:25
PolySwyft: a sequential simulation-based nested sampler Kilian Scheutwinkel &
UVA 1, Hotel CASA 14:28 - 14:31
Extracting Dark Matter Halo Parameters with Overheated Exoplanets Maria Benito @
UVA 1, Hotel CASA 14:31 - 14:34

2024
2025:

Characterizing the Fermi-LAT high-latitude sky with simulation-based inference

Sorbonne, Hotel CASA

Simulation-Based Supernova la Cosmology

Christopher Eckner @
14:50 - 14:53

Konstantin Karchev @

Sorbonne, Hotel CASA 14:53 - 14:56
Optimizing bayesian inference in cosmology with Marginal Neural Ratio Estimation Guillermo Franco Abellan @
Sorbonne, Hotel CASA 14:56 - 14:59

Stochastic Gravitational Wave Background Analysis with SBI

Sorbonne, Hotel CASA

COSMOPOWER: fully-differentiable Bayesian cosmology with neural emulators
Sorbonne, Hotel CASA

James Alvey @
14:59 - 15:02

Alessio Spurio Mancini @

15:02 - 15:22

Networks Learning the Universe: From 3D (cosmological inference) to 1D (classification of spectra) Caroline Heneka @

Sorbonne, Hotel CASA

Anomaly aware machine learning for dark matter direct detection at DARWIN

Sorbonne, Hotel CASA

Clustering Considerations for Nested Sampling

Sorbonne, Hotel CASA

Enhancing Robustness: BSM Parameter Inference with n1D-CNN and Novel Data Augmentation

Sorbonne, Hotel CASA

Fully Bayesian Forecasts with Neural Bayes Ratio Estimation

Sorbonne, Hotel CASA

Summary talks: Astroparticle Physics and Al (Siddarth Mishra-Sharma) Tilman Plehn

UVA 2-3-4, Hotel CASA

nttps://indico.nikhetf.nl/event/4875/

nttps://agenda.infn.it/event/43565/

09:00 - 09:40

Summary talks: Cosmology and Al (Benjamin Wandelt)

UVA 2-3-4, Hotel CASA

15:22 - 15:42

Andre Scaffidi &
15:42 - 15:45

Adam Ormondroyd @
15:45 - 15:48

Yong Sheng Koay @

15:48 - 15:51

Thomas Gessey-Jones @

15:51 - 15:54

Analyzing ML-enabled Full Population Model for Galaxy SEDs with Unsupervised Learning and Mutual Information @
Dr Sinan Deger

Convolutional neural network search for long-duration transient gravitational waves from glitching pulsars @
Rodrigo Tenorio

Tuning neural posterior estimation for gravitational wave inference Alex Kolmus &

Oxford, Hotel CASA 16:06 - 16:09

Normalising flows for dense matter equation of state inference from gravitational wave observations of neutron star me @
Jessica Irwin

A Strong Gravitational Lens Is Worth a Thousand Dark Matter Halos: Inference on Small-Scale Structure Using Sequent @
Sebastian Wagner-Carena

Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN Benedikt Schosser &
Oxford, Hotel CASA 16:49 - 16:52
Simulation Based Inference from the CD-EoR 21-cm signal Anchal Saxena @
Oxford, Hotel CASA 16:52 - 16:55

Flexible conditional normalizing flow distributions over manifolds: the jammy-flows toolkit  Dr Thorsten Gliisenkamp @

Oxford, Hotel CASA 16:55 - 16:58
A deep learning method for the trajectory reconstruction of gamma rays with the DAMPE space mission @
Parzival Nussbaum
David Rousseau
15:00 - 15:40


https://agenda.infn.it/event/43565/

First LHC papers using Simulation-Based Inference

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

ATLAS w9 CMS, (&) SrRn-er 2024291

EXPERIMENT >
Submitted to: Rep. Prog. Phys. CERN-EP-2024-298 f\\\\ \\\
December 3, 2024 CMS-HIG-23-016
Measurement of off-shell Higgs boson production in Constraints on standard model effective field theory for a
the H* — ZZ — 4¢ decay channel using a neural Higgs boson produced in association with W or Z bosons

. . . . . in the H — bb decay channel in proton-proton collisions at
simulation-based inference technique in 13 TeV pp Y P p

\/E = 13 TeV
collisions with the ATLAS detector
The CMS Collaboration®
The ATLAS Collaboration
Abstract

A measurement of off-shell Higgs boson production in the H* — ZZ — 4{ decay channel
is presented. The measurement uses 140 fb~! of proton—proton collisions at \/s = 13 TeV
collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous
result in this decay channel using the same dataset. The data analysis is performed using
a neural simulation-based inference method, which builds per-event likelihood ratios using
neural networks. The observed (expected) off-shell Higgs boson production signal strength in
the ZZ — 4¢ decay channel at 68% CL is 0.87+%> (1.00*0%). The evidence for off-shell
Higgs boson production using the ZZ — 4¢ decay channel has an observed (expected)
significance of 2.50 (1.307). The expected result represents a significant improvement relative
to that of the previous analysis of the same dataset, which obtained an expected significance
of 0.50. When combined with the most recent ATLAS measurement in the ZZ — 2{2y
decay channel, the evidence for off-shell Higgs boson production has an observed (expected)
significance of 3.70 (2.40°). The off-shell measurements are combined with the measurement
of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The
observed (expected) value of the Higgs boson width at 68% CL is 4.3t21'.79 4. 13‘2) MeV.

A standard model effective field theory (SMEFT) analysis with dimension-six oper-
ators probing nonresonant new physics effects is performed in the Higgs-strahlung
process, where the Higgs boson is produced in association with a W or Z boson, in
proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which
the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom
quarks are considered. The analyzed data were collected by the CMS experiment
between 2016 and 2018 and correspond to an integrated luminosity of 138fb™*. An
approach designed to simultaneously optimize the sensitivity to Wilson coefficients of
multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson
coefficients that carry SMEFT sensitivity in this final state are performed for different
expansions in SMEFT. The results are consistent with the predictions of the standard
model.

arX1v:2412.01548v1 [hep-ex] 2 Dec 2024
arX1v:2411.16907v1 [hep-ex] 25 Nov 2024

Submitted to the Journal of High Energy Physics




First LHC papers using Simulation-Based Inference

arX1v:2412.01548v1 [hep-ex] 2 Dec 2024

ATLAS

EXPERIMENT
Submitted to: Rep. Prog. Phys.

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

N/

CERN-EP-2024-298
December 3, 2024

Measurement of off-shell Higgs boson production in
the H* —» ZZ — 4¢ decay channel using a neural
simulation-based inference technique in 13 TeV pp

collisions with the ATLAS detector

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the H* — ZZ — 4{ decay channel
is presented. The measurement uses 140 fb~! of proton—proton collisions at \/s = 13 TeV
collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous
result in this decay channel using the same dataset. The data analysis is performed using
a neural simulation-based inference method, which builds per-event likelihood ratios using
neural networks. The observed (expected) off-shell Higgs boson production signal strength in
the ZZ — 4¢ decay channel at 68% CL is 0.87+%> (1.00*0%). The evidence for off-shell
Higgs boson production using the ZZ — 4¢ decay channel has an observed (expected)
significance of 2.50" (1.30). The expected result represents a significant improvement relative
to that of the previous analysis of the same dataset, which obtained an expected significance
of 0.50. When combined with the most recent ATLAS measurement in the ZZ — 2{2v
decay channel, the evidence for off-shell Higgs boson production has an observed (expected)
significance of 3.70 (2.407). The off-shell measurements are combined with the measurement
of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The
observed (expected) value of the Higgs boson width at 68% CL is 4.3t21'.79 4. 13’3) MeV.

16:00

17:00

Parameter Estimation with

Neural Simulation-Based Inference in ATLAS

Jay Sandesara
on behalf of the ATLAS collaboration

Fair Universe HiggsML Uncertainty Challenge RAGANSU CHAKKAPPAI &
Salle Estaque, Palais du Pharo 16:00 - 16:20

Unbinned machine-learned measurements for the LHC with systematic uncertainties Robert Schoefbeck &

Salle Estaque, Palais du Pharo 16:20 - 16:40
Higgs Signal Strength Estimation with a Dual-Branch GNN under Systematic Uncertainties Daohan Wang @
Salle Estaque, Palais du Pharo 16:40 - 17:00

Parameter Estimation with Neural Simulation-Based Inference in ATLAS Jay Ajitbhai Sandesara @

Salle Estaque, Palais du Pharo 17:00 - 17:20
Constraining the Higgs trilinear self-coupling from off-shell production using neural simulation-based inference A
Tae Hyoun Park

Multi-Scale Transformer Encoder for Di-Tau Invariant Mass Reconstruction at CMS Valentina Camagni @

Salle Estaque, Palais du Pharo 17:40 - 18:00



Simulation-based Inference

Papers

The list is automatically compiled each day. Should you observe any inaccuracies or concerns, kindly bring them to our attention.
Additionally, if you believe a new paper aligns with the topic, feel free to submit it.
Visualize the annual growth in the number of publications.

oA Sort by Category

Total (744)
Statistics (195)

Computer Science (102)

Astrophysics (71)
Mathematics (54)
Education (47)
Economics (46)
Physics (33)

Quantitative Biology (31)

Neuroscience (27)

Quantitative Finance (21)

Astronomy (14)
Genetics (13)
Epidemiology (11)
Engineering (10)
Medicine (8)
Geography (8)
Social Science (7)

Evolutionary biology (6)

Ecology (5)

Cognitive Science (4)
Robotics (4)

Systems biology (4)
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e Simulation based stacking, Y Yao, BRS Blancard, J Domke - arXiv preprint arXiv:2310.17009, 2023 - arxiv.org

e Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability, M Falkiewicz, N Takeishi, |
Shekhzadeh... - arXiv preprint arXiv .., 2023 - arxiv.org

e Simulation-based Inference with the Generalized Kullback-Leibler Divergence, BK Miller, M Federici, C Weniger, P
Forré - arXiv preprint arXiv .., 2023 - arxiv.org

e Simulation-based Inference for Cardiovascular Models, A Wehenkel, J Behrmann, AC Miller, G Sapiro... - arXiv preprint
arXiv ..., 2023 - arxiv.org

e Hierarchical Neural Simulation-Based Inference Over Event Ensembles, L Heinrich, S Mishra-Sharma, C Pollard... -
arXiv preprint arXiv .., 2023 - arxiv.org

e | -C2ST Local Diagnostics for Posterior Approximations in Simulation-Based Inference, J Linhart, A Gramfort, PLC
Rodrigues - arXiv preprint arXiv:2306.03580, 2023 - arxiv.org

e | earning Robust Statistics for Simulation-based Inference under Model Misspecification, D Huang, A Bharti, A Souza,
L Acerbi... - arXiv preprint arXiv .., 2023 - arxiv.org

e Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation, R Gao, M Deistler, JH Macke -
arXiv preprint arXiv:2305.15208, 2023 - arxiv.org

e Variational Inference with Coverage Guarantees, Y Patel, D McNamara, J Loper, J Regier... - arXiv preprint arXiv ..., 2023
- arxiv.org

* Generalised likelihood profiles for models with intractable likelihoods, DJ Warne, OJ Maclaren, EJ Carr, MJ Simpson...
- arXiv preprint arXiv .., 2023 - arxiv.org

e Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods, J
Walchessen, A Lenzi, M Kuusela - arXiv preprint arXiv:2305.04634, 2023 - arxiv.org

e Ralancina Simiilation-bhaced Inference for Concervative Pocteriore A Delaiinov RK Miller P Forré C \Weniaer - arXiv

See also: github.com/smsharma/awesome-neural-sbi
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https://github.com/smsharma/awesome-neural-sbi

Gravitational Wave Astronomy

Gravitational wave Black hole Spacetime

Real-time gravitational-wave science with neural posterior estimation

Mirror Maximilian Dax,'** Stephen R. Green,? T Jonathan Gair,??
Jakob H. Macke,!'3 Alessandra Buonanno,>* and Bernhard Scholkopf!

' Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tibingen, Germany
*Maz Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1, 14476 Potsdam, Germany

3 Machine Learning in Science, University of Tibingen, 72076 Tibingen, Germany
* Department of Physics, University of Maryland, College Park, MD 20742, USA
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We are at a tipping point for SBl in HEP

Dedicated discussion at EUCAIFCon2025 — a new working group?

Similar to the transition we made
Discussion: Simulation-based inference & Uncertainty to statistical procedures at the
quantification ] .

LHC used for Higgs discovery

e Simulation-based inference plays an increasing role in cosmology,
gravitational waves, astroparticle physics and particle/nuclear physics . .
e Still there are lots of practical hurdles to make SBI a standard workhorse for o A 'FO rum fO I d ISCUSSIONS

analysis tasks.

o : :
e Goal of the discussion is to establish the most critical needs in the community S h d red 'I:O rma ‘ ISm, conve glife ns,
(common tools, large joined projects, training material, algorithmic gaps, etc).

e Identify clear goals and timelines to form a workgroup

& recommendations

e Benchmark examples to build

e— trust

e Guidance and prioritization for

2024: https://indico.nikhet.nl/event/4875/ t00| deve\opers
2025: https://agenda.intn.it/event/43565/
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Computational Microscope



Lattice Field Theory

Lattice field theory is a computational approach to studying field theory on a discretized space-time.
e Path integral: a “path” is a sample from distribution of lattice contfigurations ~exp(-Action[path])
e Predictions are expectations of quantum operators w.r.t. this distribution.

e Hamiltonian Monte Carlo was invented for this problem, but it has limitations.
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Al-Enhanced Monte Carlo Integration

Basic idea:

e use generative Al model (normalizing tlows) to approximate the target Boltzmann
distribution.

e Sample from the generative Al model instead of traditional Hamiltonian MC

Learned model won't be pertfect, but you can correct via importance sampling or MCMC
orocedure

nature reviews thSiCS https://doi.org/10.1038/s42254-023-00616-w

Shanahan  Abbott Hackett RfchT:)eerzo- Boyda Urban Kanwar

Ry g

Perspective ) Check for updates

Advances in machine-learning-based s W S T W S5 o bl SERES M N 1L
Sampl]ng m()tlvated by lattlce | Botev | Matthews ~ Rezende
quatum chromodynamics f- - a4

Razavi Albergo

= B _ ' y
- - ’.'

| ‘ »
b DeepMind | b DeepMind b DeepMind b DeepMind b DeepMind

Kyle Cranmer®', Gurtej Kanwar ®?, Sébastien Racaniére ® 3, Danilo J. Rezende ® 3 & Phiala E. Shanahan ® *°

See also: Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072



Space-time & Local, Non-Abelian Gauge Symmetry
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Phys.Rev.Lett. 125 (2020) 12, 121601  [arXiv:2003.06413 ]

A promising direction

Essentially, MCMC can get stuck for a while in a certain mode.
e Qur new “flow-based” proposal does much better!
e |t learns to propose configurations that look like our target distribution.

e 1000x reduction in autocorrelation time

2D U(1) model

Q 10000 3 -4~ HMC =
4 — HMC Cé) -4+ HB - ¢
(2) e .= 1000 % Flow o ,

. -
—4 g 100 ‘ “,4"
O art
0 20000 40000 60000 80000 100000 O 0l T e >
Markov chain step S it - e L e RIS g
) ) Q ITIL AL EEEREEE T
The topological charge Q will be constant for o 14°
45) | I I | | I |
thousands of MCMC steps. I 1 2 3 A . 6 -



1 Sample Gaussian distribution

/DZ(K

For molecular dynamics

RESEARCH Noé et al., Science 365, 1001 (2019) 6 September 2019 * * * *
f; f
RESEARCH ARTICLE SUMMARY A b n
MACHINE LEARNING + : + * - *
Boltzmann generators: Sampling A

equilibrium states of many-body -
SYStemS With deep learning 2 Generate distribution

Px(X)
Frank Noé*t, Simon Olsson*, Jonas Kohler*, Hao Wu S a m e CO r e id e a a S /\/\A\/\/\/VL

Boltzmann generators 3 Re -weight @

The main approach 1s thus to start with one e
configuration, e.g., the folded protein state, and _M 0 A
make tiny changes to it over time, e.g., by using l st aion l
Markov-chain Monte Carlo or molecular dy-

namics (MD). However, these simulations get

trapped in metastable (long-lived) states: For

example, sampling a single folding or unfold-

ing event with atomistic MD may take a year Boltzmann generators overcome sampling

on a supercomputer. problems between long-lived states.




For phase-space integration

Similar ideas are improving phase space

Monte Carlo generators

MadNIS - Neural Multi-Channel Importance Sampling

Theo Heimel!, Ramon Winterhalder?,
Anja Butter!®, Joshua Isaacson*, Claudius Krause®,
Fabio Maltoni®®, Olivier Mattelaer?, and Tilman Plehn?

1 Institut fiir Theoretische Physik, Universitiat Heidelberg, Germany
2 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium
3 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
4 Theoretical Physics Division, Fermi National Accelerator Laboratory, Batavia, IL, USA
5 Dipartimento di Fisica e Astronomia, Universita di Bologna, Italy

ramon.winterhalder@uclouvain.be

Abstract

Theory predictions for the LHC require precise numerical phase-space integration and
generation of unweighted events. We combine machine-learned multi-channel weights
with a normalizing flow for importance sampling, to improve classical methods for nu-
merical integration. We develop an efficient bi-directional setup based on an invertible
network, combining online and buffered training for potentially expensive integrands.
We illustrate our method for the Drell-Yan process with an additional narrow resonance.

integration to accelerate Parton-level

3.2 Neural importance sampling
Second, MADNIS augments the physics-inspired phase space mappings with an INN [19]
y=Gi(x) = Gi(xl¢) and  x=G;(yly). (22)

This replaces the classic importance sampling density g;(x) with a network-based variable
transformation g;(x|¢) in Egs.(6) and (15)

2G;(x|p)
dx

I[f]:ZJ d’y a;(x) /() with gi(x|90):‘ , (23)
i JU;

8i(x[0)]x=G,(y1)

where we assume the latent distribution in y to be uniform. The INN-encoded phase space
mapping is trained to provide a surrogate density

gi(xlp) ~ fi(x) = a;(x)f (x), (24)
[ ) ( )
Phase space s G(x|p) A Unit hypercube
>
\NAVANAVAVANATA
hannel T
apping MNAVAVANAVAVANAN
<
x~ gx|) C_?,-(y | @) y ~ uniform
. y - J . b




Conclusion

Al/ML is providing gqualitatively new capabilities.

e Those capabilities allow us to remove some approximations &
simplifications and return to what we've always wanted to do from
first principles but were unable to do computationally.

't is allowing us to make better use of our experimental data and
theoretical understanding.

e Many challenges remain, the transtformation is tar from over.
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Statistical Framing

0

parameters of interest

forward modeling
generation

simulation
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latent variables

inverse problem
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parameter estimation

X
observed data
simulated data
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Simulating particle physics processes
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Simulating particle physics processes

Parton-level Theory
momenta parameters
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Simulating particle physics processes
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Simulating particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon

[ =

[
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| S S —
I

Evolution
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — y — 25 — Z; —— )

A ———————————————————————
Evolution



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from plzlz4) p(2al2s) p(2s2) p(2p16)

MADGRAPHS _aMCO@ENLDO

X X
X X X X

IIIIIIIIIIIIIIII

Prediction (simulation)



Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous space!

Inference



Feynman diagrams with loops

More precise calculations have more loops

e Butthe number of diagrams grows combinatorially with the number of loops
* Feynman diagrams become a poor way to organize the calculation

New bootstrap approach emerged that leverages analytical properties of
amplitudes. Properties are so constraining, they define a unique solution

NN ORC N AONAY,

<A)<§} (3)© ©) (®\ /@\ [@\ {@\ KXN
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The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision



The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision

For example, in a particular theory called #'=4 Super Yang-Mills theory,
the answer at 2-loops tor a particular interaction is: P;

SIF{®] = +8bddd +8ceee +8afff +8bfff +8cddd +S8aeee ‘
+16bbbd+16ccce+16bbb f +16aaa f+16cced+16aaae 9p

e Of the 64 =1296 possible terms, most are 0. Sparse, lots of structure!




The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of
terms with an integer coefficient and a word composed of 2L letters

e The 6 letters{a.b,c.d,e, f} encode the kinematics of the collision

For example, in a particular theory called 4'=4 Super Yang-Mills theory,

the answer at 2-loops tor a particular interaction is: P
SIF{®] = +8bddd +8ceee +8afff +8bfff +8cddd +S8aeee € odio s
+16bbbd-+16ccce+16bbb f +16aaa f+16cced+16aaae 9p,
g

e Of the 64 =1296 possible terms, most are 0. Sparse, lots of structure!

The solution space is growing exponentially — hard to find the answer!

loop order L 1 2 3 4 5! 6 7 8
terms in S[F\”)] 6 12 636 11,208 263,880 4.9 x 10° 9.3 x 107 1.67 x 10°




A few SBIl Papers in MLST

MACHINE LEARNING

Science and Technology

PAPER - OPEN ACCESS
Stochastic black-box optimization using multi-fidelity score
function estimator

Atul Agrawal’, Kislaya Ravi, Phaedon-Stelios Koutsourelakis and Hans-Joachim Bungartz
Published 31 January 2025 « © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Focus on ML and the Physical Sciences
Citation Atul Agrawal et al 2025 Mach. Learn.: Sci. Technol. 6 015024
DOI110.1088/2632-2153/ad8e2b

OPEN ACCESS
Comparing Al versus optimization workflows for simulation-
based inference of spatial-stochastic systems

Michael Alexander Ramirez Sierra” and Thomas R Sokolowski
Published 14 February 2025 - © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Citation Michael Alexander Ramirez Sierra and Thomas R Sokolowski 2025 Mach. Learn.: Sci. Technol. 6 010502

DOI110.1088/2632-2153/ada0a3

PAPER - OPEN ACCESS
Simulation-based inference with approximately correct
parameters via maximum entropy

Rainier Barrett, Mehrad Ansari, Gourab Ghoshal and Andrew D White
Published 27 April 2022 « © 2022 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 3, Number 2

Citation Rainier Barrett et al 2022 Mach. Learn.: Sci. Technol. 3 025006

DOI 10.1088/2632-2153/ac6286

LETTER - OPEN ACCESS
DIGS: deep inference of galaxy spectra with neural posterior
estimation

Gourav Khullar, Brian Nord, Aleksandra Ciprijanovi¢, Jason Poh and Fei Xu
Published 28 December 2022 - © 2022 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 3, Number 4

Citation Gourav Khullar et al 2022 Mach. Learn.: Sci. Technol. 3 04LT04
DOI10.1088/2632-2153/ac98f4

PAPER - OPEN ACCESS

Evidence Networks: simple losses for fast, amortized, neural
Bayesian model comparison

Niall Jeffrey and Benjamin D Wandelt

Published 17 January 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 1

Citation Niall Jeffrey and Benjamin D Wandelt 2024 Mach. Learn.: Sci. Technol. 5 015008
DOI110.1088/2632-2153/ad1a4d

PAPER « OPEN ACCESS
Simulation-based inference on virtual brain models of
disorders

Meysam Hashemi, Abolfazl Ziaeemehr, Marmaduke M Woodman, Jan Fousek, Spase Petkoski and
Viktor K Jirsa
Published 19 July 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on Explainable Machine Learning_in Sciences
Citation Meysam Hashemi et al 2024 Mach. Learn.: Sci. Technol. 5 035019
DOI 10.1088/2632-2153/ad6230

PAPER - OPEN ACCESS

Importance nested sampling with normalising flows
Michael J Williams, John Veitch and Chris Messenger

Published 25 July 2023 - © 2023 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 4, Number 3

Citation Michael J Williams et al 2023 Mach. Learn.: Sci. Technol. 4 035011

DOl 10.1088/2632-2153/acd5aa

PAPER - OPEN ACCESS
Multi-fidelity Gaussian process surrogate modeling for
regression problems in physics

Kislaya Ravi’, Vladyslav Fediukov', Felix Dietrich, Tobias Neckel, Fabian Buse, Michael Bergmann and

Hans-Joachim Bungartz
Published 15 October 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 4

Focus on ML and the Physical Sciences
Citation Kislaya Ravi et al 2024 Mach. Learn.: Sci. Technol. 5 045015
DOI 10.1088/2632-2153/ad7ad5

PAPER - OPEN ACCESS
Efficient Bayesian inference using physics-informed invertible

neural networks for inverse problems

Xiaofei Guan, Xintong Wang, Hao Wu, Zihao Yang and Peng Yu
Published 23 July 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on Generative Al in Science
Citation Xiaofei Guan et al 2024 Mach. Learn.: Sci. Technol. 5 035026
DOI 10.1088/2632-2153/ad5f74

PAPER - OPEN ACCESS
DiffLense: a conditional diffusion model for super-resolution
of gravitational lensing data

Pranath Reddy’, Michael W Toomey, Hanna Parul and Sergei Gleyzer
Published 19 September 2024 - © 2024 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 5, Number 3

Focus on ML and the Physical Sciences
Citation Pranath Reddy et al 2024 Mach. Learn.: Sci. Technol. 5 035076
DOI110.1088/2632-2153/ad76f8




Unfolding

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

&) o)

ATLAS 7
EXPERIMENT

Phys.Rev.Lett. 133 (2024) 26, 261803 CERN-EP-2024-132
DOI: 10.1103/PhysRevlLett.133.261803 February 10, 2025

A simultaneous unbinned differential cross section
measurement of twenty-four Z+jets kinematic

observables with the ATLAS detector

The ATLAS Collaboration




Link to talk

Max Welling's talk @ EuCAIFCon2024
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https://indico.nikhef.nl/event/4875/contributions/21157/

Compare with HEP's association with Big Data

Business emails sent
3000PB/year In 2012: 2800 exabytes
(Doesn’t count; not managed as created or replicated
a coherent data set) 1 Exabyte = 1000 PB

~14x growth
expected 2012-2020

LHC data
15PB/yr
~ Current ATLAS

Cend s dm m, a“ data
products: 140 PB

/0



The strong force: Quantum Chromodynamics (QCD)

The strong nuclear torce is one of the tour

fundamental forces.

't is described by Quantum Chromodynamics
(QCD)

QCD describes how quarks and gluons interact

Emergent phenomena:
Quarks and gluons form protons, neutrons, etc.




Al-Enhanced Sampling

Basic idea:

e use generative Al model (normalizing flows) to approximate the target Boltzmann distribution.
e Train using reverse KL[g||p] (not samples from the target)

e Sample from the flow instead of traditional Hamiltonian MC

Learned model won't be perfect, but you can correct via importance sampling or MCMC procedure

Shanahan  Abbott Hackett = Romero- Boyda Urban Kanwar

nature reviews thSiCS https://doi.org/10.1038/s42254-023-00616-w Lé peZ

N £

Perspective ) Check for updates

Advances in machine-learning-based

18 1

I H B Massachusetts
I I Institute of
Technology
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sampling motivated by lattice
quatum chromodynamics

Racaniere = Razavi Albergo

n

Kyle Cranmer®', Gurtej Kanwar ®?, Sébastien Racaniére ® 3, Danilo J. Rezende ® 3 & Phiala E. Shanahan ® *°

See also: Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072



Lattice Field Theory

Lattice field theory is a computational approach to studying interacting tield theory
on a discretized space-time lattice.

Fach link on the lattice has data corresponding to the symmetry group of the
theory. For the strong torce (QCD) each link has a 3x3 unitary matrix.

This animation is a single configuration of the lattice.

Think of a 4-d image playing like a movie.

QCD Lagrangian 643x128 x4 x9x 2
l n (1L A - S 9
L = _.I 2l I‘l“‘ + | L 10 numbers

qliv" (9, — igA,) —m,)q
J u.dschit

o——0
A A
4 = 1

O quark A gluon




Lattice Field Theory

Lattice field theory is a computational approach to studying interacting tield theory
on a discretized space-time lattice.

Fach link on the lattice has data corresponding to the symmetry group of the
theory. For the strong torce (QCD) each link has a 3x3 unitary matrix.

This animation is a single configuration of the lattice.

Think of a 4-d image playing like a movie.

QCD Lagrangian 643x128 x4 x9x 2
l n (1L A - S 9
L = _.I 2l I‘l“‘ + | L 10 numbers

qliv" (9, — igA,) —m,)q
J u.dschit

o——0
A A
4 = 1

O quark A gluon




Image vs. Lattice Quantum Fields

Image generation

= 1,000,000,000 samples

Image geometry 512 x 512

RGB pixel variables | x3

= 1,000,000 dof

Target
Subjective high quality per sample

Symmetries
Few approximate symmetries
(for example, reflection, small translations)



Image vs. Lattice Quantum Fields

Image generation

Image geometry

RGB pixel variables

Target

nature reviews physics

[® Check for update

Advancesin machine-learning-based
sampling motivated by lattice
quatum chromodynamics

= 1,000,000,000 samples

512 x 512

x3

= 1,000,000 dof

Subjective high quality per sample

Symmetries

Few approximate symmetries

(for example, reflection, small translations)

Quantum field generation

= 10,000 samples

Lattice geometry 256 x 256 x 256 x 512

SU(3) link variables | x4x 8

=100,000,000,000 dof

Target
Obijective distribution p(U) = e3Y/Z

Symmetries
High-dimensional exact symmetries
(for example, translations, gauge symmetry)



Distribution over configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional
distribution of configurations predicted by the theory.

* Path integral: each "path” is a sample from distribution of lattice configurations path ~exp(-Action[path])
e Predictions are expectations of quantum operators w.r.t. this distribution.

 Hamiltonian Monte Carlo was invented for this problem, but it has limitations.
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The Path Integral Formulation of Your Life
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Predictions are taken seriously

Magnetic moment of the electron:
(torque an electron feels in a magnetic

field) ae = (g — 2)/2

Most accurately verified prediction in

the history of physics i WA A W AOW A,

6. 6.8 0 =

o 70 A B A

Theory a. = 0.001159652181643(764) FR A2 M A A

. — 0. AL
Exp a. = 0.00115965218073(28) @@@@9% T e e
= ~ = Muon g-2 (FNAL)
2 108~ Run-1 Data _;
Z o) "V\’\J’V\’V\/\/\/\/\/\/\/\/\/\,\,\,\,\;
srookiven g :
. 106 =
e | ’
10*E

® : Q j 103%— A E
a:rezrictio‘r)re )mm? :....I....I....I....I....I....I....I....In..nlnnnl:

175 180 185 190 195 200 205 210 215 O 10 20 30 40 50 60 70 80 90
a, x 10° - 1165900 Time after injection modulo 100 ps



Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072

Flows for LQCD

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

BaSiC idea: M. S. Albergo,»?:3 G. Kanwar,* and P. E. Shanahan* !

I Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
“Cavendish Laboratories, University of Cambridge, Cambridge CB3 OHE, U.K.
Y University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

® use n O rma I 1Z1 n g ﬂOWS tO 4 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

o A Markov chain update scheme using a machine-learned flow-based generative model is proposed

a p p FOXIM ate t h e ta rg et B O ‘tZ Mann for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained)
to produce samples from a distribution approximating the desired Boltzmann distribution deter-

d I S.t rl b U .tl on mined by the lattice action of the theory being studied. Training the model systematically improves
. autocorrelation times in the Markov chain, even in regions of parameter space where standard

Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated up-

dates. Moreover, the model may be trained without existing samples from the desired distribution.

: : The algorithm is compared with HMC and local Metropolis sampling for ¢* theory in two dimen-
e Train using reverse KL[qg||p] The alg P polis sampling for ¢ theory

(not samples from the target)

e Sample from the flow instead of

Enrico Rinaldi @enricesena - Nov 1 v
Yesterday Gurtej Kanwar told us about machine learning for lattice field
theories and exciting progress in Generative Models for gauge theories
(collaboration with @DeepMindAl ) at #DLAP2019 Today is the last day of
this great conference!

traditional Hamiltonian MC

Learned model won't be pertect, but

you can correct via importance
sampling or MCMC procedure

Hire Michael 1




