ARTIFICIAL INTELLIGENCE AND HEP

@KyleCranmer

University of Wisconsin-Madison Data Science Institute, Physics, Statistics, Computer Science

Introduction

HEP has been using ML for decades (mainly for classification and regression), but what is happening recently is not just an improvement.

- We have qualitatively new capabilities
- What are they and why do they matter?
- There is enormous hype around "AI" is it physics?
- Focus on new capabilities, what they enable, & patterns of use

How does "AI4HEP" fit into broader trends around "AI4Science"?

Important for arguing HEP's relevance to society, funding, etc.

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

ML Publications in Science

$p_{T_1}, p_{T_2}, \eta_{T_1}, \eta_{T_2}, \Delta R_{jj}, \Delta \eta_{jj}, m_{jj}, \dots$

Tabular data

- "High-level features" / observables
 - angles, energies, inv. masses, ...
- Fixed number of features
- ~ 5 30 observables

Richly-structured data

- Low-level objects
 - cells, clusters, tracks, ...
- Variable number
- 100s-1000s of objects
 - Underlying geometry

5

A zoo of architectures

The ML4Jets Workshops

2017

2020

2023

See agendas here: <u>https://indico.cern.ch/event/1253794/</u>

Hammers & Nails - Machine Learning & HEP

July 19-28, 2017 | Weizmann Institute of Science, Israel

2017

Topics include:

- 1. Generative models, high-dimensional density estimation, and likelihood-free inference
- 2. Sublinear-time pattern recognition and online learning
- 3. Domain adaptation and systematic uncertainty
- 4. Anomaly detection
- 5. Optimal experiment design and black box optimization
- 6. Generative Adversarial Network (GAN)
- 7. Geometric Deep Learning
- 8. U-Net

Topics include:

- 2. Sublinear-time pattern recognition and online learning
- 3. Domain adaptation and systematic uncertainty
- 4. Anomaly detection
- 5. Optimal experiment design and black box optimization
- 6. Generative Adversarial Network (GAN)
- 7. Geometric Deep Learning

2019

1. Generative models, high-dimensional density estimation, and likelihood-free inference

Topics include:

- 1. Transformers, Attention, large language models (LLM), etc.
- 2. New types of generative models
- 3. Molecules (symmetries, graphs, generative models, etc.)
- 4. Uncertainty quantification and Bayesian NNs
- 5. Algorithmic reasoning
- 6. Optimal transport
- 7. Implicit layers
- 8. Variational inference / probabilistic reconstruction
- 9. Self-supervised learning

Machine Learning and the Physical Sciences

Workshop at the 39th conference on Neural Information Processing Systems (NeurIPS) December 6 or 7, 2025

A new journal focusing on ML for Physics

MACHINE LEARNING Science and Technology

PAPER • OPEN ACCESS

Stochastic black-box optimization using multi-fidelity score function estimator

Atul Agrawal^{*}, Kislaya Ravi, Phaedon-Stelios Koutsourelakis and Hans-Joachim Bungartz Published 31 January 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 6, Number 1

Focus on ML and the Physical Sciences

Citation Atul Agrawal et al 2025 Mach. Learn.: Sci. Technol. 6 015024 DOI 10.1088/2632-2153/ad8e2b

OPEN ACCESS

Comparing AI versus optimization workflows for simulationbased inference of spatial-stochastic systems

Michael Alexander Ramirez Sierra^{*} and Thomas R Sokolowski Published 14 February 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Citation Michael Alexander Ramirez Sierra and Thomas R Sokolowski 2025 Mach. Learn.: Sci. Technol. 6 010502 DOI 10.1088/2632-2153/ada0a3

PAPER • OPEN ACCESS

Simulation-based inference with approximately correct parameters via maximum entropy

Rainier Barrett, Mehrad Ansari, Gourab Ghoshal and Andrew D White Published 27 April 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 3, Number 2 Citation Rainier Barrett et al 2022 Mach. Learn.: Sci. Technol. 3 025006 DOI 10.1088/2632-2153/ac6286

LETTER • OPEN ACCESS DIGS: deep inference of galaxy spectra with neural posterior estimation

Gourav Khullar, Brian Nord, Aleksandra Ćiprijanović, Jason Poh and Fei Xu Published 28 December 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 3, Number 4 Citation Gourav Khullar et al 2022 Mach. Learn.: Sci. Technol. 3 04LT04

DOI 10.1088/2632-2153/ac98f4

PAPER • OPEN ACCESS Evidence Networks: simple losses for fast, amortized, neural Bayesian model comparison

Niall Jeffrey and Benjamin D Wandelt Published 17 January 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 5, Number 1 Citation Niall Jeffrey and Benjamin D Wandelt 2024 Mach. Learn.: Sci. Technol. 5 015008 DOI 10.1088/2632-2153/ad1a4d

PAPER • OPEN ACCESS Simulation-based inference on virtual brain models of disorders

Meysam Hashemi, Abolfazl Ziaeemehr, Marmaduke M Woodman, Jan Fousek, Spase Petkoski and Viktor K Jirsa

Published 19 July 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 5, Number 3 Focus on Explainable Machine Learning in Sciences Citation Meysam Hashemi et al 2024 Mach. Learn.: Sci. Technol. 5 035019 DOI 10.1088/2632-2153/ad6230

PAPER • OPEN ACCESS

Importance nested sampling with normalising flows

Michael J Williams, John Veitch and Chris Messenger Published 25 July 2023 • © 2023 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 4, Number 3 Citation Michael J Williams et al 2023 Mach. Learn.: Sci. Technol. 4 035011 DOI 10.1088/2632-2153/acd5aa

Disclaimer: I'm Editor-in-Chief

PAPER • OPEN ACCESS

Multi-fidelity Gaussian process surrogate modeling for regression problems in physics

Kislaya Ravi^{*}, Vladyslav Fediukov^{*}, Felix Dietrich, Tobias Neckel, Fabian Buse, Michael Bergmann and Hans-Joachim Bungartz Published 15 October 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 5, Number 4 Focus on ML and the Physical Sciences Citation Kislaya Ravi et al 2024 Mach. Learn.: Sci. Technol. 5 045015

DOI 10.1088/2632-2153/ad7ad5

PAPER • OPEN ACCESS

Efficient Bayesian inference using physics-informed invertible neural networks for inverse problems

Xiaofei Guan, Xintong Wang, Hao Wu, Zihao Yang and Peng Yu Published 23 July 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 5, Number 3 Focus on Generative AI in Science Citation Xiaofei Guan et al 2024 Mach. Learn.: Sci. Technol. 5 035026

DOI 10.1088/2632-2153/ad5f74

PAPER • OPEN ACCESS

DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data

Pranath Reddy^{*}, Michael W Toomey, Hanna Parul and Sergei Gleyzer Published 19 September 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 5, Number 3 Focus on ML and the Physical Sciences Citation Pranath Reddy et al 2024 Mach. Learn.: Sci. Technol. 5 035076

DOI 10.1088/2632-2153/ad76f8

http://iopscience.iop.org/mlst

10

Insight of data generating process informs inductive bias on architecture

Image credit: Battaglia, et. al. arXiv:1806.01261

ncuctive Blas **Compositionality** Relationships Symmetry **Causality**

Geometric Deep Learning

HEP's problems, experience, and contributions were recognized by the AI/ML community

arXiv:2104.13478

112 | BRONSTEIN, BRUNA, COHEN & VELIČKOVIĆ

Part of the Large Hadron Collider detectors.

Particle physics and astrophysics High energy physicists were perhaps among the first domain experts in the field of natural sciences to embrace the new shiny tool, graph neural networks. In a recent review paper, Shlomi et al. (2020) note that machine learning has historically been heavily used in particle physics experiments, either to learn complicated inverse functions allowing to infer the underlying physics process from the information measured in the detector, or to perform classification and regression tasks. For the latter, it was often necessary to force the data into an unnatural representation such as grid, in order to be able to used standard deep learning architectures such as CNN. Yet, many problems in physics involve data in the form of unordered sets with rich relations and interactions, which can be naturally represented as graphs.

Collider detectors. One important application in high-energy physics is the reconstruction and classification of *particle jets* – sprays of stable particles arising from multiple successive interaction and decays of particles originating from a single initial event. In the Large Hardon Collider, the largest and best-known particle accelerator built at CERN, such jet are the result of collisions of protons at nearly the speed of light. These collisions produce massive particles, such as the long though-for Higgs boson or the top quark. The identification and classification of collision events is of crucial importance, as it might provide experimental evidence to the existence of new particles.

Example of a particle jet.

Multiple Geometric Deep Learning approaches have recently been proposed for particle jet classification task, e.g. by Komiske et al. (2019) and Qu and Gouskos (2019), based on DeepSet and Dynamic Graph CNN architectures, respectively. More recently, there has also been interest in developing specialsed architectures derived from physics consideration and incorporating inductive biases consistent with Hamiltonian or Lagrangian mechanics (see e.g. Sanchez-Gonzalez et al. (2019); Cranmer et al. (2020)), equivariant to the Lorentz group (a fundamental symmetry of space and time in physics) (Bogatskiy et al., 2020), or even incorporating symbolic reasoning (Cranmer et al., 2019) and capable of learning physical laws from data. Such approaches are more interpretable (and thus considered more 'trustworthy' by domain experts) and also offer better generalisation.

Besides particle accelerators, particle detectors are now being used by astrophysicist for *multi-messenger astronomy* – a new way of coordinated observation of disparate signals, such as electromagnetic radiation, gravitational waves, and neutrinos, coming from the same source. Neutrino astronomy is

3

Rapid progress

From 2015-2020 we saw rapid progress in using deep learning for

- Particle ID & jet / flavor tagging
- Reconstruction
 - Tracking, vertexing
 - Particle flow, pileup suppression
- Fast Simulation
- Anomaly Detection
- Unfolding
- Fast ML for Trigger

Now seeing a transition from early R&D prototypes to production

The Machine Learning Landscape of Top Taggers

G. Kasieczka (ed)¹, T. Plehn (ed)², A. Butter², K. Cranmer³, D. Debnath⁴, B. M. Dillon⁵, M. Fairbairn⁶, D. A. Faroughy⁵, W. Fedorko⁷, C. Gay⁷, L. Gouskos⁸, J. F. Kamenik^{5,9}, P. T. Komiske¹⁰, S. Leiss¹, A. Lister⁷, S. Macaluso^{3,4}, E. M. Metodiev¹⁰, L. Moore¹¹, B. Nachman,^{12,13}, K. Nordström^{14,15}, J. Pearkes⁷, H. Qu⁸, Y. Rath¹⁶, M. Rieger¹⁶, D. Shih⁴, J. M. Thompson², and S. Varma⁶

14

Challenges

Research Code Competition

cecube - Neutrinos in Deep ice

Reconstruct the direction of neutrinos from the Universe to the South Pole

IceCube Neutrino Observatory 812 teams 7 months ago

The Machine Learning Landscape of Top Taggers

G. Kasieczka $(ed)^1$, T. Plehn $(ed)^2$, A. Butter², K. Cranmer³, D. Debnath⁴, B. M. Dillon⁵, M. Fairbairn⁶, D. A. Faroughy⁵, W. Fedorko⁷, C. Gay⁷, L. Gouskos⁸, J. F. Kamenik^{5,9}, P. T. Komiske¹⁰, S. Leiss¹, A. Lister⁷, S. Macaluso^{3,4}, E. M. Metodiev¹⁰, L. Moore¹¹, B. Nachman,^{12,13}, K. Nordström^{14,15}, J. Pearkes⁷, H. Qu⁸, Y. Rath¹⁶, M. Rieger¹⁶, D. Shih⁴, J. M. Thompson², and S. Varma⁶

Fast Calorimeter Simulation Challenge 2022

/iew on GitHub

FAIR UNIVERSE - HIGGS UNCERTAINTY CHALLENGE

A pool of 4000 USD

ORGANIZED BY: FAIR Universe CURRENT ACTIVE PHASE: None CURRENT SERVER TIME: July 11, 2025 At 8:03 AM GMT+2

Data Science at the Singularity

by David Donoho

Published on Jan 29, 2024

- In the last decade, frictionless services became available thanks to the modern information ecosystem
- Those frictionless services were applied by scientists and technologists to data sharing, code sharing, and challenges
- Some communities of researchers started frictionlessly sharing research artifacts — code, data, results — and building on each others' work.

• Involved research communities are progressing much faster.

Al is one of those communities where people are working this way. There is a **singularity**, but it is not Al.

https://doi.org/10.1162/99608f92.b91339ef

Predictive Models → **Generative Models** Supervised learning → unsupervised learning

The Evolution of Deep Learning

2016: Generative Model for Images

redshank

ant

monastery

volcano

2018: Generative Model for Images

How an A.I. 'Cat-and-Mouse Game' **Generates Believable Fake Photos**

By CADE METZ and KEITH COLLINS JAN. 2, 2018

This one is computer-generated .

19

2018: Large Language Models

In 2018, a new approach to modeling language was introduced:

- The "transformer"
- Dramatic improvements
- Emergent capabilities
 - e.g. coding, "reasoning", ...

Transformers aren't specific to language, but they provide bridge to domain knowledge in literature

Multimodal modals

and represent that data in a shared semantic embedding space

Major advance in creating models that can consume multiple data modalities

21

Multimodal modals

and represent that data in a shared semantic embedding space

Query Caption

A person who is on his motorcycle in the air.

A small child standing in a field of green grass playing with a frisbee.

Retrieved Images

(a) Text-to-image retrieval

Major advance in creating models that can consume multiple data modalities

Query Image

Retrieved Captions

A group of flamingos standing next to each other in water.

A flock of pink flamingos standing in shallow water. A flock of flamingos standing in a pond.

A Lufthansa jumbo-jet at some airport during the day. A commercial airplane on a runway at an airport. A large jumbo jet on the runway of an airport.

(b) Image-to-text retrieval

21

What are the dominant themes in AI for Science?

How does HEP fit in?

Simulators are the modern manifestation of theories

The forefront of scientific knowledge is often encapsulated in simulators

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429] 23

Simulators are the modern manifestation of theories

Unfortunately, simulators are poorly suited for many downstream tasks, e.g. statistical inference, experimental design, decision making, ...

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429] 23

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

-PAUL DIRAC

Cow

Spherical Cow

Spherical Cow

Cow

CowFormer

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

EDITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Scientific Paradigms:

- 1. Empirical
- 2. Theoretical
- 3. Computational
- 4. Data-Driven / Data-Intensive Discovery

5. AI/ML + Simulation + Data

AI4Science to empower the fifth paradigm of scientific discovery

Published July 7, 2022

By Christopher Bishop, Technical Fellow and Director, Microsoft Research Al4Science

https://www.microsoft.com/en-us/research/blog/ai4science-to-empower-the-fifth-paradigm-of-scientific-discovery/

NN predicts the Weather 10,000 times faster

Pangu-Weather: A 3D High-Resolution System for Fast and Accurate Global Weather Forecast Kalfeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian⁶⁵, *Fellow, IEEE*

In fusion energy

Accelerating fusion science through learned plasma control

February 16, 2022

Successfully controlling the nuclear fusion plasma in a tokamak with deep reinforcement learning

AI/ML is providing dramatically enhanced capabilities

Fast AI/ML emulators of classical numerical simulations enable these systems to be used for decisions, control, & design where it was previously infeasible

- Numerical weather prediction / fusion / ...
- But also in HEP

Verena Kain's talk @ EuCAIF

Machine Learning Applications for Particle Accelerators

CONFERENCES CONTACT US

A for particle accelerators

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

RL4AA - workshop

Pushing the frontiers of RL for accelerators \rightarrow autonomous accelerators.

Differentiable simulation codes

Optimisation algorithms work best and are most sample-efficient with gradient information of the objective function.

- A physics-informed prior can help **improve the performance** of BO by preventing over-exploitation.
- Cheetah's differentiability allows efficient acquisition function optimisation using gradient descent methods in modern BO packages like BoTorch.
- Has well-defined behaviour and does not need data to train like neural network priors.
- Can be used in **combination with gradient-based system** identification to overcome model inaccuracies.

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

Reinforcement Learning (RL)

Learn dynamics (once and for all) through trial-and-error, no exploration after training!

RL setup for trajectory steering

Next generation accelerators to be built for RL: \rightarrow fast executing (accurate) simulation / digital twin for training \rightarrow instrumentation designed with control algorithm

RL elegant (if not ideal) solution, but online training often not possible!

- Not sample-efficient enough
- Safety constraints
- \rightarrow RL (like MPC) needs to be built into accelerator design.

AI for particle accelerators, EuCAIF, V. Kain, 01-May-2024

RL for accelerator operations at DESY

RL can tune 4x faster than human operators

MATTER AND M T

Reinforcement learning: From ARES Sinbad to the European XFEL

Reinforcement learning-trained optimization at ARES

- Deploy a RL-trained optimization algorithm trained purely in simulation to the real-world with zeroshot learning thanks to domain randomization.
- The trained policy **outperforms other** optimization algorithms and expert human operators.

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025

Method - RL Nelder-Mead V 0.2 0.0 0 Camera looking I **: ()** (Changes to nagnet setti IRAD in, A Eichler. Learning-based Optimisation of Particle Accelerators Under Partial Observability Without Real-World Training. In International Conference on Machine Learning, 2022. V Kaiser, C Xu, A Eichler, et. al. Reinforcement learning-trained optimisers and Bayesian Page 16

optimisation for online particle accelerator tuning. In Scientific reports 14 (1), 2024

Cheetah: Speeding up simulations by 10⁸

Linear beam dynamics simulation python package

Why we need it? Training of RL agents would require **3 years of beam time** on the real machine, **11 days with Ocelot, 1 hour with Cheetah.**

Main features in support of ML applications:

- **Ultra-fast** compute (at the cost of fidelity)
- Differentiability
- **GPU** support

TABLE I. Step computation times of simulation codes in milliseconds

Code	Comment	Laptop	HPC node
ASTRA	space charge	264000.00	3605000.00
	no space charge	109000.00	183000.00
Parallel ASTRA	space charge	39000.00	17300.00
	no space charge	16900.00	12600.00
Ocelot	space charge	22100.00	21700.00
	no space charge	182.00	119.00
Bmad-X		40.50	74.30
Cheetah	ParticleBeam	0.79	0.72
	t ParticleBeam + GPU	-	0.09
	ParameterBeam	0.02	0.04

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025

Making use of Cheetah's differentiability

- Bayesian optimization prior
- Gradient-based tuning / system identification

Actuator / unknown variable

Cheetah in daily operation at LCLS:

Now deployed to **daily** operations at **LCLS** for 6Dphase space reconstruction module.

lan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia. Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations. In Physical Review Accelerators and Beams, 2024.

Making use of Cheetah's speed

- Reinforcement learning
- Integration of modular network surrogate

RL for accelerator operations at DESY

RL can tune 4x faster than human operators

Reinforcement learning: From ARES Sinbad to the European XFEL

Reinforcement learning-trained optimization at ARES

- Deploy a RL-trained optimization algorithm trained purely in simulation to the real-world with zeroshot learning thanks to domain randomization.
- The trained policy **outperforms other** optimization algorithms and expert human operators.

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025

Similar pattern with plasma accelerators.

Opportunities with AI/ML surrogates of expensive Particle-in-Cell simulation?

MATTER AND M T

Cheetah: Speeding up simulations by 10⁸

Linear beam dynamics simulation python package

Why we need it? Training of RL agents would require 3 years of beam time on the real machine, 11 days with Ocelot, 1 hour with Cheetah.

Main features in support of ML applications:

- **Ultra-fast** compute (at the cost of fidelity)
- Differentiability
- **GPU** support

TABLE I. Step computation times of simulation codes in milliseconds

Code	Comment	Laptop	HPC node
ASTRA	space charge	264000.00	3605000.00
	no space charge	109000.00	183000.00
Parallel ASTRA	space charge	39000.00	17300.00
	no space charge	16900.00	12600.00
Ocelot	space charge	22100.00	21700.00
	no space charge	182.00	119.00
Bmad-X		40.50	74.30
Cheetah	ParticleBeam	0.79	0.72
	$ extsf{ParticleBeam} + extsf{GPU}$	-	0.09
	ParameterBeam	0.02	0.04

HELMHOLTZ | How to exploit DMA for accelerator operation | Eichler, Annika, 12 Feb 2025

Making use of Cheetah's differentiability

- Bayesian optimization prior
- Gradient-based tuning / system identification

Actuator / unknown variable

Cheetah in daily operation at LCLS:

Now deployed to daily operations at LCLS for 6Dphase space reconstruction module.

Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia. Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations. In Physical

Accelerating experimental design

Third MODE Workshop on Differentiable **Programming for Experiment Design**

Princeton University 24-26 July, 2023

Differentiable versions of all steps in the particle physics processing chain

> Either as ML-based surrogate models

Or via e.g. differentiable programming

What can we do with this?

Heinrich, Kagan 2308.16680

Slides from Gregor Kasieczka's <u>talk</u> @ EuCAIFCon2024

Patterns in Al for Science

Adapted from figure by Mario Krenn, et. al. in https://arxiv.org/abs/2204.01467

Exploration with Confirmation

Drug & Materials Discovery

- Experimental follow up needed to confirm the predicted properties
- OK if the predictions are wrong as long as it accelerates the discovery process

Image credits: RFDiffusion from Baker Lab, Institute for Protein Design, U Washington; Chanin Nantasenamat from Towards reproducible computational drug discovery. J Cheminform 12, 9 (2020). https://doi.org/10.1186/s13321-020-0408-x

Many uses of AI aimed at accelerating drug discovery and materials discovery

Pushmeet Kohli @pushmeet

We at @GoogleDeepMind are excited to announce #GNoME - an AI tool that has discovered 2.2 million new materials, and helps to predict material stability.

We're releasing 381K stable materials to help scientists pursue materials discovery breakthroughs.

https://dpmd.ai/PK-materials

Drug & Materials Discovery

- Experimental follow up needed to confirm the predicted properties
- OK if the predictions are wrong as long as it accelerates the discovery process

Image credits: RFDiffusion from Baker Lab, Institute for Protein Design, U Washington; Chanin Nantasenamat from Towards reproducible computational drug discovery. J Cheminform 12, 9 (2020). https://doi.org/10.1186/s13321-020-0408-x

Many uses of AI aimed at accelerating drug discovery and materials discovery

Pushmeet Kohli @pushmeet

We at @GoogleDeepMind are excited to announce #GNoME - an AI tool that has discovered 2.2 million new materials, and helps to predict material stability.

We're releasing 381K stable materials to help scientists pursue materials discovery breakthroughs.

https://dpmd.ai/PK-materials

Automated Theorem Proving

Theorem proving is another example of exploration paired with confirmation

leaves back to the root, and update the visit counts and total action values.

Figure 5: HyperTree Proof Search. We aim at finding a proof of the root theorem g with HTPS. Proving either $\{g_5\}$, $\{g_0, g_1\}$, or $\{g_6, g_7\}$ would lead to a proof of g by tactic t_0, t_1 , or t_2 . The figure represents the three steps of HTPS that are repeated until a proof is found. Guided by the search policy, we select a hypertree whose leaves are unexpanded nodes. The selected nodes are then expanded, adding new tactics and nodes to the hypergraph. Finally, during back-propagation we evaluate the node values of the hypertree, starting from the

Al for Amplitudes

Similarly, we are using generative AI to help compute multi-loop scattering amplitudes • the answer is hard to find, but easy to check.

We don't need the model to be provably correct, we just need it to be good at guessing because we can get a certificate of correctness

• The problem is inherently discrete, so transformers are a natural choice

We see ~99% accuracy in predicting the coefficients of the amplitude!

PAPER

Transforming the bootstrap: using transformers to compute scattering amplitudes in planar $\mathcal{N} = 4$ super Yang–Mills theory

Tianji Cai^{1,5,*}, Garrett W Merz^{2,5,*}, François Charton^{3,5}, Niklas Nolte³, Matthias Wilhelm⁴, Kyle Cranmer² and Lance J Dixon¹

Garrett Merz

Tianji Cai

Lance Dixon

Matthias Wilhelm Niklas Nolte

Experimental Physics, Astrophysics, Cosmology

In contrast, AI/ML in experimental physics, astrophysics, and cosmology is often a component of a hypothesis testing / statistical inference pipeline.

- Robustness to systematic uncertainty (distribution shift) is important!
- quantification!

Data Collection

Mistakes matter — we need to be able to calibrate & perform uncertainty

Scientific Claims

Data Analysis Pipeline

Simulation-based Inference

Statistical Framing

Χ

Theory parameters θ

Evolution

Latent variables

42

Latent variables

42

Detector

42

Latent variables

42

Prediction (simulation)

Inference

It's infeasible to calculate the integral over this enormous space!

Inference

Simulation-Based Inference

surrogates for the fully differential likelihood (and posterior). This is revolutionizing principled statistical inference in science!

Data / Simulation

Deep learning and neural density estimation are effective at learning approximate

• Removes the need for hand-engineered summary statistics that sacrifice power

Machine Learning

Inference

Impact on Studies of The Higgs Boson Potential for massive gains in precision of a flagship measurement at the LHC ! Equivalent increasing data collected by LHC by several factors

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]

[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621]

Impact on Studies of The Higgs Boson Potential for massive gains in precision of a flagship measurement at the LHC ! Equivalent increasing data collected by LHC by several factors

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]

[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621]

MAX-PLANCK-INSTITUT FÜR PHYSIK

SBI at EuCAIFCon 2024

Simulation-based Inference was well represented at EuCAIFCon2024!

Simulation of Z2 model using Variational Autoregressive Network (VAN).	Vaibhav Chahar 🥝	Characterizing the Fermi-LAT high-latitude sky with
UvA 1, Hotel CASA	13:30 - 13:33	Sorbonne, Hotel CASA
Artificial Intelligence techniques in KM3NeT	Evangelia Drakopoulou 🥝	Simulation-Based Supernova la Cosmology
		Sorbonne, Hotel CASA
UvA 1, Hotel CASA	13:33 - 13:36	Optimizing bayesian inference in cosmology with
ML-based Unfolding Techniques for High Energy Physics	Nathan Huetsch 🥝	Sorbonne, Hotel CASA
UvA 1, Hotel CASA	13:36 - 13:39	Stochastic Gravitational Wave Background Analys
Building sparse kernel methods via dictionary learning. Expressive, regularized and	interpretable models for statistical 🥝	Sorbonne, Hotel CASA
Gaia Grosso		
		COSMOPOWER: fully-differentiable Bayesian cos
pop-cosmos: comprehensive forward modelling of photometric galaxy survey data	Stephen Thorp	Sorbonne, Hotel CASA
UvA 1, Hotel CASA	13:42 - 14:02	Networks Learning the Universe: From 3D (cosmo
Calibrating Bayesian Tension Statistics with Neural Ratio Estimators	Harry Bevins 🧭	Sorbonne, Hotel CASA
UvA 1, Hotel CASA	14:02 - 14:22	Anomaly aware machine learning for dark matter of
Machine learning for radiometer calibration in global 21cm cosmology	Mr Samuel Alan Kossoff Leeney 🥝	Sorbonne, Hotel CASA
		Clustering Considerations for Nested Sampling
UvA 1, Hotel CASA	14:22 - 14:25	Sorbonne, Hotel CASA
PolySwyft: a sequential simulation-based nested sampler	Kilian Scheutwinkel 🧭	Enhancing Robustness: BSM Parameter Inference
UvA 1, Hotel CASA	14:28 - 14:31	Sorbonne, Hotel CASA
Extracting Dark Matter Halo Parameters with Overheated Exoplanets	María Benito 🥝	
		Fully Bayesian Forecasts with Neural Bayes Ratio
UvA 1, Hotel CASA	14:31 - 14:34	Sorbonne, Hotel CASA

Summary talks: Astroparticle Physics and AI (Siddarth Mishra-Sharma)

UvA 2-3-4, Hotel CASA

Summary talks: Cosmology and AI (Benjamin Wandelt)

UvA 2-3-4, Hotel CASA

2024: https://indico.nikhef.nl/event/4875/ 2025: https://agenda.infn.it/event/43565/

ith simulation-based inference	nulation-based inference Christopher Eckner	
	14:50 - 14:5	3
	Konstantin Karchev	Ø
	14:53 - 14:5	6
h Marginal Neural Ratio Estimation	Guillermo Franco Abellan	Ø
	14:56 - 14:5	9
ysis with SBI	James Alvey	Ø
	14:59 - 15:0)2
smology with neural emulators	Alessio Spurio Mancini	Ø
	15:02 - 15:2	22
ological inference) to 1D (classification of sp	ectra) Caroline Heneka	Ø
	15:22 - 15:4	2
direct detection at DARWIN	Andre Scaffidi	Ø
	15:42 - 15:4	5
	Adam Ormondroyd	Ø
	15:45 - 15:4	8
ce with n1D-CNN and Novel Data Augmentatio	n Yong Sheng Koay	Ø
	15:48 - 15:5	51
o Estimation	Thomas Gessey-Jones	Ø
	15:51 - 15:5	54

alyzing ML-enabled Full Population Model for Galaxy SEDs with Unsupervised Learning and Mutual Informatior Sinan Deger	
nvolutional neural network search for long-duration transient gravitational waves from glitching pulsars drigo Tenorio	
Tuning neural posterior estimation for gravitational wave inference	Alex Kolm
Oxford, Hotel CASA	16:06 -
Normalising flows for dense matter equation of state inference from gravitational wave obse Jessica Irwin	rvations of neutron sta
A Strong Gravitational Lens Is Worth a Thousand Dark Matter Halos: Inference on Small-Sca Sebastian Wagner-Carena	le Structure Using Seq
Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN	Benedikt Schos
Oxford, Hotel CASA	16:49 -
Simulation Based Inference from the CD-EoR 21-cm signal	Anchal Saxe
Oxford, Hotel CASA	16:52 -
Flexible conditional normalizing flow distributions over manifolds: the jammy-flows toolkit	Dr Thorsten Glüsenka
Oxford, Hotel CASA	16:55 -
A deep learning method for the trajectory reconstruction of gamma rays with the DAMPE spa Parzival Nussbaum	ace mission

Tilman Plehn

09:00 - 09:40

David Rousseau

15:00 - 15:40

First LHC papers using Simulation-Based Inference

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Rep. Prog. Phys.

December 3, 2024

Measurement of off-shell Higgs boson production in the $H^* \rightarrow ZZ \rightarrow 4\ell$ decay channel using a neural simulation-based inference technique in 13 TeV *pp* collisions with the ATLAS detector

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the $H^* \to ZZ \to 4\ell$ decay channel is presented. The measurement uses 140 fb⁻¹ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ \to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ \to 4\ell$ decay channel has an observed (expected) significance of 2.5σ (1.3σ). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5σ . When combined with the most recent ATLAS measurement in the $ZZ \to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7σ (2.4σ). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CMS-HIG-23-016

Constraints on standard model effective field theory for a Higgs boson produced in association with W or Z bosons in the H \rightarrow bb decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

Abstract

A standard model effective field theory (SMEFT) analysis with dimension-six operators probing nonresonant new physics effects is performed in the Higgs-strahlung process, where the Higgs boson is produced in association with a W or Z boson, in proton-proton collisions at a center-of-mass energy of 13 TeV. The final states in which the W or Z boson decays leptonically and the Higgs boson decays to a pair of bottom quarks are considered. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 138 fb⁻¹. An approach designed to simultaneously optimize the sensitivity to Wilson coefficients of multiple SMEFT operators is employed. Likelihood scans as functions of the Wilson coefficients that carry SMEFT sensitivity in this final state are performed for different expansions in SMEFT. The results are consistent with the predictions of the standard model.

Submitted to the Journal of High Energy Physics

arXiv:2411.16907v1 [hep-ex] 25 Nov 2024

First LHC papers using Simulation-Based Inference

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Rep. Prog. Phys.

December 3, 2024

Measurement of off-shell Higgs boson production in the $H^* \rightarrow ZZ \rightarrow 4\ell$ decay channel using a neural simulation-based inference technique in 13 TeV *pp* collisions with the ATLAS detector

The ATLAS Collaboration

A measurement of off-shell Higgs boson production in the $H^* \to ZZ \to 4\ell$ decay channel is presented. The measurement uses 140 fb⁻¹ of proton–proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ \to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ \to 4\ell$ decay channel has an observed (expected) significance of 2.5σ (1.3σ). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5σ . When combined with the most recent ATLAS measurement in the $ZZ \to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7σ (2.4σ). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.

16:00	Fair Universe HiggsML Uncertainty Challenge	RAGANSU CHAKKAPPAI 🥝
	Salle Estaque, Palais du Pharo	16:00 - 16:20
	Unbinned machine-learned measurements for the LHC with systematic uncertainties	Robert Schoefbeck 🥝
	Salle Estaque, Palais du Pharo	16:20 - 16:40
	Higgs Signal Strength Estimation with a Dual-Branch GNN under Systematic Uncertainties	Daohan Wang 🥝
	Salle Estaque, Palais du Pharo	16:40 - 17:00
17:00	Parameter Estimation with Neural Simulation-Based Inference in ATLAS	Jay Ajitbhai Sandesara 🥝
	Salle Estaque, Palais du Pharo	17:00 - 17:20
	Constraining the Higgs trilinear self-coupling from off-shell production using neural simulat <i>Tae Hyoun Park</i>	tion-based inference 🥝
	Multi-Scale Transformer Encoder for Di-Tau Invariant Mass Reconstruction at CMS	Valentina Camagni 🥝
	Salle Estaque, Palais du Pharo	17:40 - 18:00

simulation-based-inference.org

Simulation-based Inference Home Papers Software Jobs Misc About

Papers

The list is automatically compiled each day. Should you observe any inaccuracies or concerns, kindly bring them to our attention. Additionally, if you believe a new paper aligns with the topic, feel free to submit it. Visualize the annual growth in the number of publications.

🔒 Sort by Category

Sort by Year

Total (744) Statistics (195) Computer Science (102) Astrophysics (71) Mathematics (54) Education (47) Economics (46) Physics (33) Quantitative Biology (31) Neuroscience (27) Quantitative Finance (21) Astronomy (14) Genetics (13) Epidemiology (11) Engineering (10) Medicine (8) Geography (8) Social Science (7) Evolutionary biology (6) Ecology (5) Cognitive Science (4) Robotics (4) Systems biology (4)

Statistics

- Simulation based stacking, Y Yao, BRS Blancard, J Domke arXiv preprint arXiv:2310.17009, 2023 arxiv.org • Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability, M Falkiewicz, N Takeishi, I
- Shekhzadeh... arXiv preprint arXiv ..., 2023 arxiv.org
- Simulation-based Inference with the Generalized Kullback-Leibler Divergence, BK Miller, M Federici, C Weniger, P Forré - arXiv preprint arXiv ..., 2023 - arxiv.org
- Simulation-based Inference for Cardiovascular Models, A Wehenkel, J Behrmann, AC Miller, G Sapiro... arXiv preprint arXiv ..., 2023 - arxiv.org
- Hierarchical Neural Simulation-Based Inference Over Event Ensembles, L Heinrich, S Mishra-Sharma, C Pollard... arXiv preprint arXiv ..., 2023 - arxiv.org
- L-C2ST Local Diagnostics for Posterior Approximations in Simulation-Based Inference, J Linhart, A Gramfort, PLC Rodrigues - arXiv preprint arXiv:2306.03580, 2023 - arxiv.org
- Learning Robust Statistics for Simulation-based Inference under Model Misspecification, D Huang, A Bharti, A Souza,
- L Acerbi... arXiv preprint arXiv ..., 2023 arxiv.org
- Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation, R Gao, M Deistler, JH Macke arXiv preprint arXiv:2305.15208, 2023 - arxiv.org
- Variational Inference with Coverage Guarantees, Y Patel, D McNamara, J Loper, J Regier... arXiv preprint arXiv ..., 2023 - arxiv.org
- Generalised likelihood profiles for models with intractable likelihoods, DJ Warne, OJ Maclaren, EJ Carr, MJ Simpson...
- arXiv preprint arXiv ..., 2023 arxiv.org
- Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods, J Walchessen, A Lenzi, M Kuusela - arXiv preprint arXiv:2305.04634, 2023 - arxiv.org

See also: <u>github.com/smsharma/awesome-neural-sbi</u>

Balancing Simulation-based Inference for Conservative Posteriors A Delaunov RK Miller P Forré C Weniger - arXiv

Gravitational Wave Astronomy

Real-time gravitational-wave science with neural posterior estimation

Maximilian Dax,^{1, *} Stephen R. Green,^{2, †} Jonathan Gair,^{2, ‡}

Jakob H. Macke,^{1,3} Alessandra Buonanno,^{2,4} and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany ²Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam, Germany ³Machine Learning in Science, University of Tübingen, 72076 Tübingen, Germany ⁴Department of Physics, University of Maryland, College Park, MD 20742, USA

Figure 15. GW170823.

We are at a tipping point for SBI in HEP

Dedicated discussion at EuCAIFCon2025 — a new working group?

Discussion: Simulation-based inference & Uncertainty quantification

- Simulation-based inference plays an increasing role in cosmology, gravitational waves, astroparticle physics and particle/nuclear physics
- Still there are lots of practical hurdles to make SBI a standard workhorse for analysis tasks.
- Goal of the discussion is to establish the most critical needs in the community (common tools, large joined projects, training material, algorithmic gaps, etc).
- Identify clear goals and timelines to form a workgroup

2024: https://indico.nikhef.nl/event/4875/ 2025: https://agenda.infn.it/event/43565/

Similar to the transition we made to statistical procedures at the LHC used for Higgs discovery

- A forum for discussions
- Shared formalism, conventions, & recommendations
- Benchmark examples to build trust
- Guidance and prioritization for tool developers

Computational Microscope

Lattice Field Theory

- Path integral: a "path" is a sample from distribution of lattice configurations ~exp(-Action[path])
- Predictions are **expectations** of quantum operators w.r.t. this distribution.
- Hamiltonian Monte Carlo was invented for this problem, but it has limitations.

Lattice field theory is a computational approach to studying field theory on a discretized space-time.

Al-Enhanced Monte Carlo Integration

Basic idea:

- use generative AI model (normalizing flows) to approximate the target Boltzmann distribution.
- Sample from the generative AI model instead of traditional Hamiltonian MC

Learned model won't be perfect, but you can **correct** via importance sampling or MCMC procedure

nature reviews physics https://doi.org/10.1038/s42254-023-00616 Perspective Check for updates Advances in machine-learning-based sampling motivated by lattice quatum chromodynamics

See also: Albergo, Kanwar, Shanahan, PRD (2019) arXiv:1904.12072

Kyle Cranmer 🛯¹, Gurtej Kanwar 🕒², Sébastien Racanière 🕲³, Danilo J. Rezende 🕲³ & Phiala E. Shanahan 🕲^{4,5} 🖂

Space-time & Local, Non-Abelian Gauge Symmetry

Haar SU(3)

A promising direction

Essentially, MCMC can get stuck for a while in a certain mode.

- Our new "flow-based" proposal does much better!
- It learns to propose configurations that look like our target distribution.
- 1000x reduction in autocorrelation time

2D U(1) model

For molecular dynamics

RESEARCH

Noé *et al.*, *Science* **365**, 1001 (2019) 6 September 2019

RESEARCH ARTICLE SUMMARY

MACHINE LEARNING

Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning

Frank Noé*†, Simon Olsson*, Jonas Köhler*, Hao Wu

The main approach is thus to start with one configuration, e.g., the folded protein state, and make tiny changes to it over time, e.g., by using Markov-chain Monte Carlo or molecular dy-namics (MD). However, these simulations get trapped in metastable (long-lived) states: For example, sampling a single folding or unfold-ing event with atomistic MD may take a year on a supercomputer.

For phase-space integration

Similar ideas are improving phase space integration to accelerate Parton-level Monte Carlo generators

MadNIS – Neural Multi-Channel Importance Sampling

Theo Heimel¹, Ramon Winterhalder², Anja Butter^{1,3}, Joshua Isaacson⁴, Claudius Krause¹, Fabio Maltoni^{2,5}, Olivier Mattelaer², and Tilman Plehn¹

1 Institut für Theoretische Physik, Universität Heidelberg, Germany **2** CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium 3 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France 4 Theoretical Physics Division, Fermi National Accelerator Laboratory, Batavia, IL, USA 5 Dipartimento di Fisica e Astronomia, Universitá di Bologna, Italy

ramon.winterhalder@uclouvain.be

Abstract

Theory predictions for the LHC require precise numerical phase-space integration and generation of unweighted events. We combine machine-learned multi-channel weights with a normalizing flow for importance sampling, to improve classical methods for numerical integration. We develop an efficient bi-directional setup based on an invertible network, combining online and buffered training for potentially expensive integrands. We illustrate our method for the Drell-Yan process with an additional narrow resonance.

3.2 Neural importance sampling

Second, MADNIS augments the physics-inspired phase space mappings with an INN [19]

 $y = G_i(x) \rightarrow G_i(x|\varphi)$ and $x = \overline{G}_i(y|\varphi)$.

This replaces the classic importance sampling density $g_i(x)$ with a network-based variable transformation $g_i(x|\varphi)$ in Eqs.(6) and (15)

$$I[f] = \sum_{i} \int_{U_{i}} d^{d} y \, \alpha_{i}(x) \frac{f(x)}{g_{i}(x|\varphi)} \bigg|_{x = \overline{G}_{i}(y|\varphi)} \text{ with } g_{i}(x|\varphi) = \left| \frac{\partial G_{i}(x|\varphi)}{\partial x} \right|,$$

where we assume the latent distribution in *y* to be uniform. The INN-encoded phase space mapping is trained to provide a surrogate density

$$g_i(x|\varphi) \approx f_i(x) = \alpha_i(x)f(x),$$

Conclusion

AI/ML is providing qualitatively new capabilities.

first principles but were unable to do computationally.

- theoretical understanding.

 Those capabilities allow us to remove some approximations & simplifications and return to what we've always wanted to do from

It is allowing us to make better use of our experimental data and

Many challenges remain, the transformation is far from over.

Backup

Statistical Framing

Χ

61

Theory parameters θ

Latent variables

Latent variables

Detector

Latent variables

Prediction (simulation)

Inference

It's infeasible to calculate the integral over this enormous space!

Inference

Feynman diagrams with loops

More precise calculations have more **loops**

- But the number of diagrams grows combinatorially with the number of loops
- Feynman diagrams become a poor way to organize the calculation
- New **bootstrap** approach emerged that leverages analytical properties of amplitudes. Properties are so constraining, they define a unique solution

The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of terms with an integer coefficient and a word composed of 2L letters

• The 6 letters {*a*, *b*, *c*, *d*, *e*, *f*} encode the kinematics of the collision

L = 2

6

2

64

The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of terms with an integer coefficient and a word composed of 2L letters

• The 6 letters {*a*, *b*, *c*, *d*, *e*, *f*} encode the kinematics of the collision

For example, in a particular theory called $\mathcal{N}=4$ Super Yang-Mills theory, the answer at 2-loops for a particular interaction is: $S[F_3^{(2)}] = +8bddd + 8ceee + 8afff + 8bfff + 8cddd + 8aeee$

• Of the 6⁴ = 1296 possible terms, most are 0. **Sparse, lots of structure!**

- a^{P_1} m L = 1
- +16bbbd+16ccce+16bbbf+16aaaf+16cccd+16aaae

L=2

The Bootstrap

In this bootstrap approach the L-loop amplitude can be expressed as a sum of terms with an integer coefficient and a word composed of 2L letters

• The 6 letters {*a*, *b*, *c*, *d*, *e*, *f*} encode the kinematics of the collision

For example, in a particular theory called $\mathcal{N}=4$ Super Yang-Mills theory, the answer at 2-loops for a particular interaction is: $S[F_3^{(2)}] = +8bddd + 8ceee + 8afff + 8bfff + 8cddd + 8aeee$

• Of the 6⁴ = 1296 possible terms, most are 0. **Sparse, lots of structure!**

The solution space is growing exponentially — hard to find the answer!

loop order L	1	2	3	4	5	6	7	8
terms in $S[F_3^{(L)}]$	6	12	636	$11,\!208$	$263,\!880$	$4.9 imes10^6$	$9.3 imes10^7$	$1.67 imes 10^9$

- +16bbbd+16ccce+16bbbf+16aaaf+16cccd+16aaae

L=2

A few SBI Papers in MLST

MACHINE LEARNING Science and Technology

PAPER · OPEN ACCESS

Stochastic black-box optimization using multi-fidelity score function estimator

Atul Agrawal^{*}, Kislaya Ravi, Phaedon-Stelios Koutsourelakis and Hans-Joachim Bungartz Published 31 January 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd Machine Learning: Science and Technology, Volume 6, Number 1

Focus on ML and the Physical Sciences

Citation Atul Agrawal *et al* 2025 *Mach. Learn.: Sci. Technol.* **6** 015024 **DOI** 10.1088/2632-2153/ad8e2b

OPEN ACCESS

Comparing AI versus optimization workflows for simulationbased inference of spatial-stochastic systems

Michael Alexander Ramirez Sierra^{*} and Thomas R Sokolowski Published 14 February 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd

Machine Learning: Science and Technology, Volume 6, Number 1

Citation Michael Alexander Ramirez Sierra and Thomas R Sokolowski 2025 *Mach. Learn.: Sci. Technol.* 6 010502 DOI 10.1088/2632-2153/ada0a3

PAPER • OPEN ACCESS

Simulation-based inference with approximately correct parameters via maximum entropy

Rainier Barrett, Mehrad Ansari, Gourab Ghoshal and Andrew D White Published 27 April 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology</u>, <u>Volume 3</u>, <u>Number 2</u> **Citation** Rainier Barrett *et al* 2022 *Mach. Learn.: Sci. Technol.* **3** 025006 **DOI** 10.1088/2632-2153/ac6286

LETTER · OPEN ACCESS DIGS: deep inference of galaxy spectra with neural posterior estimation

Gourav Khullar, Brian Nord, Aleksandra Ćiprijanović, Jason Poh and Fei Xu Published 28 December 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology</u>, <u>Volume 3</u>, <u>Number 4</u> **Citation** Gourav Khullar *et al* 2022 *Mach. Learn.: Sci. Technol.* **3** 04LT04

Citation Gourav Khullar *et al* 2022 *Mach. Lea* **DOI** 10.1088/2632-2153/ac98f4

PAPER · OPEN ACCESS Evidence Networks: simple losses for fast, amortized, neural Bayesian model comparison

Niall Jeffrey and Benjamin D Wandelt
Published 17 January 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 5, Number 1
Citation Niall Jeffrey and Benjamin D Wandelt 2024 Mach. Learn.: Sci. Technol. 5 015008
DOI 10.1088/2632-2153/ad1a4d

PAPER · OPEN ACCESS Simulation-based inference on virtual brain models of disorders

Meysam Hashemi, Abolfazl Ziaeemehr, Marmaduke M Woodman, Jan Fousek, Spase Petkoski and Viktor K Jirsa

Published 19 July 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd
Machine Learning: Science and Technology, Volume 5, Number 3
Focus on Explainable Machine Learning in Sciences
Citation Meysam Hashemi *et al* 2024 Mach. Learn.: Sci. Technol. 5 035019
DOI 10.1088/2632-2153/ad6230

PAPER · OPEN ACCESS

Importance nested sampling with normalising flows

Michael J Williams, John Veitch and Chris Messenger Published 25 July 2023 • © 2023 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology</u>, <u>Volume 4</u>, <u>Number 3</u> **Citation** Michael J Williams *et al* 2023 *Mach. Learn.: Sci. Technol.* **4** 035011 **DOI** 10.1088/2632-2153/acd5aa

PAPER • OPEN ACCESS

Multi-fidelity Gaussian process surrogate modeling for regression problems in physics

Kislaya Ravi^{*}, Vladyslav Fediukov^{*}, Felix Dietrich, Tobias Neckel, Fabian Buse, Michael Bergmann and Hans-Joachim Bungartz Published 15 October 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology, Volume 5, Number 4</u> <u>Focus on ML and the Physical Sciences</u> Citation Kislaya Ravi *et al* 2024 *Mach. Learn.: Sci. Technol.* **5** 045015

DOI 10.1088/2632-2153/ad7ad5

PAPER • OPEN ACCESS

Efficient Bayesian inference using physics-informed invertible neural networks for inverse problems

Xiaofei Guan, Xintong Wang, Hao Wu, Zihao Yang and Peng Yu Published 23 July 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology, Volume 5, Number 3</u> Focus on Generative Al in Science

Citation Xiaofei Guan *et al* 2024 *Mach. Learn.: Sci. Technol.* **5** 035026 DOI 10.1088/2632-2153/ad5f74

PAPER • OPEN ACCESS

DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data

Pranath Reddy^{*}, Michael W Toomey, Hanna Parul and Sergei Gleyzer
Published 19 September 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd
<u>Machine Learning: Science and Technology</u>, <u>Volume 5</u>, <u>Number 3</u>
<u>Focus on ML and the Physical Sciences</u>
Citation Pranath Reddy *et al* 2024 *Mach. Learn.: Sci. Technol.* **5** 035076

DOI 10.1088/2632-2153/ad76f8

ertible

Unfolding

The ATLAS Collaboration

Max Welling's talk @ EuCAIFCon2024

"Where is fundamental physics in Al4Science?" — Lukas Heinrich

Link to <u>talk</u>

Compare with HEP's association with Big Data

The strong force: Quantum Chromodynamics (QCD)

The strong nuclear force is one of the four fundamental forces.

It is described by Quantum Chromodynamics (QCD)

QCD describes how quarks and gluons interact

Emergent phenomena: Quarks and gluons form protons, neutrons, etc.

Al-Enhanced Sampling

Basic idea:

- Train using reverse KL[q||p] (not samples from the target)
- Sample from the flow instead of traditional Hamiltonian MC
- Learned model won't be perfect, but you can **correct** via importance sampling or MCMC procedure

nature reviews physics	https://doi.org/10.1038/s42254-023-00616-w
Perspective	Check for updates
Advances in mack	hine-learning-based
sampling motivat	
quatumchromod	

• use generative AI model (normalizing flows) to approximate the target Boltzmann distribution.

Lattice Field Theory

on a discretized space-time lattice.

theory. For the strong force (QCD) each link has a 3x3 unitary matrix.

Lattice field theory is a computational approach to studying interacting field theory

Each link on the lattice has data corresponding to the symmetry group of the

This animation is a single configuration of the lattice. Think of a 4-d image playing like a movie.

 $64^3 \times 128 \times 4 \times 9 \times 2$ ≈10⁹ numbers

Lattice Field Theory

on a discretized space-time lattice.

theory. For the strong force (QCD) each link has a 3x3 unitary matrix.

Lattice field theory is a computational approach to studying interacting field theory

Each link on the lattice has data corresponding to the symmetry group of the

This animation is a single configuration of the lattice. Think of a 4-d image playing like a movie.

 $64^3 \times 128 \times 4 \times 9 \times 2$ ≈10⁹ numbers

Image vs. Lattice Quantum Fields

Image generation

Image geometry	512 × 512
RGB pixel variables	× 3
	≈ 1,000,000 dof

Target

Subjective high quality per sample

Symmetries

Few approximate symmetries (for example, reflection, small translations)

Image vs. Lattice Quantum Fields

Image generation

Image geometry	512 × 512
RGB pixel variables	× 3
	≈ 1,000,000 dof

Target

Subjective high quality per sample

Symmetries

Few approximate symmetries (for example, reflection, small translations)

Advances in machine-learning-based sampling motivated by lattice quatum chromodynamics

Lattice geometry	256 × 256 × 256 × 512
SU(3) link variables	× 4 × 8
	≈ 100,000,000,000 dof

Target

Objective distribution $p(U) = e^{-S(U)}/Z$

Symmetries

High-dimensional exact symmetries (for example, translations, gauge symmetry)

74

Distribution over configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional distribution of configurations predicted by the theory.

- Path integral: each "path" is a sample from distribution of lattice configurations path ~exp(-Action[path])
- Predictions are **expectations** of quantum operators w.r.t. this distribution.
- Hamiltonian Monte Carlo was invented for this problem, but it has limitations.

Distribution over configurations

We don't want just a single "image" (lattice configuration), we want to sample the high-dimensional distribution of configurations predicted by the theory.

- Path integral: each "path" is a sample from distribution of lattice configurations path ~exp(-Action[path])
- Predictions are **expectations** of quantum operators w.r.t. this distribution.
- Hamiltonian Monte Carlo was invented for this problem, but it has limitations.

Predictions are taken seriously

Magnetic moment of the electron: (torque an electron feels in a magnetic field) $a_e = (g - 2)/2$

Most accurately verified prediction in the history of physics

Theory $a_e = 0.001159652181643(764)$ $a_e = 0.00115965218073(28)$ Exp.

Flows for LQCD

Basic idea:

- use normalizing flows to approximate the target Boltzmann distribution.
- Train using reverse KL[q||p] (not samples from the target)
- Sample from the flow instead of traditional Hamiltonian MC

Learned m you can **cc** sampling d

Hire Michael ↑

Flow-based generative models for Markov chain Monte Carlo in lattice field theory

M. S. Albergo,^{1,2,3} G. Kanwar,⁴ and P. E. Shanahan^{4,1}

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada ²Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K. ³University of Waterloo, Waterloo, Ontario N2L 3G1, Canada ⁴Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

A Markov chain update scheme using a machine-learned flow-based generative model is proposed for Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained) to produce samples from a distribution approximating the desired Boltzmann distribution determined by the lattice action of the theory being studied. Training the model systematically improves autocorrelation times in the Markov chain, even in regions of parameter space where standard Markov chain Monte Carlo algorithms exhibit critical slowing down in producing decorrelated updates. Moreover, the model may be trained without existing samples from the desired distribution. The algorithm is compared with HMC and local Metropolis sampling for ϕ^4 theory in two dimensions.

Enrico Rinaldi @enricesena · Nov 1

Yesterday Gurtej Kanwar told us about machine learning for lattice field theories and exciting progress in Generative Models for gauge theories (collaboration with @DeepMindAl) at #DLAP2019 Today is the last day of this great conference!

