Experimental Neutrino Physics

Kate Scholberg, Duke University EPS-HEP 2025 Marseille, France July 10, 2025

Outline

What are the big (experimental) questions in neutrino physics?

What's the status of answering them?

What do we still need to know?

Standard apology: There are enormous numbers of cool things going on in neutrino physics...

My plan is to **outline the big picture** and **pick out a few highlights** I'm sorry if I miss your favorite thing!

Science Drivers in Neutrino Physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

Science Drivers in Neutrino Physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

The three flavor paradigm

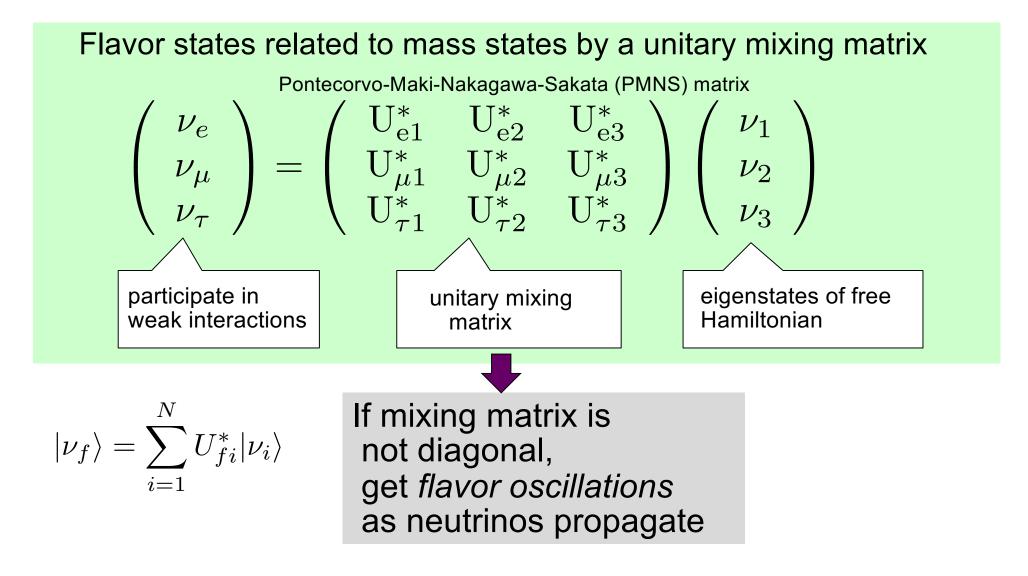
what's known, what's left to measure?

Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture:

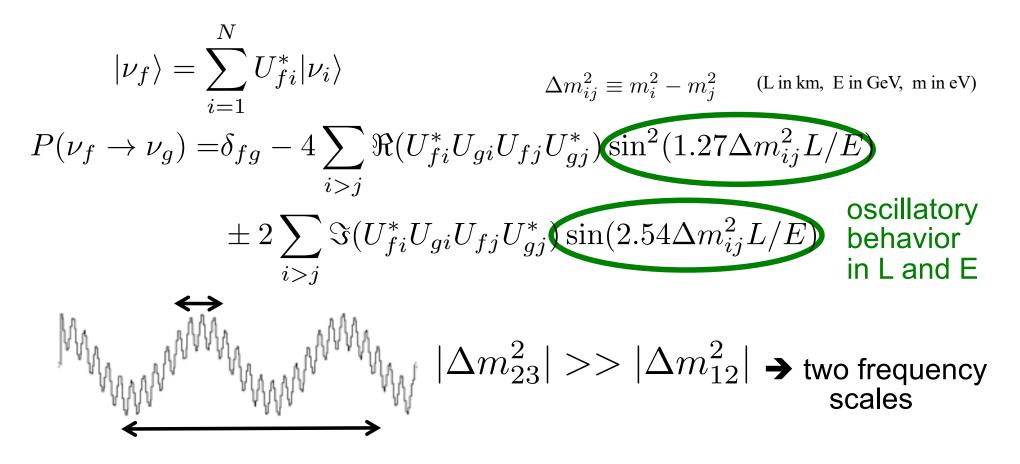
mass ordering (**MO**) and CP δ

Absolute Mass Status and prospects

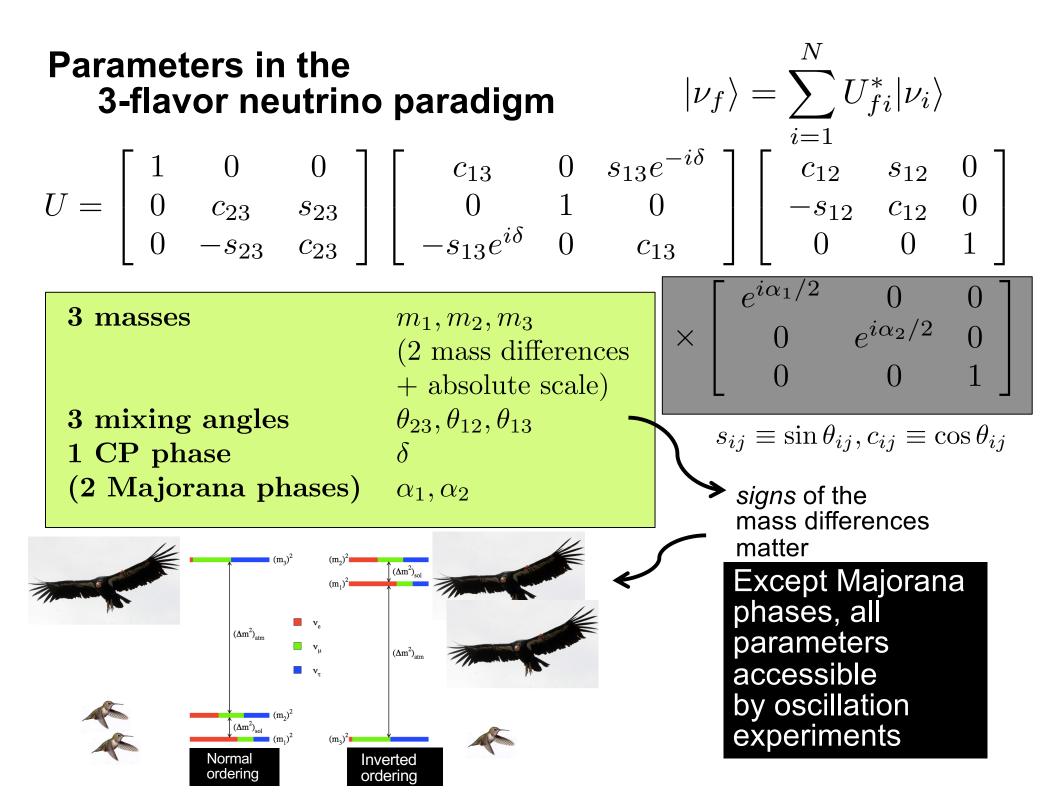
Majorana vs Dirac? Overview of NLDBD

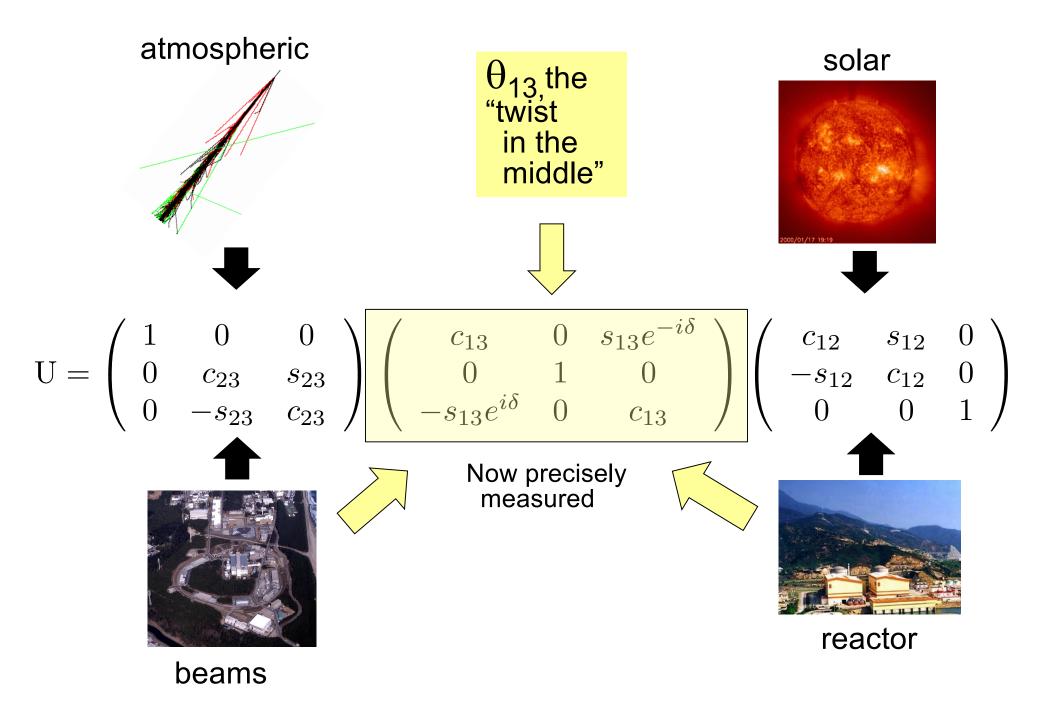


The mass pattern


The mass scale

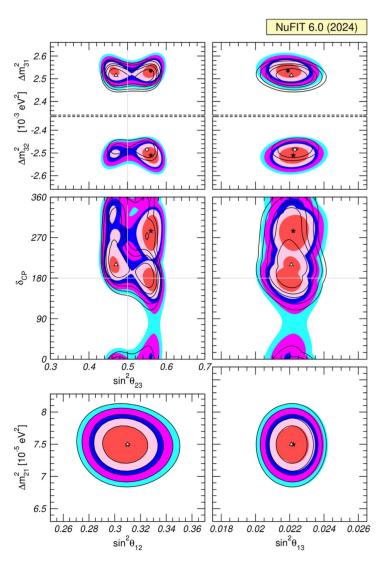
The mass nature


Neutrino Mass and Oscillations in Three-Flavor Picture


Three-flavor oscillation probability

Observables are neutrino *flavor change* (appearance or disappearance) as a function of baseline L and energy E_v

Multiple oscillation signatures from different neutrino sources


The three-flavor picture fits the data well

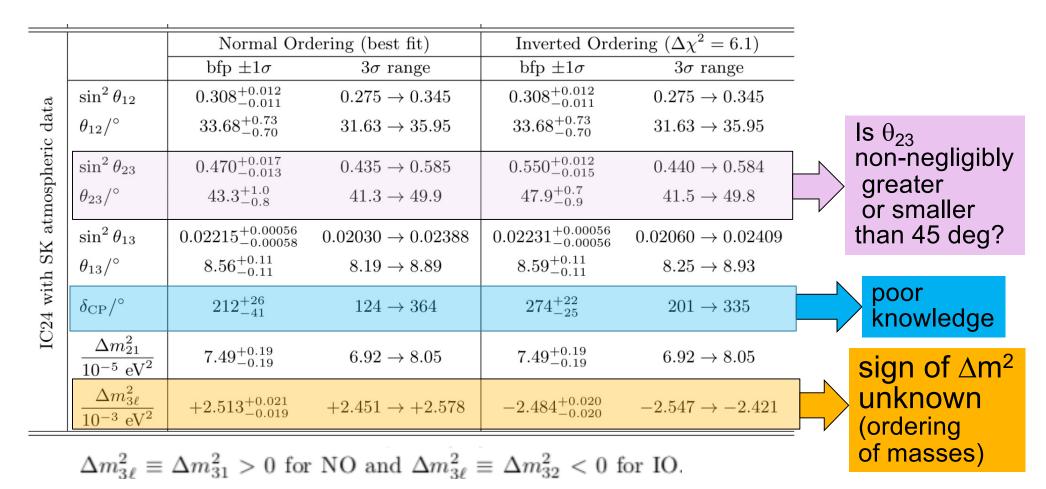
Global three-flavor fits to all data: atmospheric, solar, reactor, beams

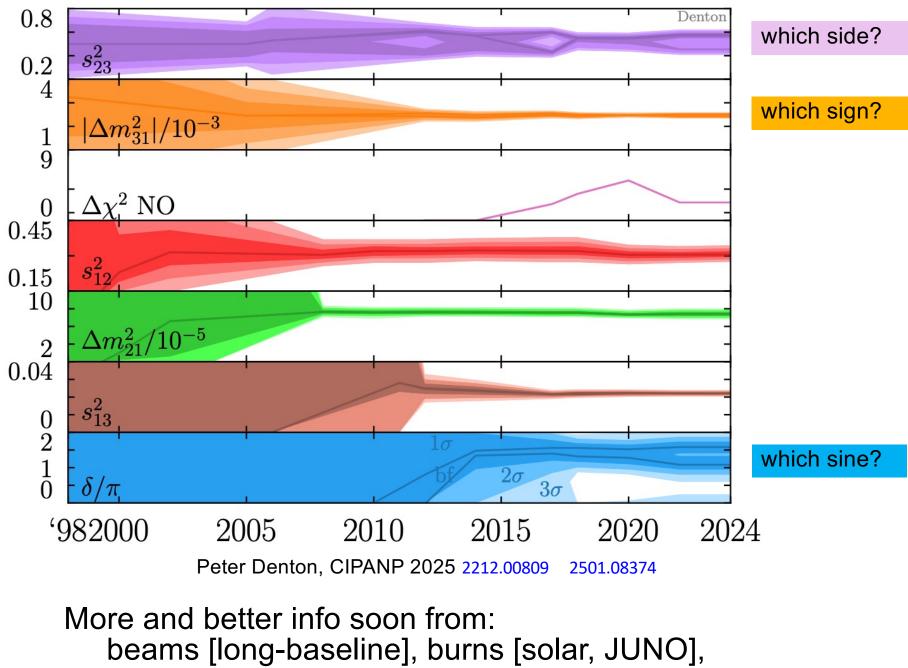
		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.1)$				
c data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range			
	$\sin^2 heta_{12}$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$			
	$ heta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$			
oheri	$\sin^2 heta_{23}$	$0.470\substack{+0.017\\-0.013}$	$0.435 \rightarrow 0.585$	$0.550\substack{+0.012\\-0.015}$	0.440 ightarrow 0.584			
IC24 with SK atmospheric data	$ heta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9^{+0.7}_{-0.9}$	$41.5 \rightarrow 49.8$			
	$\sin^2 heta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \to 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	$0.02060 \rightarrow 0.02409$			
	$ heta_{13}/^{\circ}$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$			
	$\delta_{ m CP}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \rightarrow 335$			
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19\\-0.19}$	$6.92 \rightarrow 8.05$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$			
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$			

$$\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$$
 for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO

Esteban et al., JHEP 12 (2024) 216, 2410.05380 [hep-ph]

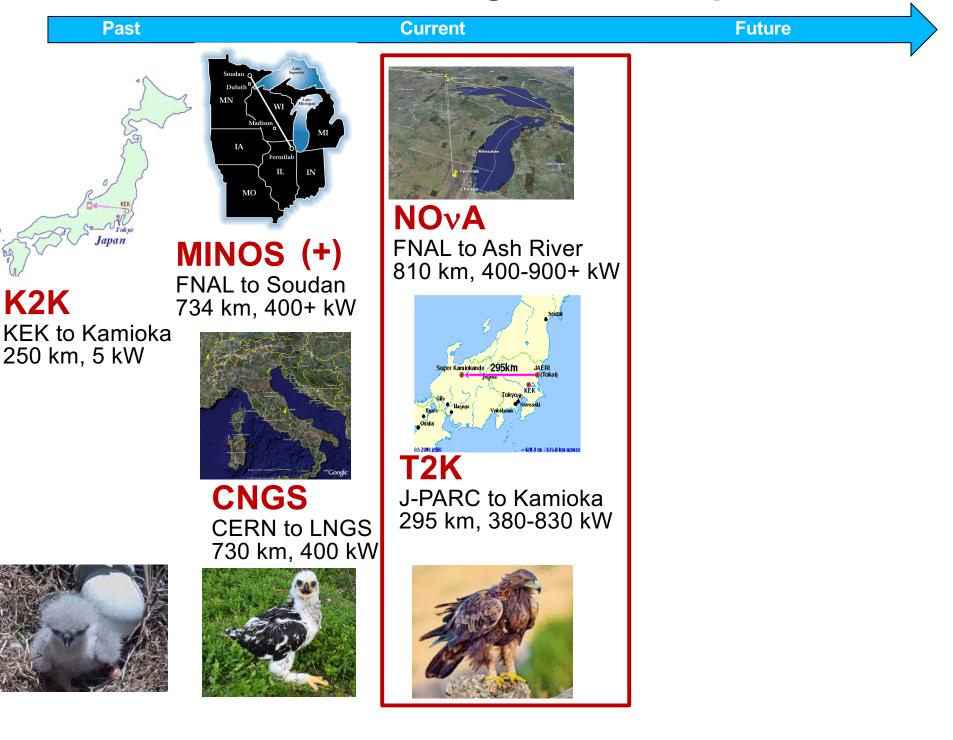
		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.1)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
IC24 with SK atmospheric data	$\sin^2 heta_{12}$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	
	$ heta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	
	$\sin^2 heta_{23}$	$0.470\substack{+0.017\\-0.013}$	$0.435 \rightarrow 0.585$	$0.550\substack{+0.012\\-0.015}$	$0.440 \rightarrow 0.584$	
	$ heta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9_{-0.9}^{+0.7}$	$41.5 \rightarrow 49.8$	
	$\sin^2 heta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \to 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	0.02060 o 0.02409	
	$ heta_{13}/^{\circ}$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$	
	$\delta_{ m CP}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \rightarrow 335$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.19}$	$6.92 \rightarrow 8.05$	$7.49\substack{+0.19\\-0.19}$	$6.92 \rightarrow 8.05$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$	

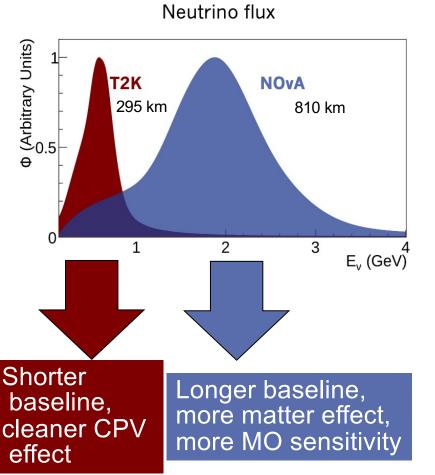

 $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.


	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.1)$		=		
IC24 with SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	_	
	$\sin^2 heta_{12}$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$		
	$\theta_{12}/^{\circ}$	$33.68\substack{+0.73 \\ -0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$		Is θ_{23}
	$\sin^2 \theta_{23}$	$0.470\substack{+0.017\\-0.013}$	$0.435 \rightarrow 0.585$	$0.550^{+0.012}_{-0.015}$	$0.440 \rightarrow 0.584$		non-negligibly
	$\theta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9_{-0.9}^{+0.7}$	$41.5 \rightarrow 49.8$		greater or smaller
	$\sin^2 heta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \rightarrow 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	$0.02060 \to 0.02409$		than 45 deg?
	$ heta_{13}/^\circ$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$		
	$\delta_{ m CP}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \rightarrow 335$		
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49_{-0.19}^{+0.19}$	$6.92 \rightarrow 8.05$	$7.49_{-0.19}^{+0.19}$	$6.92 \rightarrow 8.05$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$	=	

 $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

	1			1	2	:	
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.1)$			
IC24 with SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
	$\sin^2 heta_{12}$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$		
	$ heta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$		Is θ_{23}
	$\sin^2 \theta_{23}$	$0.470^{+0.017}_{-0.013}$	$0.435 \rightarrow 0.585$	$0.550^{+0.012}_{-0.015}$	$0.440 \rightarrow 0.584$		non-negligibly
	$ heta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9^{+0.7}_{-0.9}$	$41.5 \rightarrow 49.8$	\rightarrow	greater or smaller
	$\sin^2 heta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \rightarrow 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	$0.02060 \rightarrow 0.02409$		than 45 deg?
	$ heta_{13}/^{\circ}$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$		
	$\delta_{ m CP}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \rightarrow 335$		
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.19}$	$6.92 \rightarrow 8.05$	$7.49\substack{+0.19 \\ -0.19}$	$6.92 \rightarrow 8.05$		sign of ∆m ²
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$		ordering
							of masses)


 $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.



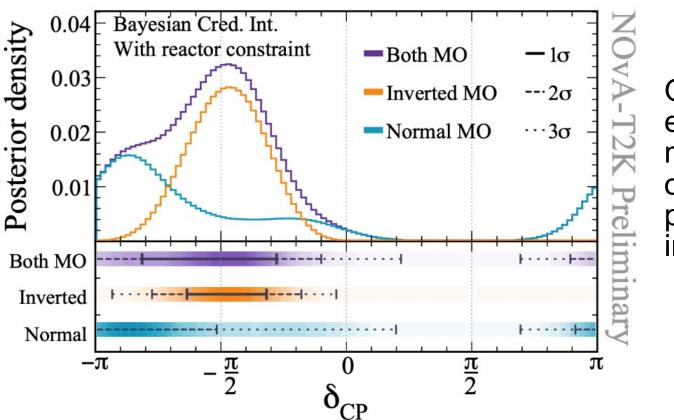
bangs [SNe]...

Where we are now with long-baseline experiments

T2K-NOvA joint analysis

Individual results from NOvA/T2K 2020 datasets

- **Frequentist Fits** 0.7 Normal Ordering 0.6 $\text{sin}^2\theta_{23}$ 0.5 0.4 **T2K EPJC 2023** ≤ 90% CL ≤ 68% CL NOvAPRD 2022 ≤ 90% CL ≤ 68% CL RE 0.3 <u>π</u> 2 <u>π</u>2 -π 0 π δ_{CP} 0.7 Inverted Ordering 0.6 $\sin^2 \theta_{23}$ 0.5 0.4 90% CL ···· ≤ 68% CL **T2K EPJC 2023** NOvAPRD 2022 ≤ 90% CL ≤ 68% CL⁻ 0.3 <u>π</u>2 <u>π</u>2 -π 0 π $\delta_{\underline{CP}}$
 - both individually favor NO
 - *mild* CP δ tension


Z. Vallari, CIPANP 2025

- ~Uncorrelated detector & flux systematics
- Analysis with and without Daya Bay reactor constraint

T2K-NOvA joint analysis results: joint fit describes both well

Octant

- ~No preference for octant for NOvA+T2K
- Mild preference for upper octant with reactor constraint
- Mass ordering
 - NOvA+T2K has mild preference for IO
 - Preference for NO w/reactor included
- CP-Violating Phase
 - $\delta = \pi/2$ outside 3σ credible interval for any MO
 - For IO, CP-conserving δ =0, π are outside 3σ ; for NO, not so

One high-profile example... more joint fit oscillation parameter plots in backup

Upshot:

we're not

there yet...

more data

needed!

And the future...

Past

Japan

KEK to Kamioka

250 km, 5 kW

K2K

MINOS (+)

FNAL to Soudan

734 km, 400+ kW

Current

NOvA FNAL to Ash River 810 km, 400-900+ kW

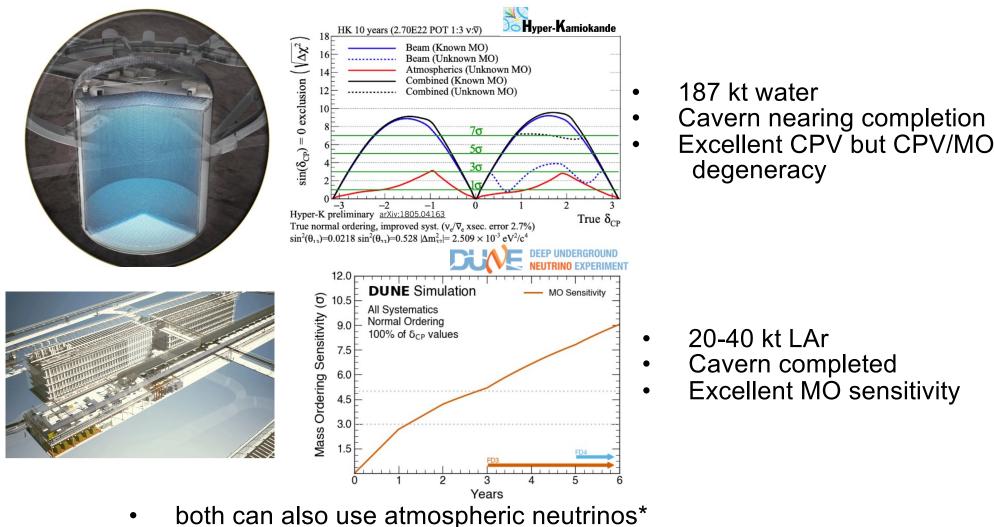

T2K J-PARC to Kamioka 295 km, 380-830 kW →>1 MW

Future

LBNF/DUNE **FNAL** to Homestake 1300 km, 2-2.4 MW tunable

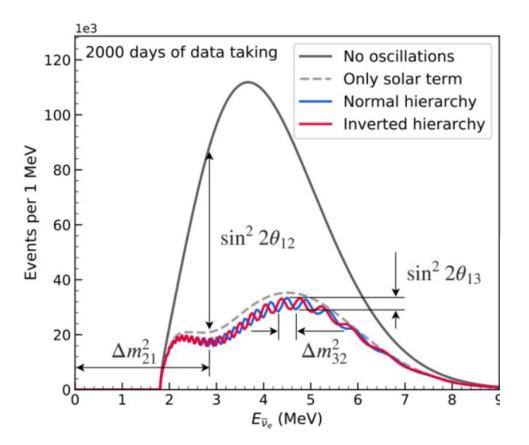
Hyper-K J-PARC to Kamioka 295 km, 750 kW (→1.3 MW)

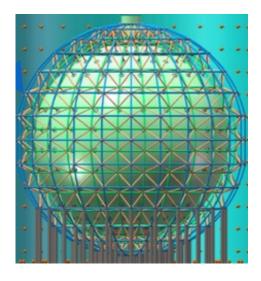
+ ESSvSB + farther future nu factories...



CNGS

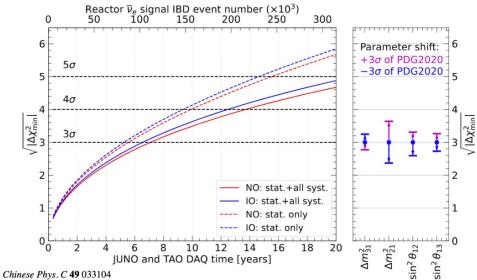
CERN to LNGS


Next-generation long-baseline beam experiments


- both have suite of diverse near detectors
- both will measure precision 2-3 parameters
- both have broad non-oscillation physics programs

[Long term eventual systematics wall... improve w/xscn, flux modeling, nu tagging (ENUBET)..]

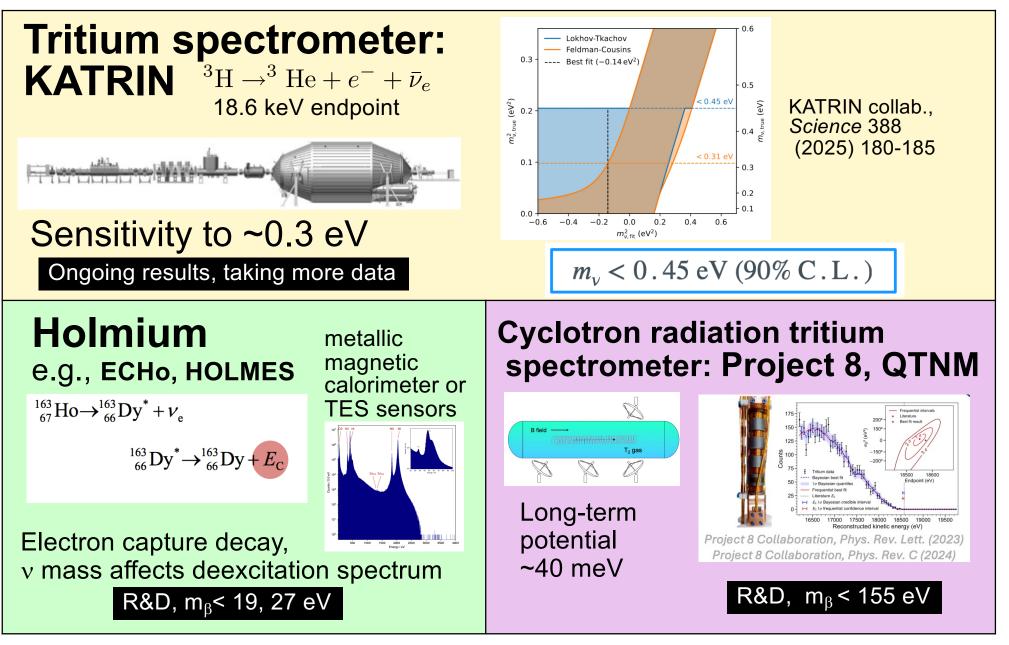
And JUNO in China approaches MO differently with reactor $\nu_e\text{-}bar$ disappearance


Also precision 1-2 parameters and broad non-oscillation physics program

• 20 kt liquid scintillator

53 km from 26.6 GW reactor

Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture: MO and CP δ Beyond 3-flavor?

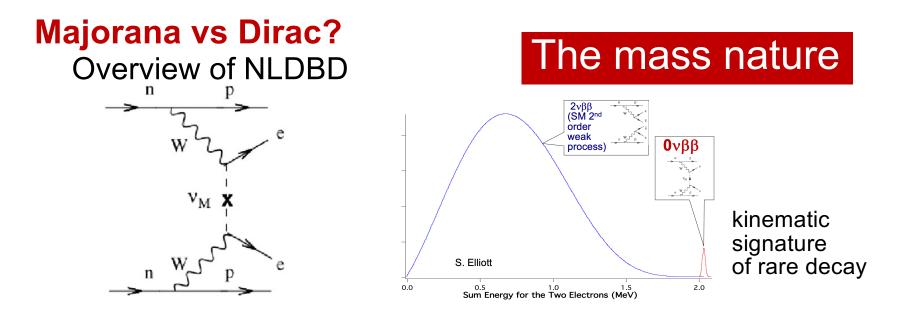

The mass pattern

Absolute Mass Status and prospects

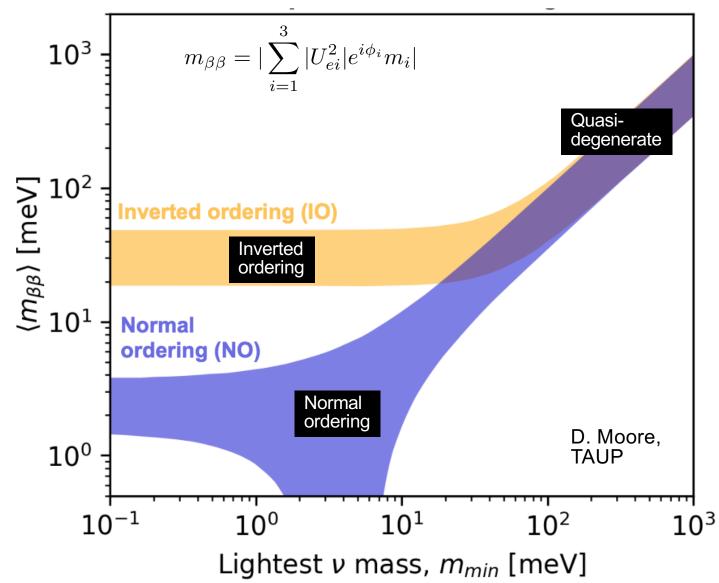
Majorana vs Dirac? Overview of NLDBD The mass scale

The mass nature

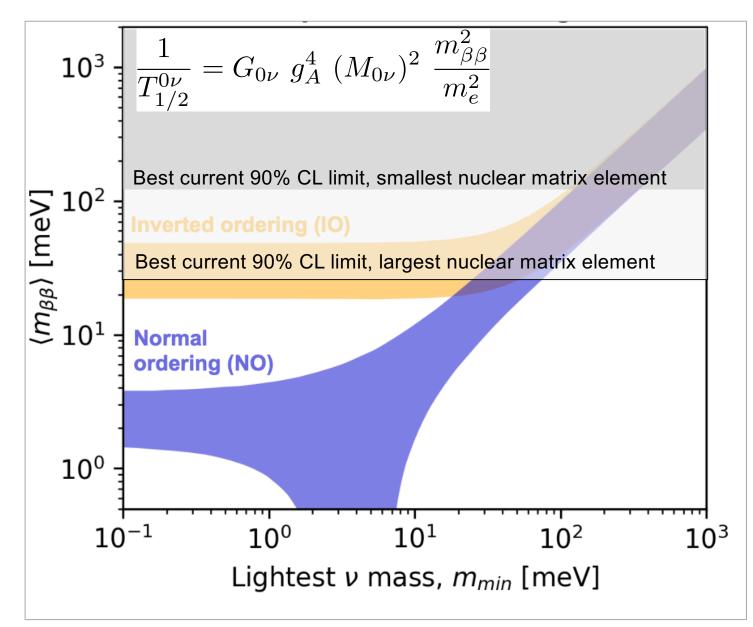
Kinematic neutrino mass approaches

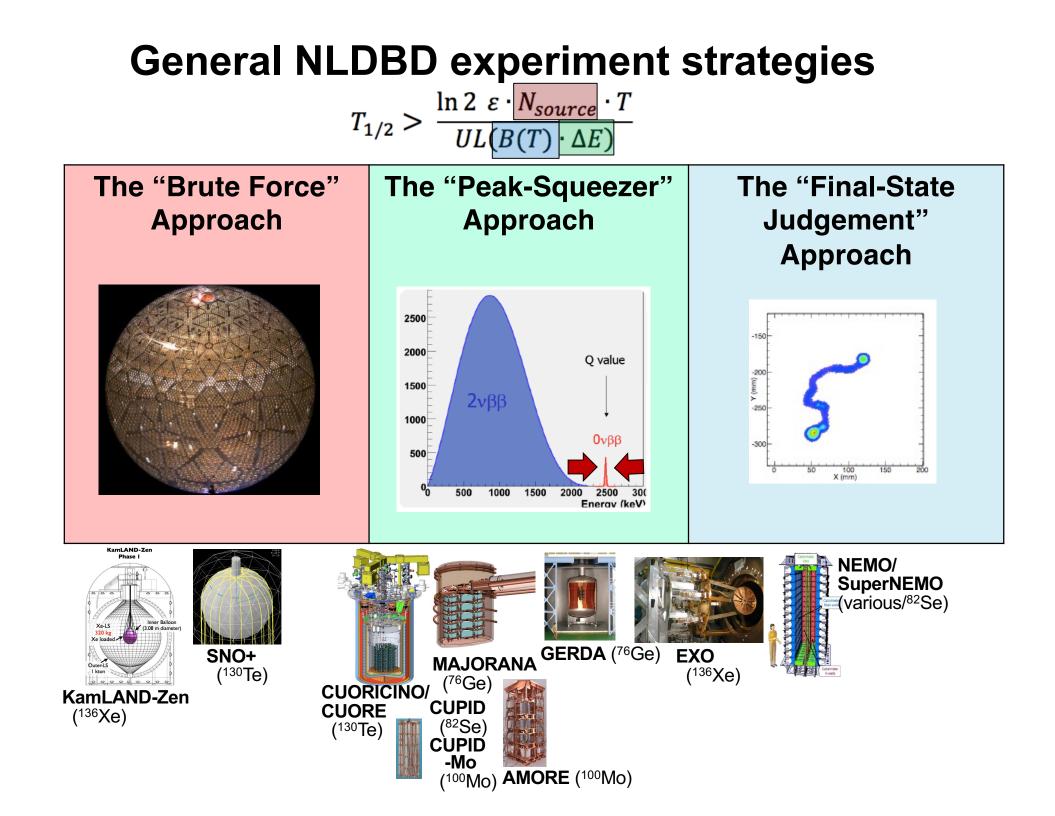

+KATRIN++ (atomic tritium), PTOLEMY

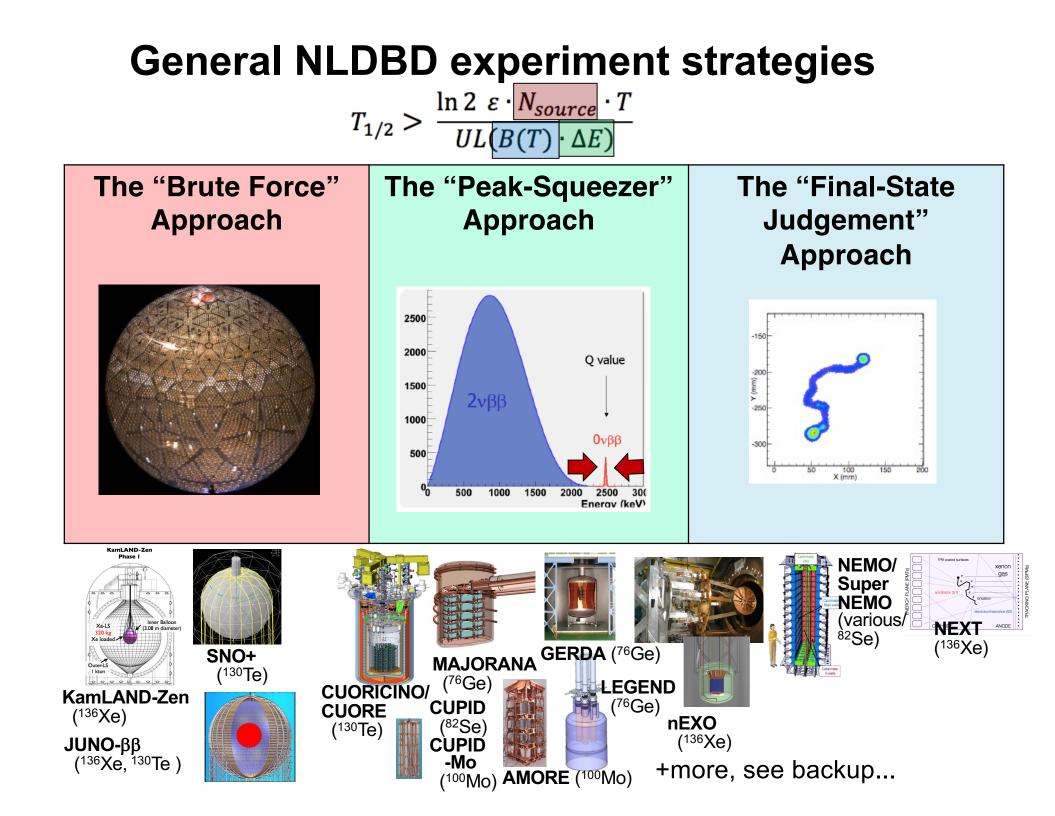
Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture: MO and CP δ Beyond 3-flavor?


Absolute Mass Status and prospects

The mass pattern


The mass scale





If neutrinos are Majorana, experimental results must fall in the shaded regions Extent of the regions determined by uncertainties on Majorana phases and mixing matrix elements

Observed half-life requires knowledge of nuclear matrix elements

Overall Long-Term Prospects for NLDBD

In the long term will need more than one isotope... theory needed too!

Science Drivers in Neutrino Physics

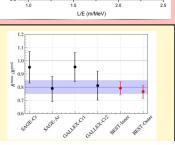
Three-flavor paradigm: filling in the remaining pieces

Hunting down anomalies Searching for **BSM** physics

Understanding **astrophysics** and **cosmology**

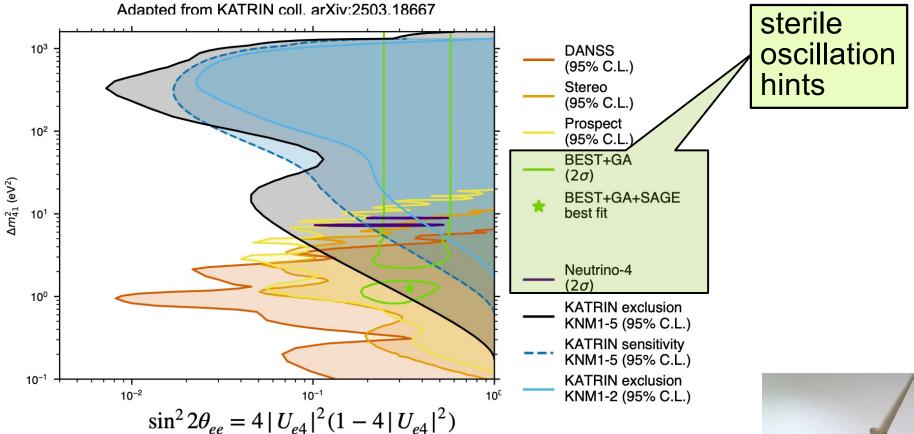
All of this discussion is in the context of the standard 3-flavor picture and testing that paradigm....

There are already some slightly uncomfortable data that **don't fit that paradigm**...


... various appearance and disappearance signatures at different L, E ... sterile neutrinos (no SM weak interactions) are primary suspects...

Status of attempts to resolve anomalies...

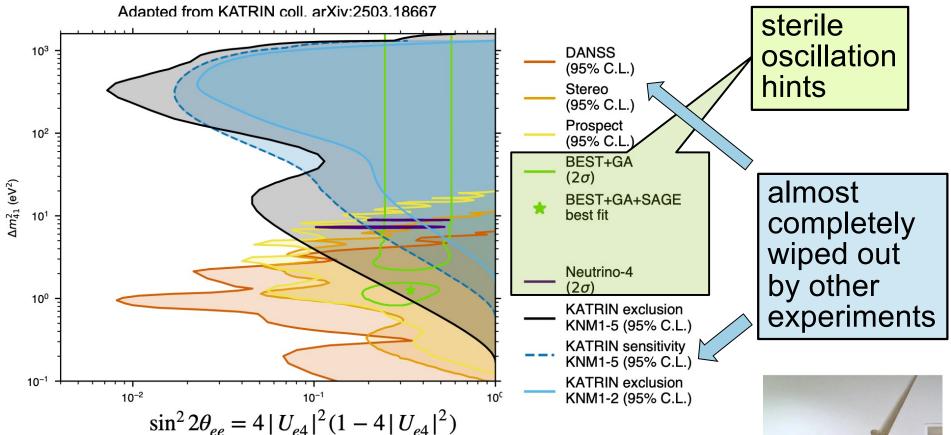
Beam Excess 17.5 LSND @ LANL (~30 MeV, 30 m) $\bar{
u}_{\mu}
ightarrow \bar{
u}_e$ excess 15 12.5 10 7.5 Unresolved... JSNS² will test ~directly **MiniBooNE** @ FNAL ($v, \overline{v} \sim 1$ GeV, 0.5 km) otal predicted LEE signa electron flavor excess ~consistent w/LSND $v^2 = 15.0 \text{ p-value} \cdot 19\%$ $1eNn0\pi$ selection 50 D2 Unresolved.... MicroBooNE LArTPC @ FNAL does not see excess of v_e , investigation of photon channel underway... 10 .more data from FNAL SBN (ICARUS, SBND) soon Reconstructed neutrino energy (GeV) **Reactor flux anomaly**" deficit of reactor ν_e **Resolved** with new input β -decay spectra 3 a.Kl 0.90 from 235-U fission $\overline{R}_{\kappa l} = 0.975^{+0.0}_{-0.0}$ L [m]


"Reactor spectral anomaly" spectral wiggle in $\bar{\nu}_e$ ~Unresolved... new data disfavor.. more data coming... PROSPECT, SoLid, STEREO, NEOS, DANSS, CHANDLER, Neutrino-4,....

"Gallium anomaly" ν_e suppression from Ga source Unresolved... new BEST results (5 σ) confirm ...no baseline dependence

(One) example of sterile-oscillation parameter space:

From M. Hostert, CIPANP 2025


Sterile oscillation fits to "all" the data are uncomfortable...

No consistent sterile-oscillation picture it's either something mundane, or something new (or both...)

(One) example of sterile-oscillation parameter space:

From M. Hostert, CIPANP 2025

Sterile oscillation fits to "all" the data are uncomfortable...

No consistent sterile-oscillation picture it's either something mundane, or something new (or both...)

Science Drivers in Neutrino Physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

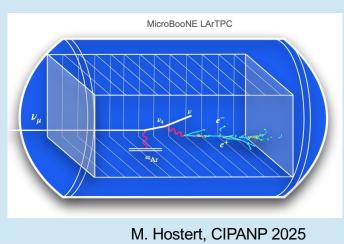
Understanding astrophysics and cosmology

Beyond the Standard Model with Neutrinos

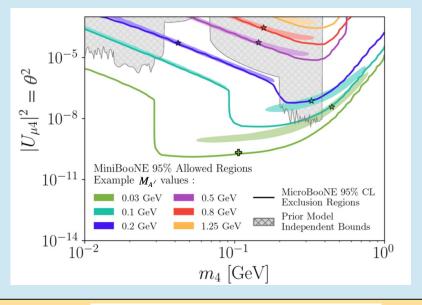
BSM in the neutrino sector and

- sterile neutrinos over wide range of masses (also "heavy neutral leptons")
- neutrino decay
- PMNS non-unitarity
- anomalous v electromagnetic properties
- non-standard v interactions, effective field theories
- new physics in double beta decay

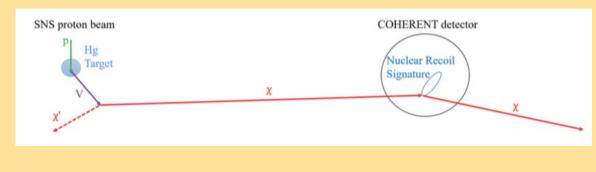
BSM search opportunities in neutrino detectors

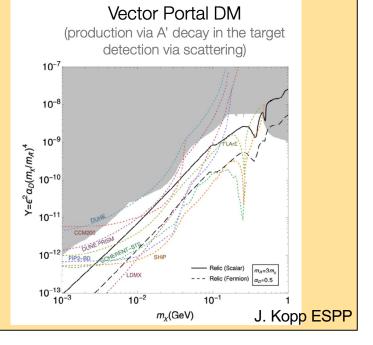

- baryon number violation in large detectors
- dark sector searches (beams, natural sources, cosmogenic)
 - Axion-like particles
 - Light DM
 - Light Z'

(categories are not crisply separated...)


Very wide array of experimental signatures & approaches

Just two BSM search examples, of very very many...


Look for scattering + $v_4 \rightarrow ve^+e^-$ topology in LArTPC



MicroBooNE arXiv:2502.10900

Look for nuclear recoil signatures of vector-portal DM in low-threshold CEvNS detectors

Science Drivers in Neutrino Physics

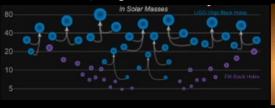
Searching

Understanding astrophysics and cosmology

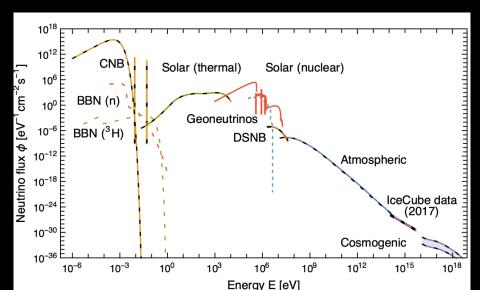
Three-flavor paradigm: filling in the remaining pieces


Hunting down anomalies

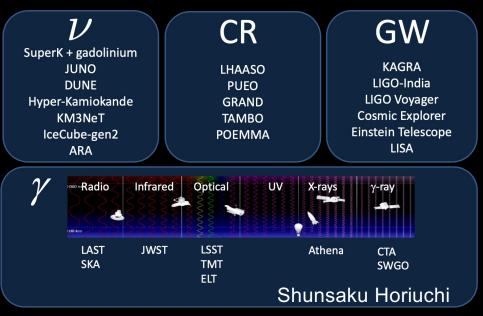
for **BSM** physics


Multi-Messenger Astrophysics

Many, many sources

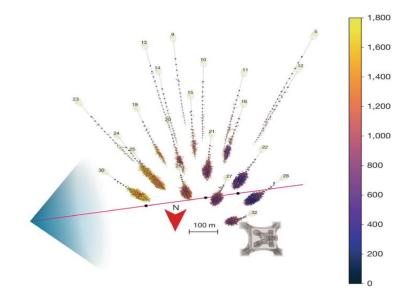

Black hole / mergers

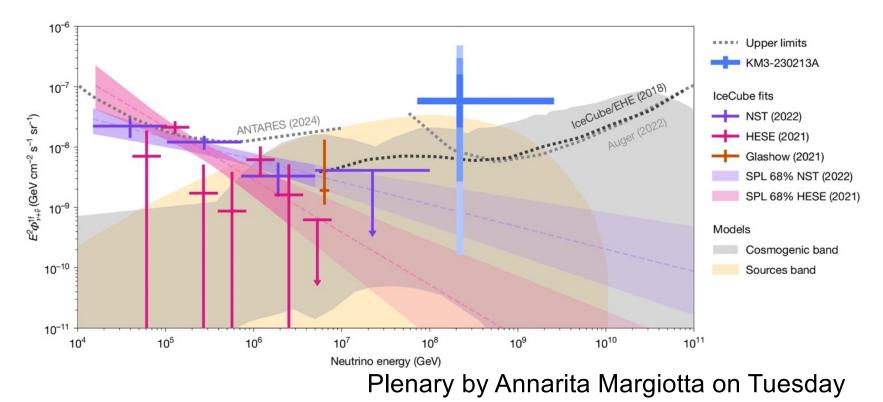
Dark matter Primordial BH



Supermassive black hole

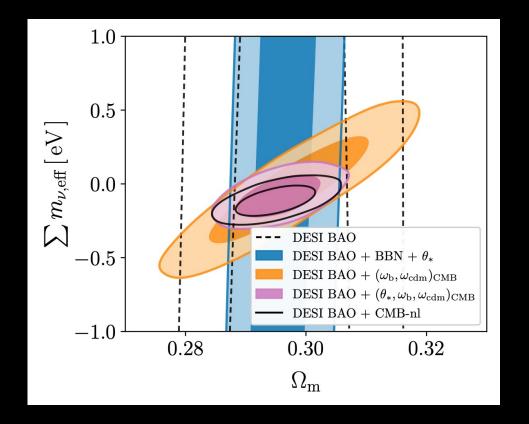
Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt, Oct 25, 2019, 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF


Many, many detectors

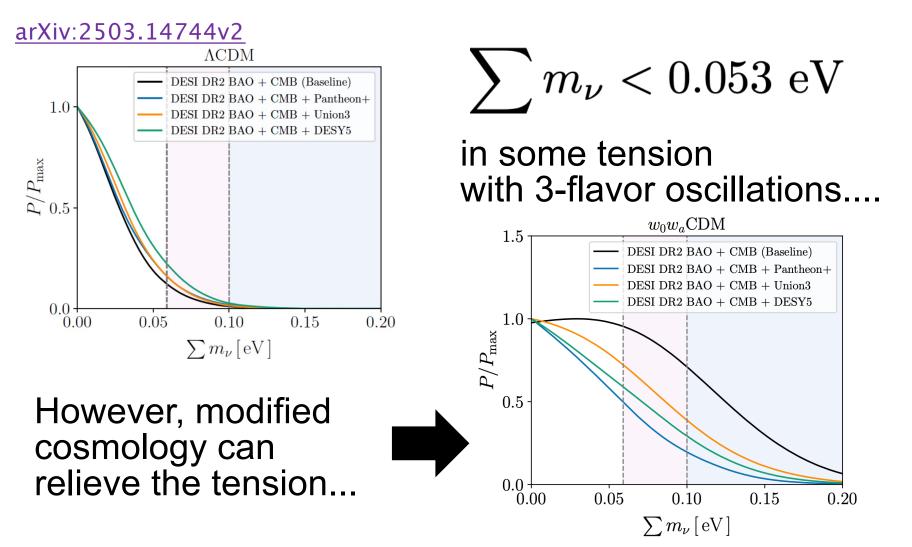

- Neutrinos are tools to understand the sources
- Natural neutrino sources are messengers of *physics*

Highlight example:

an amazing neutrino event seen by KM3NeT!

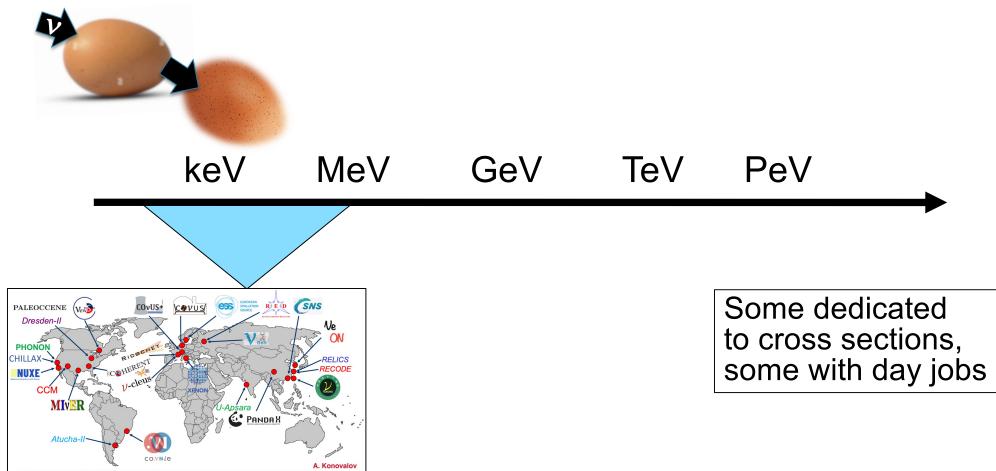

Nu energy 220^{+570}_{-110} PeV

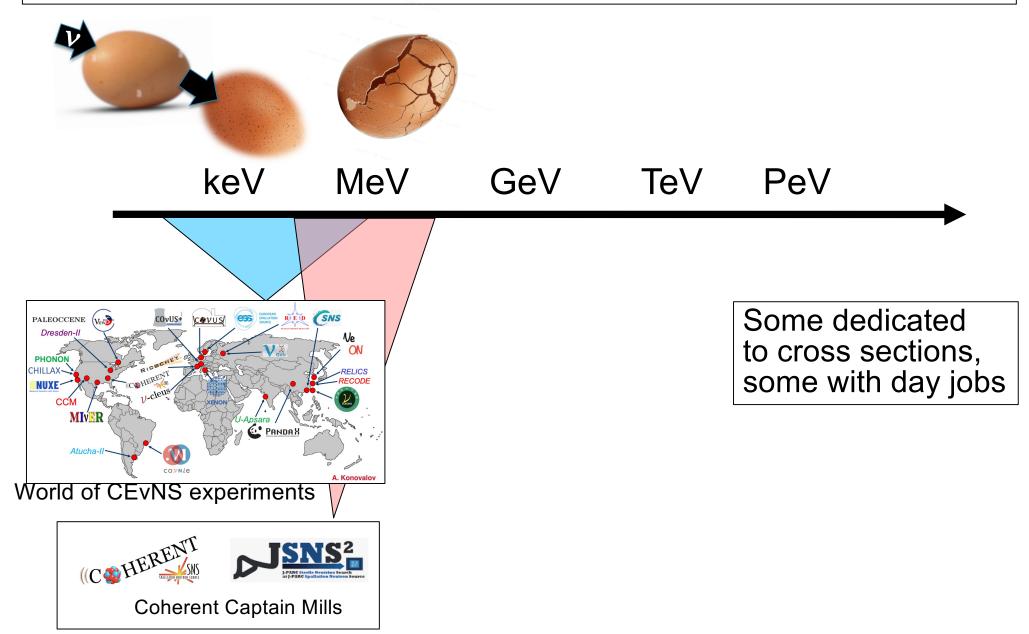
Neutrinos and Cosmology

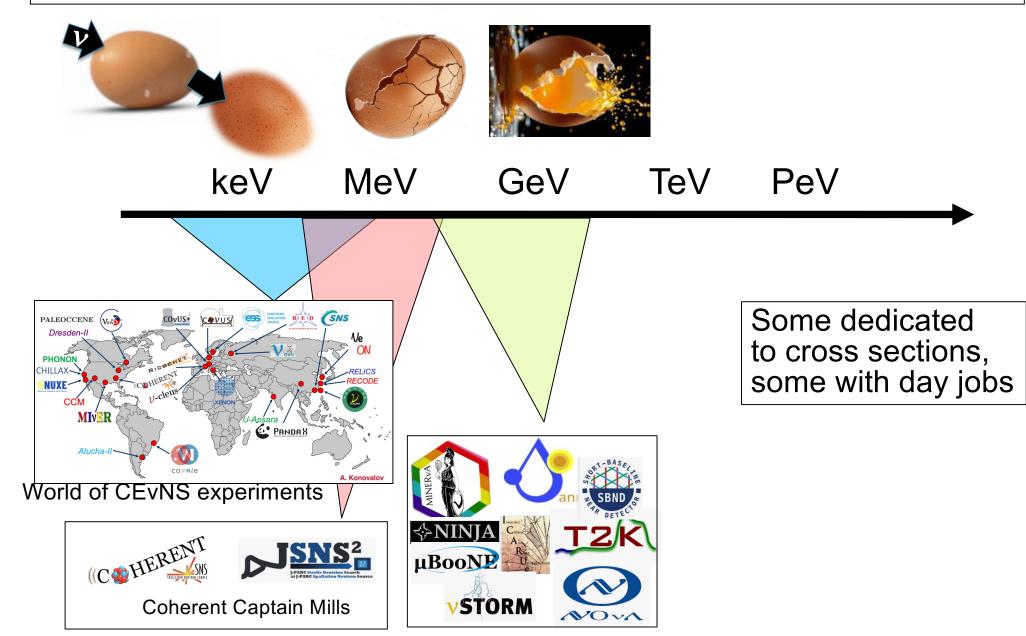

Fits to multiple cosmological measurements can tell us about v properties, notably:

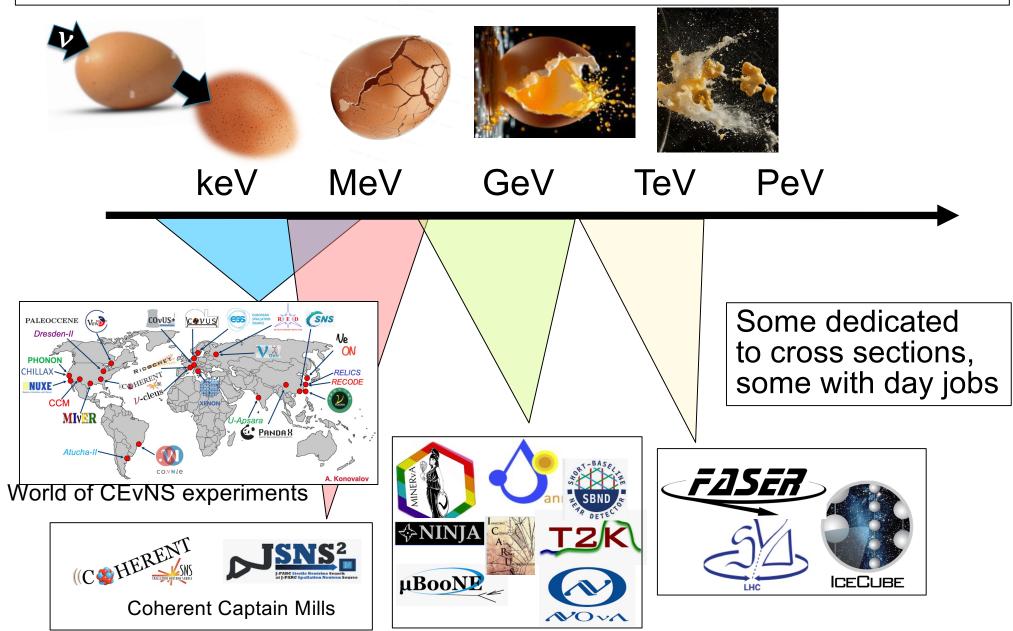
- Absolute neutrino mass scale
- N_{eff}, effective number of relativistic species

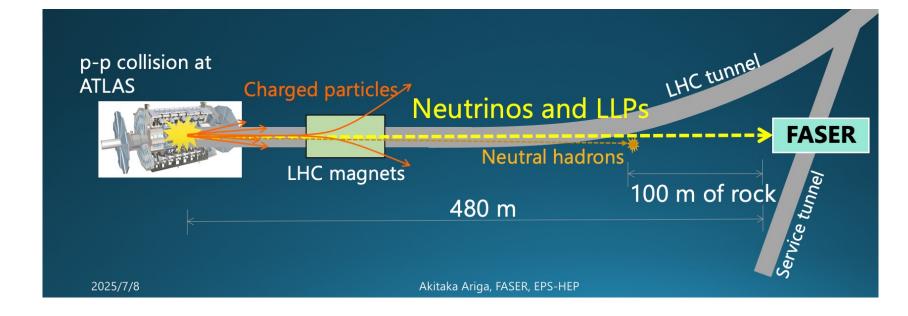
arXiv:2503.14744v2

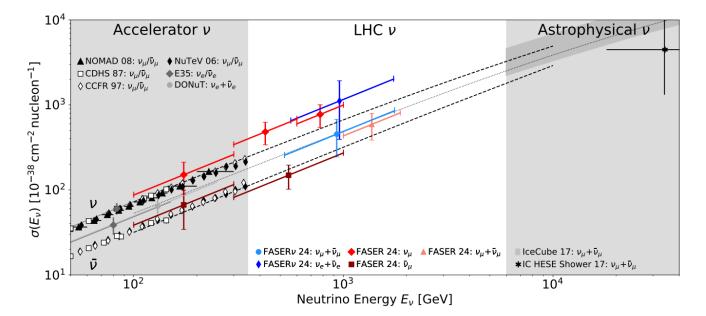

Latest cosmology data, including new DESI results, tend to favor very small neutrino mass scale....

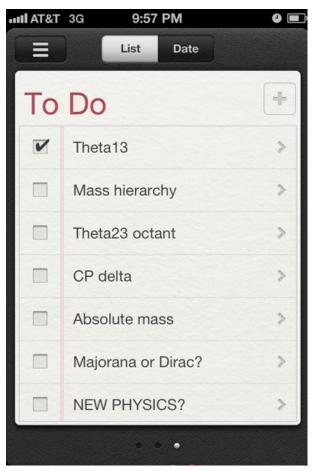

Laboratory neutrino measurements can provide constraints to cosmology

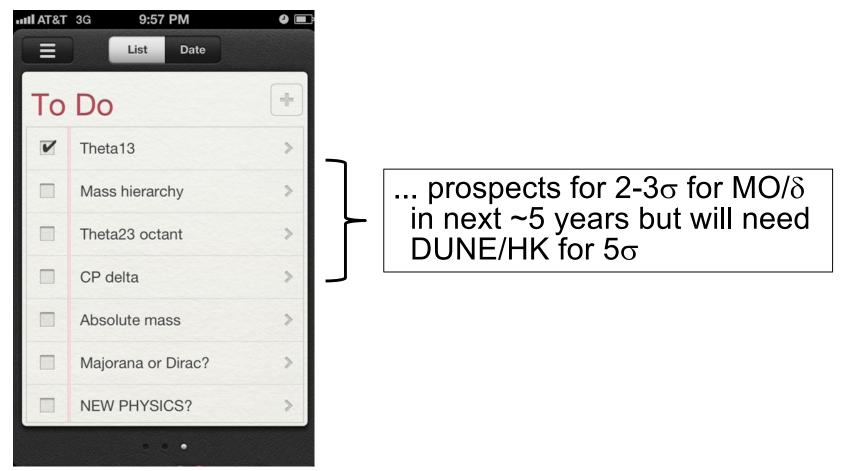

keV MeV GeV TeV PeV


Some dedicated to cross sections, some with day jobs

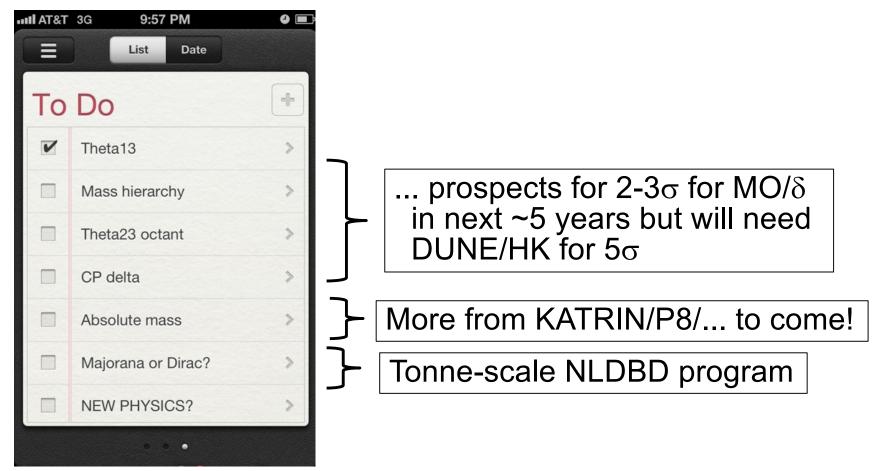

World of CEvNS experiments

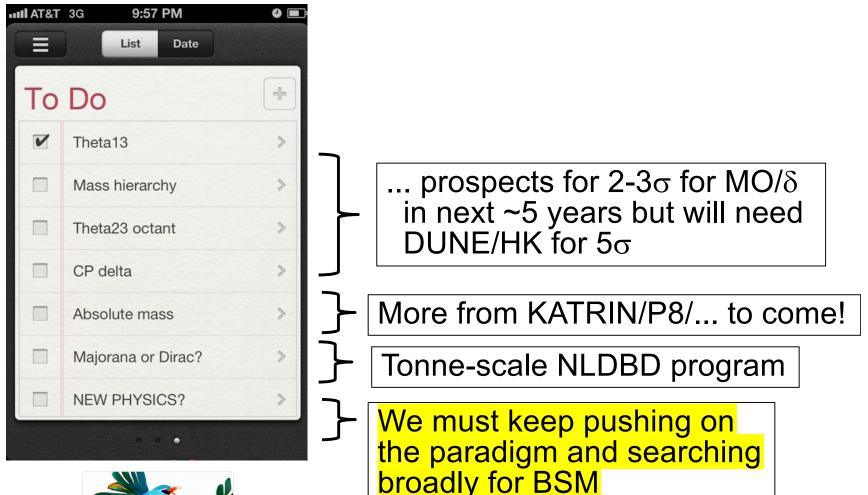



One last specific highlight: new results from FASER

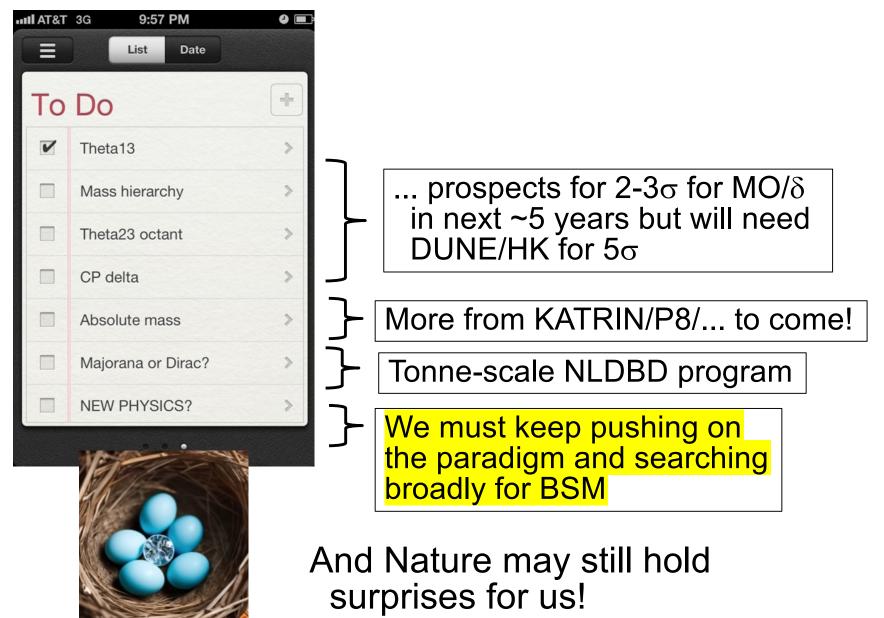

Measure fluxaveraged cross section → interpret as cross-section *or* flux measurement

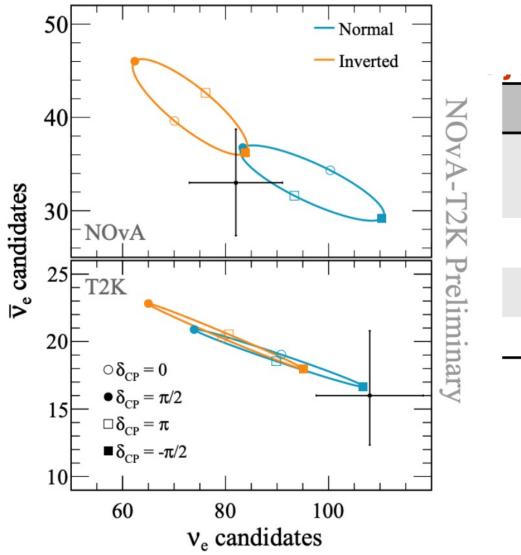

Huge progress in understanding of neutrinos over the last 30 years, **but still many outstanding questions**

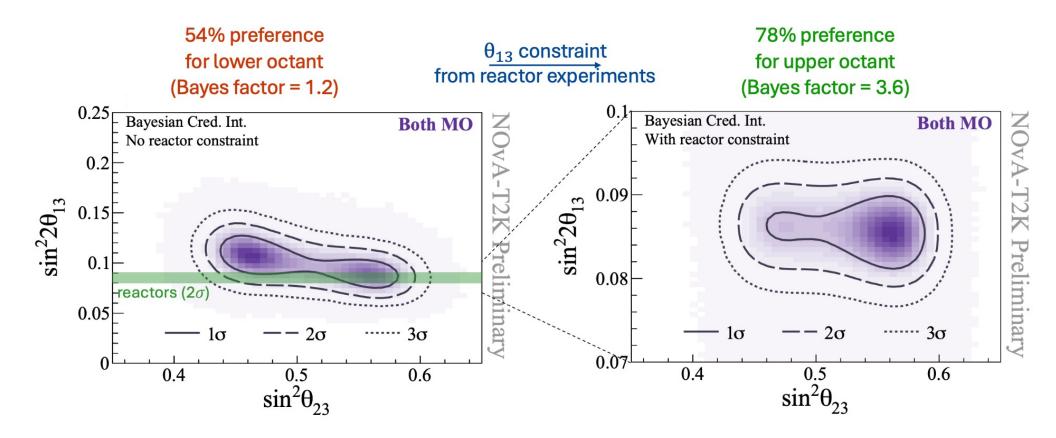



My IPhone from ~15 years ago!*

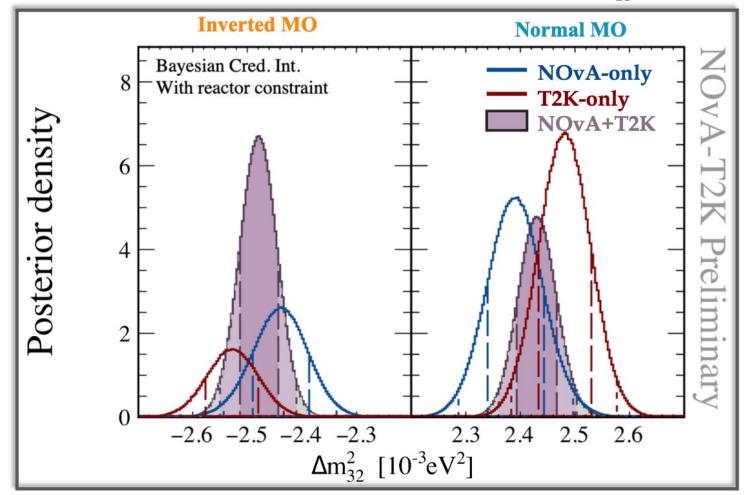
*I have never found a good to-do list app...



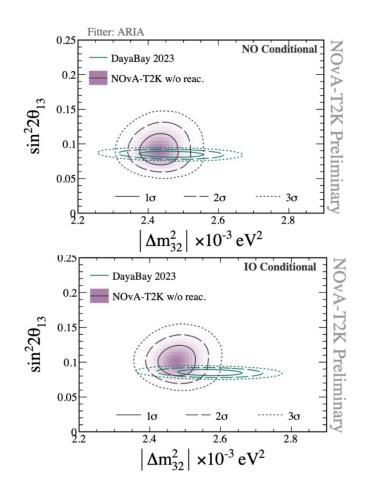



Extras/Backups

Individual T2K and NOvA datasets

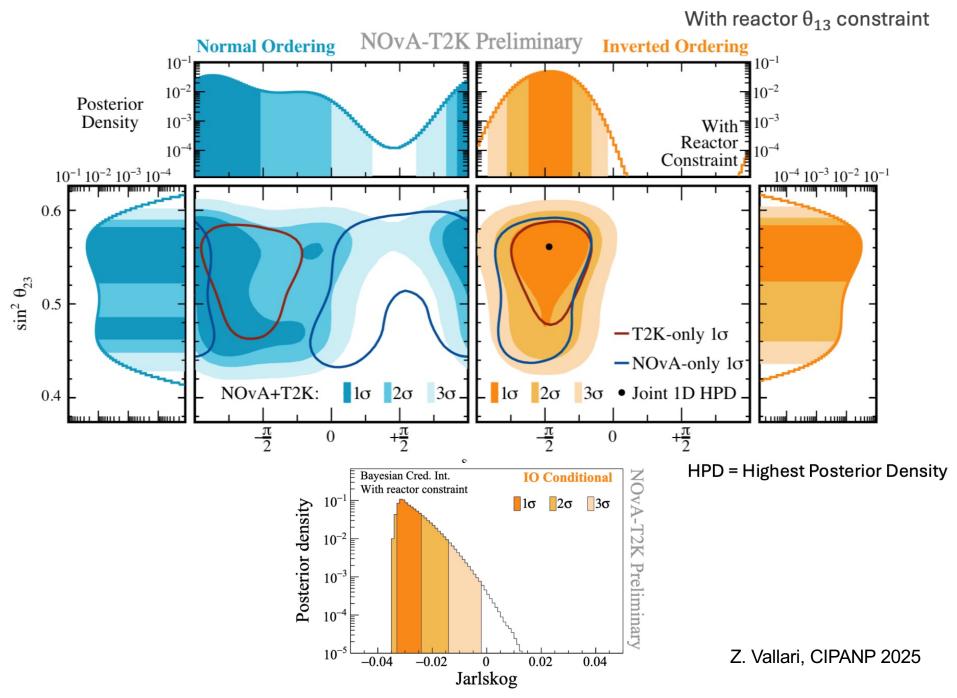

Channel	NOvA	Т2К
ν _e	82	94 (ν _e) 14 (ν _e 1π)
$\overline{oldsymbol{ u}}_e$	33	16
$oldsymbol{ u}_{\mu}$	211	318
$\overline{oldsymbol{ u}}_{\mu}$	105	137

Octant fit, with and without reactor constraint


Mass ordering result from joint T2K-NOvA fit

With reactor θ_{13} constraint

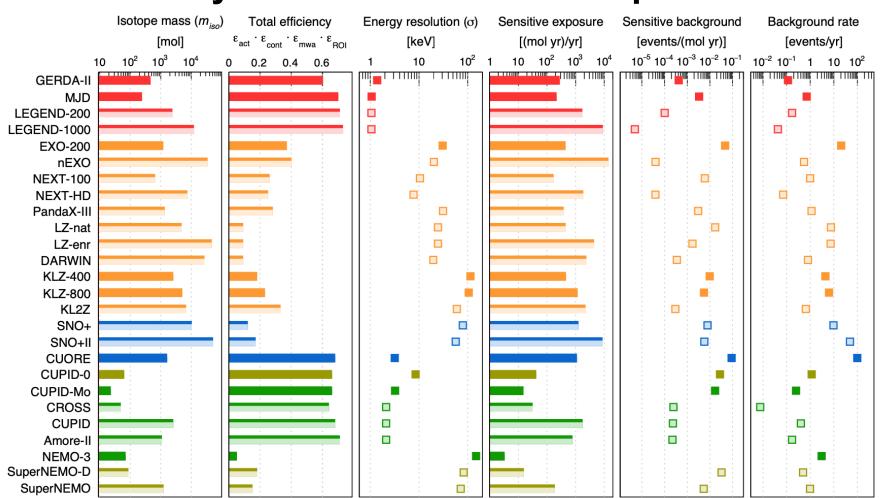
	NOvA only	T2K only	NOvA+T2K
Bayes factor	2.07	4.24	1.36
	Normal/Inverted	Normal/Inverted	Inverted/Normal
	~67% : ~33% posterior	~81% : ~19% posterior	~58% : ~42% posterior


Including the reactor constraint restores the preference for normal ordering

	NOvA - T2K w/o	NOvA – T2K w/	ΝΟνΑ - Τ2Κ w/
	Daya Bay	θ ₁₃ Daya Bay	(θ ₁₃ , Δm ² ₃₂) Daya Bay
Bayes factor	2.47 Inverted/Normal ~71% : ~29% posterior	1.34 Inverted/Normal ~57% : ~43% posterior	1.44 Normal/Inverted ~59% : ~41% posterior

Z. Vallari, CIPANP 2025

Joint T2K-NOvA CP δ fit results



Neutrinoless Double Beta Decay Experiments many, many isotopes and technologies

Recent and future experiments

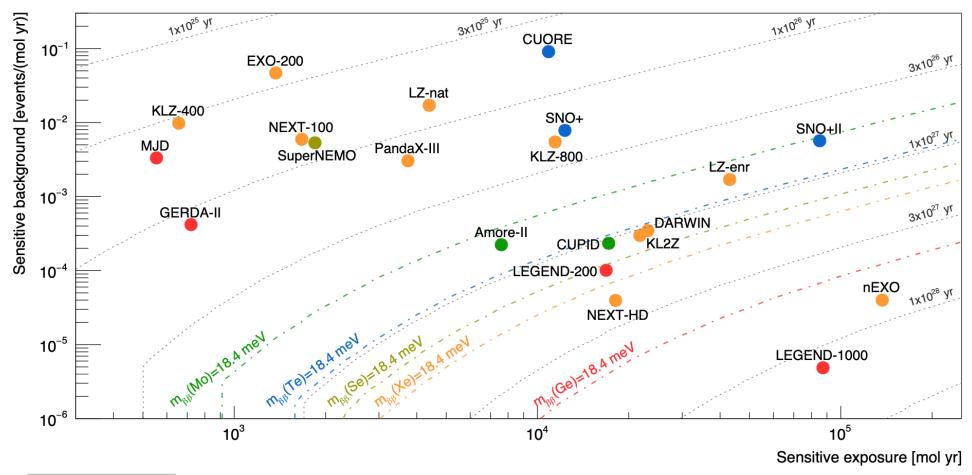
				$m_{ m iso}$	$\varepsilon_{ m act}$	$\varepsilon_{\rm cont}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{ m ROI}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
Experiment	Isotope	Status	Lab	[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr} ight]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	[meV]
High-purity Ge det	ectors (Sec	c. VI.B)													
GERDA-II	76 Ge	completed	LNGS	$4.5\cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2\cdot 10^{-4}$	$1.1\cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	$^{76}\mathrm{Ge}$	completed	SURF	$3.1\cdot 10^2$	91	91	86	1.1	-2,2	95	212	$3.3\cdot 10^{-3}$	$7.1\cdot 10^{-1}$	$4.7\cdot 10^{25}$	149 - 355
LEGEND-200	76 Ge	construction	LNGS	$2.4\cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2\cdot 10^4$	92	92	90	1.1	-2,2	95	8 7 3 6	$4.9\cdot 10^{-6}$	$4.3\cdot10^{-2}$	$1.3\cdot 10^{28}$	9-21
Xenon time project	tion chamb	pers (Sec. VI.C)													
EXO-200	136 Xe	completed	WIPP	$1.2\cdot 10^3$	46	100	84	31	-2,2	95	438	$4.7\cdot 10^{-2}$	$2.1\cdot 10^{+1}$	$2.4\cdot 10^{25}$	111 - 477
nEXO	136 Xe	proposed	SNOLAB	$3.4\cdot 10^4$	64	100	66	20	-2,2	95	13700	$4.0\cdot 10^{-5}$	$5.5\cdot10^{-1}$	$7.4\cdot 10^{27}$	6-27
NEXT-100	136 Xe	construction	LSC	$6.4\cdot 10^2$	88	76	49	10	-1.0, 1.8	80	167	$5.9\cdot 10^{-3}$	$9.9\cdot 10^{-1}$	$7.0\cdot 10^{25}$	66 - 281
NEXT-HD	136 Xe	proposed		$7.4\cdot 10^3$	95	89	44	7.7	-0.5, 1.7	65	1809	$4.0\cdot 10^{-5}$	$7.2\cdot 10^{-2}$	$2.2\cdot 10^{27}$	12-50
PandaX-III-200	136 Xe	construction	CJPL	$1.3\cdot 10^3$	77	74	65	31	-1.2, 1.2	76	374	$3.0\cdot 10^{-3}$	$1.1\cdot 10^{+0}$	$1.5\cdot 10^{26}$	45-194
LZ-nat	136 Xe	construction	SURF	$4.7\cdot 10^3$	14	100	80	25	-1.4, 1.4	84	440	$1.7\cdot10^{-2}$	$7.5\cdot 10^{+0}$	$7.2\cdot 10^{25}$	64-277
LZ-enr	136 Xe	proposed	SURF	$4.6\cdot 10^4$	14	100	80	25	-1.4, 1.4	84	4302	$1.7\cdot 10^{-3}$	$7.3\cdot 10^{+0}$	$7.1\cdot 10^{26}$	20 - 87
Darwin	136 Xe	proposed		$2.7\cdot 10^4$	13	100	90	20	-1.2, 1.2	76	2312	$3.5\cdot 10^{-4}$	$8.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	17-72
Large liquid scintil	lators (Sec	. VI.D)													
KLZ-400	136 Xe	completed	Kamioka	$2.5\cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.8\cdot10^{-3}$	$4.4\cdot 10^{+0}$	$3.3\cdot 10^{25}$	95-408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	55	100	100	105	0, 1.4	42	1143	$5.5\cdot10^{-3}$	$6.2\cdot 10^{+0}$	$2.0\cdot 10^{26}$	38-164
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot 10^{-4}$	$6.5\cdot 10^{-1}$	$1.1\cdot 10^{27}$	17-71
SNO+I	$^{130}\mathrm{Te}$	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot10^{-3}$	$9.7\cdot 10^{+0}$	$1.8\cdot 10^{26}$	31-144
SNO+II	¹³⁰ Te	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot10^{+1}$	$5.7\cdot 10^{26}$	17-81
Cryogenic calorime	eters (Sec.	VI.E)													
CUORE	$^{130}\mathrm{Te}$	taking data	LNGS	$1.6\cdot 10^3$	100	88	92	3.2	-1.4, 1.4	84	1088	$9.1\cdot10^{-2}$	$9.9\cdot10^{+1}$	$5.1\cdot 10^{25}$	58 - 270
CUPID-0	82 Se	completed	LNGS	$6.2\cdot 10^1$	100	81	86	8.5	-2,2	95	41	$2.8\cdot 10^{-2}$	$1.2\cdot 10^{+0}$	$4.4\cdot 10^{24}$	283 - 551
CUPID-Mo	100 Mo	completed	LSM	$2.3\cdot 10^1$	100	76	91	3.2	-2,2	95	15	$1.7\cdot10^{-2}$	$2.5\cdot 10^{-1}$	$1.7\cdot 10^{24}$	293-858
CROSS	100 Mo	construction	LSC	$4.8\cdot 10^1$	100	75	90	2.1	-2,2	95	31	$2.5\cdot 10^{-4}$	$7.6\cdot 10^{-3}$	$4.9\cdot 10^{25}$	54-160
CUPID	100 Mo	proposed	LNGS	$2.5\cdot 10^3$	100	79	90	2.1	-2,2	95	1717	$2.3\cdot 10^{-4}$	$4.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	12-34
AMoRE-II	100 Mo	proposed	Yemilab	$1.1\cdot 10^3$	100	82	91	2.1	$^{-2,2}$	95	760	$2.2\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$6.7\cdot 10^{26}$	15-43
Tracking calorimet	Tracking calorimeters (Sec. VI.F)														
NEMO-3	100 Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6, 1.1	42	3	$9.4\cdot 10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505 - 1485
SuperNEMO-D	82 Se	construction	\mathbf{LSM}	$8.5\cdot 10^1$	100	100	28	83	-4.2, 2.4	64	15	$3.3\cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	⁸² Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1, 2.8	54	185	$5.3\cdot 10^{-3}$	$9.8\cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

ABDMV, RMP 2022, arXiv:2202.01787

Summary of recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

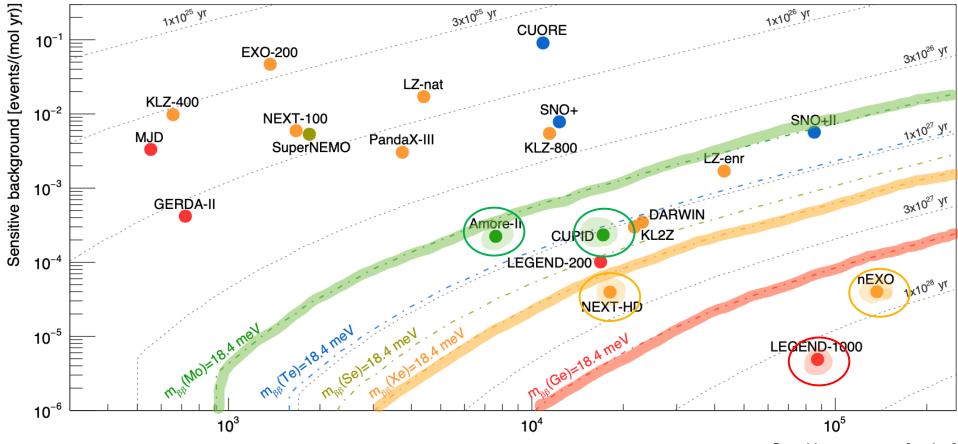
Limits from US Long Range Plan


Experiment	Isotope	Half-life limit (1026 years)	mββ limit (meV)		
MAJORANA	Germanium-76	0.83	113-269		
GERDA	Germanium-76	1.8	79-180		
EXO-200	Xenon-136	0.35	93-286		
KamLAND-Zen	Xenon-136	2.3	36-156		
CUORE	Tellurium-130	0.22	90-305		

Updates:

LEGEND-200: 1.9×10^{26} yr arXiv:2505.10440 KL-ZEN: 28-122 meV

Sensitive background and exposure for recent and future experiments


ABDMV, RMP 2022, arXiv:2202.01787

Grey dashed lines: discovery sensitivity on the NLDBD T_{1/2} (isotope-independent)

Sensitive background and exposure for recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Sensitive exposure [mol yr]

Grey dashed lines: discovery sensitivity on the NLDBD $T_{1/2}$ (isotope-independent) Colored dashed lines: $m_{\beta\beta}$ sensitivities to get to the bottom of the IO region for *specific isotopes*, taking into account NME & phase space [specific ~optimistic NME assumption] \rightarrow want to be to the lower right of your colored line!