

The University of Manchester

An Electrical Method of Counting the Number of a-Particles from Radio-active Substances.

By E. RUTHERFORD, F.R.S., Professor of Physics, and H. GEIGER, Ph.D., John Harling Fellow, University of Manchester.

(Read June 18; MS. received July 17, 1908.)

Detector & Computing: Research & Development

- Research Examples & Emerging Themes
- Cross-community initiatives
 - 8 Detector R&D (DRD) Collaborations

How long will <u>my</u> mega-project take ?

- Underestimate our project schedules
 - Plan based on similar projects
 not hours/widget
 - Political interests have strong effect

R&D Phase critical to project success

How much do other mega-projects overrun?

N	Percentage of projects with cost overrun	Percentage of projects with a cost overrun greater than 1.5	Mean overrun for projects with a cost overrun <u>grea</u> ter than 1.5
5360	40.86	18.26	5.53
196	96.94	54.59	3.04
69	73.91	27.54	2.03
41	39.02	2.44	1.5
	5360 196 69	N projects with cost overrun 5360 40.86 196 96.94 69 73.91	NPercentage of projects with cost overrunprojects with a cost overrun greater than 1.5536040.8618.2619696.9454.596973.9127.54

from B. Flyvbjerg, et al. "The Uniqueness of IT Cost Risk: A Cross-Group Comparison of 23 Project Types" May, 2025. <u>https://ssrn.com/abstract=5247223</u>

- One-of-a-kind projects commonly go over budget/schedule and are fat-tailed (tails follow Pareto distribution)
- Reduce risk:

R&D Phase critical to project success

Detector R&D

"The community should define a global detector R&D roadmap" ESPPU 2020

Roadmap

Implementation

- 8 DRD collaborations
- Strategic recommendations
- Under ECFA auspices, CERN hosted

https://indico.cern.ch/category/6805/

& HEP Software Foundation

- "Facilitates coordination and common efforts in HEP software and computing internationally"
- Roadmap 2017

A Re

Update 2025

88F/CWP-0177-01 December 15, 2017	HSF	
Roadmap for IP Software and Computing R&D the 2020s	The Critical Importance of Software for HEP Property in the IP Software function, with input from the IRP memory Edical by: Control Approximation Control and Approximation	ЦС
Infrare Fundation Textor Fundation Textor Fundation and Intell equivalent dipopulation where have have been determined and equivalent, are to quark entering and that it may an experimental memory and the RED of advances equipa- tion of the Berlin and equiparticles, are to quark entering and the second second second second second second second second to the development of the second second second second second and the second second second second second second second second second second second second second second second second	Horn on Vegoti? The document has been endersoft by the following experiments and examination: AUCR TALES, She BL, CASE, DURE, ePC, LHCN, MCAR, MLCG "Wanned for which (STR169: 43.56, ing mean Wanned for which (STR169: 43.56, ing mean W	HEP Software Foundation
	International Control of the second s	

 13 activity areas http://hepsoftwarefoundation.org/

Evolve our computing infrastructure

Chris Parkes, EPS HEP, Marseille, July 2025

Post-Blue Sky & Pre Construction

Targeted R&D (pre-TDR) e.g.:

- ALICE III
- LHCb Upgrade II
- DUNE Phase II
- SHIP
- ePIC at EIC....

Experiment agnostic R&D

- Technology development
- Performance & options
- Longer timescale projects (FCC etc...)

Technology Readiness Levels

Detector R&D – general themes

Gas Liquid

Solid State Photon & PID

Quantum

Calorimetry

Electronics Mechanics Processing & Cooling

- Precision timing (10-50ps)
 - Separate LHC primary vertices, Particle ID
- CMOS Detectors
 - Integrated sensor & electronics
- Novel technologies
 - Quantum technologies

Strategic Recommendations

- Facilities (testbeam, irrad.)
- Engineering support
- Software support
- Industry engagement
- Training
- Open Science
- Environmental Impact

Gas DRD1: Gaseous Detectors

- 130 Institutes (prior to MoU signing), 30 countries
- Established from previous RD51 enlarged scope
- First to proceed with Memo. of Understanding

Environmental Impact

Largest detector/computing impact is high global warming potential gas emissions (80% LHC – ATLAS/CMS RPCs)

Computing

Sealing

Recirculate

Recuperate

Alternative

Gases

100,000 tCO2e /annum =

Construction

RUN 3

Environmental sustainability in basic research perspective from HECAP

5th DRD1 Collaboration Meeting and Topical Workshop Towards Sustainable Gas Mixtures for Future Detectors

fully occupied A340 London → New York per day

- SF6 GWP 23,000
- ATLAS alternative gas, 25% GWP reduction
 - Continued use of technology mandates replacement

LS2

Photon &

Gas

()

Liquid DRD2: Liquid detectors

- 86 institutions, 17 countries
- **Diverse communities** & facilities **working together** as network (neutrino, dark matter), new collaborations & funding applications

- Vacuum ultra-violet sensors
 - Detector eff. typically ~20%
 thus not suited to Ar/Xe
 detectors

Team attacks this from multiple angles

Commercial partners

Potential space-science & commercial applications

Solid State DRD3: Solid State Detectors

- 146 institutes, 30 countries
- Formed from RD50 (rad hard Si) & RD42 (Diamond)

- Monolithic sensor & readout for tracking
 - high spatial resolution

DRD3

- high data rate
- high radiation tolerance
- Uniform eff. over cell
- Timing capabilities, gain layer

Solid State DRD3: Solid State Detectors

- 146 institutes, 30 countries
- Formed from RD50 (rad hard Si) & RD42 (Diamond)

- Towards 4D tracking
 Dense tracking environment, PID

 10x10x10 μm², ps
 - LGADs:
 - fill factor, radiation hardness

• 3D:

- Cell size, column width

ideas recent DRD3

DRD4: Photon De

67 institutes, 2(
 Fight Entrance
 Fight Entrance
 Fight Entrance

Photogenerated

also includes Scintillating Fibre & Transition Radiation Tracking

Sensor layer (Custom

10-20 um

SPAD array

FEE ASIC

Photon &

PID

35um

Front Side

Avalanche Region

- SiPM use becoming widespread replacing vacuum and gas based detectors in some applications
 - Improving timing of SiPMs ~ 20ps
 - Vertical integration to Front End Electronics
 - Integration with integrated cooling

Quantum DRD5: Quantum & Emerging Technologies

- 112 institutes, 26 countries and growing.....wide community outside HEP
- Quantum detectors e.g. below ionisation limit

Calorimetry DRD6: Calorimeters

- 128 institutes, 28 countries component from CALICE but much wider
- Focus on calorimeters for future projects, FCC-ee a main driver

Sandwich calorimeters with embedded electronics Liquified Noble Gas calorimeter Optical calorimeters

Electronics
ProcessingDRD7: Electronics and On-Detector Processing

- 67 institutes, 19 countries
- R&D not a service for other DRDs- Strong opportunities but high costs
- Some example developments

Silicon photonics 100Gb/s

Intelligence on Front End Fewer more versatile FE electronics

Front End to DAQ Custom off the shelf – "no back end"

Cryogenic operation

- ASIC development commonly schedule limiting for experiments
- "Tools & Technologies" WG
 - Accessing technologies, tools
 - Collaboration & coordination
 - Of development & fabrication

Mechanics **DRD8: Mechanics & Cooling** for Future Vertex and Tracking Systems

- 40 institutes, 14 countries and growing...
- Developed from Forum on Tracking Detector Mechanics
- Much is silicon det. driven but expanding, interest large gas detectors

example developments

Curved sensors Hits closer to interaction point Low mass mechanics

Microchannels Integrated/ceramics

- Mechanics & Cooling a key detector performance driver
- Schedule: R&D continues much later in project than you think
 – share information

Computing – general themes

GPUs

 Coordination and common efforts in HEP Software and infrastructure

Supercomputer list dominated by CPU-GPU systems

- Machine Learning (Triggers, Tracking)
- Triggerless, Streaming readout
- Cross-experiment collaboration, interoperability
 - -Huge array of tools: community & industry

 International collaboration only 36 FTE

The List

17

Simulation Detector Simulation

- Overall CPU for HL-LHC mitigated by – software Improvements
 - Fast simulation & reconstruction
 - HL-LHC schedule delays
- EM showers: up to ²/₃ of run time in collider expts (G4HepEm)
- Photons: 99% of run-time neutrino, dark-matter, LHCb RICH
- GPU-CPU combined architectures
 - Geant4 plugins (AdePT, Celeritas, ML approaches), promising, geometry bottleneck

Generators Monte Carlo N(N)LO event generators

~ 20% of CPU demands during HL-LHC

Approaches include:

- Reducing negative weights through
 weight redistribution
- Matrix element calculations in GPUs
- ML in event generation

- Data access time Disk / tape cost trends, round-robin access
- Interoperability wide range of tools in HEP today
- Languages: C++ performance, Python usability interest in Julia
- Improving integration with computing infrastructure (multi-threading, distributed computing)
- Machine Learning statistical inference, automatic differentiation
- Data and Workflow Management Systems,
- FAIR principles, open data, preservation
- Reinterpretation of results (RIVET)

Triggers & Software Triggers & Tracking

- Run 3 GPU Software Trigger Farms
 - Real time analysis, tracking & triggering
 - discard raw data, keep reconstructed data
- ML in trigger, including in FPGAs
 - Anomaly detection, b-tagging, Jet reconstruction....
- HI-LHC frontier 4D tracking, hit-time information

LHCb Run 3 Trigger/ Upgrade I – 3 x efficiency D \rightarrow KsKs

CMS DP-2023/079 ML based trigger in FPGA

GRID – data centre h/w and our s/w

- Funding agencies favour interdisciplinary infrastructures
 - HPC centres as pledged resources or as opportunistic resources
- HPC centres increasingly offering GPU capacity
 - Demand from AI/ML communities.
 - Low precision GPU for ML training poor match to simulation needs
- Our codebases generally optimized for x86 64 bit CPUs
 - require modernization to run efficiently on different architectures
 - Portability libraries will assist <a>[kokkos
- An opportunity:
 - millions of lines of software
 - streamline the code for maintainability
 - improve its performance

Training, Infrastructures, Industry, Societal Engagement

- Discoveries are facilitated by technologies
- Our funding mechanisms often under-emphasise leadership in detectors & computing career paths
- Mutually beneficial relationship with industry
 - Skills pipeline training
 - Collaborative developments
- Field-wide initiatives
 often provide better mechanisms
 for training & industry
 Engagement at scale
 Output
 Description:
 Description:
 Output
 Description:
 Description:</

HSF Training Center

Training and educational material for the High Energy Physics community.

Acknowledgements

Many thanks to the many people who have generously given their time and effort in assisting with the preparation of this presentation, including:

- Graeme Stewart
- Nicole Skidmore
- Maxim Titov
- Roxanne Guenette
- Gregor Kramberger
- Massimiliano Fiorini
- Steve Worm
- Roman Poeschl
- Gabriella Gaudio
- Frank Simon
- Burkhard Schmidt
- Thomas Bergauer
- Didier Contardo

Summary

- Role of community wide bodies
- 8 DRD Collaborations active

Interaction with Funding Agencies to develop

- GPU computing
- Machine Learning
- Analyses interoperability
- Precision Timing
- CMOS detectors
- Novel technologies

Quai de la Fraternité

R&D

Key progress through Fraternité

Facilitates tomorrow's discoveries

Critical to project success cost, schedule