Cosmology

Camille Bonvin University of Geneva

EPS-HEP 2025

Two mysteries in our universe

- ♦ Dark matter: we feel more matter gravitationally than we can see with our telescopes
 - Evidence at all scales and with different observations
- ♦ The expansion of the universe accelerates

- Cosmological constant
- SolutionsDark energy
 - Modification of gravity at large scale

- The goal of cosmological surveys is to probe these unknown ingredients in the universe
- We split our universe into:

Homogeneous and isotropic background + fluctuations

scale factor gravitational potentials
$$ds^2 = -a^2 \left[(1 + 2\Psi) d\eta^2 + (1 - 2\Phi) \delta_{ij} dx^i dx^j \right]$$

♦ The universe's content:

density
$$\rho = \bar{\rho} + \delta \rho$$

• density
$$\rho = \bar{\rho} + \delta \rho$$

• velocity $H = \frac{\dot{a}}{a}$ and V

Hubble rate

peculiar velocity

Camille Bonvin

- The goal of cosmological surveys is to probe these unknown ingredients in the universe
- We split our universe into:

Homogeneous and isotropic background + fluctuations

Goal: measure these quantities to learn about dark matter and the accelerated expansion

The universe's content:

density
$$\rho = \bar{\rho} + \delta \rho$$

• density
$$\rho = \bar{\rho} + \delta \rho$$

• velocity $H = \frac{\dot{a}}{a}$ and V

Hubble rate

peculiar velocity

Background expansion

- ◆ The evolution of the expansion is sensitive to dark energy, to gravity and to dark matter
- We measure the relation between distances and redshifts

$$d_L(z) = (1+z) \int_0^z dz' \frac{1}{H(z')} \qquad \text{directly learn about} \\ \text{the expansion} \qquad \longrightarrow \qquad H(z)$$

- \blacklozenge In 1998, supernovae measurements \rightarrow acceleration, consistent with Λ
- Recently, there has been evidence for an evolving dark energy

Cosmological constant

$$P = -\rho$$

Evolving dark energy with timedependent equation of state

$$P = w(t)\rho$$

Distances from DESI

Evolving equation of state

$$w(a) = w_0 + w_a(1-a)$$

Strange behaviour: w < -1, sign of modified gravity?

- lacktriangle The evolution of Φ , Ψ , $\delta\rho$ and V depends on dark energy, dark matter and gravity
- ♦ The relations between the fields can discriminate between theories

 Λ CDM model

- ♦ The evolution of Φ , Ψ , $\delta\rho$ and V depends on dark energy, dark matter and gravity
- ♦ The relations between the fields can discriminate between theories

different background evolution: evolving dark energy

δho	Continuity	V
Poisson		Euler
Φ		Ψ

- lacktriangle The evolution of Φ , Ψ , $\delta \rho$ and V depends on dark energy, dark matter and gravity
- ♦ The relations between the fields can discriminate between theories

Modified gravity

Continuity $\delta \rho$ **Modified Poisson** Euler Φ Ψ Gravitational slip

- ♦ The evolution of Φ , Ψ , $\delta\rho$ and V depends on dark energy, dark matter and gravity
- ♦ The relations between the fields can discriminate between theories

Dark matter interactions

Surveys detect galaxies and measure

the angular position

♦ the redshift

the shape

Surveys detect galaxies and measure

the angular position

the redshift

the shape

galaxy spectrum

Surveys detect galaxies and measure

the angular position

the redshift -> distance

the shape

galaxy spectrum

Surveys detect galaxies and measure

the angular position

♦ the redshift → distance

the shape

3-dimensional map

Surveys detect galaxies and measure

the angular position

♦ the redshift → distance

the shape

Credit: ESO/INAF-VST

Surveys detect galaxies and measure

the angular position

♦ the redshift → distance

the shape

♦ 3D maps: distance measured through the redshift

expansion

♦ The Doppler effect distorts the structures in the maps

Without Doppler effect isotropic structures

♦ 3D maps: distance measured through the redshift

expansion

♦ The Doppler effect distorts the structures in the maps

Without Doppler effect isotropic structures

♦ 3D maps: distance measured through the redshift _____

expansion

♦ The Doppler effect distorts the structures in the maps

Without Doppler effect isotropic structures

With Doppler effect squashed structures

♦ 3D maps: distance measured through the redshift _____

expansion

◆ The Doppler effect distorts the structures in the maps

isotropic str

Measurable by looking at the Without Dop probability of finding two pairs of galaxies at a given separation

pler effect structures

Velocity evolution

- ♦ It generates correlations between shapes affected by the same structures
- Detected by various surveys:
 CFHT, KiDS, DES

using General Relativity

$$\int_{\rm obs}^{\rm source} \frac{r_s - r}{2rr_s} \Delta_{\Omega}(\Phi + \Psi) \longrightarrow \delta \rho \text{ total matter}$$

Heymans et al. 2020 Abbott et al. 2022 & 2023

less clustered than predicted in Λ CDM (2-3 sigma tension)

Camille Bonvin EPS-HEP 2025 p. 22/34

Measuring the sum of potentials

distribution of lenses

Observer •

shape of background galaxies

slower growth of potentials at late time

p. 23/34

Measuring the sum of potentials

EPS-HEP 2025

Measuring the sum of potentials

Z

billion years ago Camille Bonvin

EPS-HEP 2025

Testing the relations between fields

- lacktriangle We have two measurements: V and $\Phi + \Psi$
 - Not enough to test all relations without assumption
- ◆ Test 1: assume that dark matter interacts only gravitationally and obeys the weak equivalence principle
 - Test the theory of gravity
- ♦ Test 2: assume the validity of General Relativity
 - Test for the presence of additional forces acting on dark matter

Test 1: modified gravity from DES and eBOSS

$$-k^2\Psi = 4\pi Ga^2\mu\delta\rho$$

lacktriangle Measure $V \rightarrow \inf \mu$

Euler equation & continuity equation

$$-k^2(\Phi + \Psi) = 4\pi Ga^2 \Sigma \delta \rho$$

 $-k^{2}(\Phi + \Psi) = 4\pi Ga^{2}\Sigma\delta\rho \qquad \bullet \Phi + \Psi \text{ from lensing} \longrightarrow \text{infer } \Sigma$

Abbott et al. **DES Collaboration 2023**

Test 2: fifth force acting on dark matter

$$\dot{\mathbf{V}} \cdot \mathbf{n} + \mathcal{H} \mathbf{V} \cdot \mathbf{n} + \partial_r \Psi = 0$$

In General Relativity
$$\Psi = \Phi = \frac{\Phi + \Psi}{2}$$

Constrained to be within -21% and 7% of the gravitational interaction strength

p. 28/34

Test 2: fifth force acting on dark matter

$$\dot{\mathbf{V}} \cdot \mathbf{n} + \mathcal{H}\mathbf{V} \cdot \mathbf{n} + \left[1 + \Gamma(z)\right] \partial_r \Psi = 0$$

In General Relativity
$$\Psi = \Phi = \frac{\Phi + \Psi}{2}$$

Constrained to be within -21% and 7% of the gravitational interaction strength

In the future: measure the distortion of time

◆ The redshift is not only affected by the expansion and by Doppler effects

Another contribution: gravitational redshift

Change in **photon frequency**

Sensitive to the time distortion Ψ

◆The effect is typically 100 times smaller than the Doppler effect

♦ It can be isolated by using its symmetries

In the future: measure the distortion of time

◆ The redshift is not only affected by the expansion and by Doppler effects

Another contribution: gravitational redshift

Change in photon frequency

Sensitive to the time distortion Ψ

- ◆The effect is typically 100 times smaller than the Doppler effect
- ♦ It can be isolated by using its symmetries

Distortion of time

- ♦ Already measured in clusters with SDSS/eBOSS
 - → Measurements planed with DESI & Euclid

Wojtak, Hansen & Hjorth 2011; Sadeh, Feng & Lahav 2015; Mpetha et al 2021; Rosselli et al 2023

◆ At large scale, first measurements expected from DESI and Euclid, at 5-10 sigma Beutler & Di Dio 2020; Saga et al. 2022; Bonvin et al. 2023; Lepori et al. 2024

♦ Measurements from SKA (2030) with 10-30% precision

Sobral Blanco & Bonvin 2023

Test the relations without assumption

 \bullet Test the relation between Φ and Ψ , independently of what dark matter is doing

$$\rightarrow$$
 Compare $\Phi + \Psi$ with Ψ

◆ Test for the presence of a **fifth force**, independently of the theory of gravity

$$\dot{\mathbf{V}} \cdot \mathbf{n} + \mathcal{H} \mathbf{V} \cdot \mathbf{n} + \left[1 + \Gamma(z) \right] \partial_r \Psi = 0$$

ightharpoonup Compare V with Ψ

Conclusion

- lacktriangle Until recently: excellent agreement with the ΛCDM model
- ♦ DESI: evidence for an evolving dark energy (plus H0 & kinematic dipole tensions)
- lacktriangle No deviations from the Λ CDM model in velocities
- lacktriangle Small deviations from the ΛCDM model in $\Phi + \Psi$
 - → DESI, Euclid and LSST will reduce the uncertainties
- ♦ DESI, Euclid and SKA will measure a new quantity: gravitational redshift
 - test for dark matter interactions
 - test for modifications of gravity

Backup slides

What do we measure?

Yoo et al 2010 Bonvin and Durrer 2011 Challinor and Lewis 2011

$$\Delta(z, \mathbf{n}) = b \cdot \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{V} \cdot \mathbf{n})$$

$$+ (5s - 2) \int_0^r dr' \frac{r - r'}{2rr'} \Delta_{\Omega} (\Phi + \Psi)$$

$$+ \left(1 - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{5s - 2}{r\mathcal{H}} - 5s + f^{\text{evol}} \right) \mathbf{V} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \dot{\mathbf{V}} \cdot \mathbf{n} + \frac{1}{\mathcal{H}} \partial_r \Psi$$

$$+ \frac{2 - 5s}{r} \int_0^r dr' (\Phi + \Psi) + 3\mathcal{H} \nabla^{-2} (\nabla \mathbf{V}) + \Psi + (5s - 2)\Phi$$

$$+ \frac{1}{\mathcal{H}} \dot{\Phi} + \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2 - 5s}{r\mathcal{H}} + 5s - f^{\text{evol}} \right) \left[\Psi + \int_0^r dr' (\dot{\Phi} + \dot{\Psi}) \right]$$

Distinguish between Euler and modified gravity

We simulate data in a model where dark matter interacts with dark energy and gravity is given by General Relativity

In practice

- We split the galaxies into two populations: bright and faint
- ♦ We measure the probability distribution of finding faint galaxies around bright ones → dipolar modulation

We can **isolate** gravitational redshift by fitting for a dipole

$$S^{\text{GBD}} = \int d^4 \sqrt{-g} \left[\frac{A^{-2}(\phi)}{16\pi G} R - \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) + \mathcal{L}_{\text{m}}(\psi_{\text{DM}}, \psi_{\text{SM}}, g_{\mu\nu}) \right].$$

$$S^{\text{CQ}} = \int d^4 \sqrt{-g} \left[\frac{1}{16\pi G} R - \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi) + \mathcal{L}_{\text{SM}}(\psi_{\text{SM}}, g_{\mu\nu}) + \mathcal{L}_{\text{DM}}(\psi_{\text{DM}}, A^2(\phi) g_{\mu\nu}) \right]$$

Generalized Brans-Dicke (GBD)

$$k^{2}\Phi = -4\pi G a^{2} \left(\rho_{b}\delta_{b} + \rho_{c}\delta_{c}\right) - \beta k^{2}\delta\phi \tag{4}$$

$$k^2(\Phi - \Psi) = -2\beta k^2 \delta \phi \tag{5}$$

$$\dot{\delta}_b + \theta_b = 0 \tag{6}$$

$$v_b + v_b = 0$$
 (0

$$\dot{\theta}_b + \mathcal{H}\theta_b = k^2 \Psi \tag{7}$$

$$\dot{\delta}_c + \theta_c = 0 \tag{8}$$

$$\dot{\theta}_c + \mathcal{H}\theta_c = k^2 \Psi \tag{9}$$

$$\delta\phi = -\frac{\beta(\rho_c\delta_c + \rho_b\delta_b)}{m^2 + k^2/a^2} \tag{10}$$

$$\Box \phi = V_{,\phi} + \beta(\rho_c + \rho_b) \equiv V^{\text{eff}}_{,\phi}$$
 (11)

$$\ddot{\delta}_m + \mathcal{H}\dot{\delta}_m = 4\pi G a^2 \rho_m \delta_m \left[1 + \frac{2\tilde{\beta}^2 k^2}{a^2 m^2 + k^2} \right]$$
(12)

Coupled Quintessence (CQ)

$$(4) \quad k^2 \Phi = -4\pi G a^2 \left(\rho_b \delta_b + \rho_c \delta_c \right) \tag{13}$$

(5)
$$k^2(\Phi - \Psi) = 0$$
 (14)

$$(6) \quad \dot{\delta}_b + \theta_b = 0 \tag{15}$$

$$(7) \quad \dot{\theta}_b + \mathcal{H}\theta_b = k^2 \Psi \tag{16}$$

$$(8) \quad \dot{\delta}_c + \theta_c = 0 \tag{17}$$

$$(9) | \dot{\theta}_c + (\mathcal{H} + \beta \dot{\phi})\theta_c = k^2 \Psi + k^2 \beta \delta \phi$$

$$(18)$$

(10)
$$\delta\phi = -\frac{\beta\rho_c\delta_c}{m^2 + k^2/a^2} \tag{19}$$

$$\Box \phi = V_{,\phi} + \beta \rho_c \equiv V^{\text{eff}}_{,\phi} \tag{20}$$

$$\Box \phi = V_{,\phi} + \beta(\rho_c + \rho_b) \equiv V^{\text{eff}}_{,\phi}$$

$$(11) \qquad \Box \phi = V_{,\phi} + \beta \rho_c \equiv V^{\text{eff}}_{,\phi}$$

$$\ddot{\delta}_m + \mathcal{H}\dot{\delta}_m = 4\pi G a^2 \rho_m \delta_m \left[1 + \frac{2\tilde{\beta}^2 k^2}{a^2 m^2 + k^2} \right]$$

$$(12) \qquad \ddot{\delta}_m + \mathcal{H}\dot{\delta}_m = 4\pi G a^2 \rho_m \delta_m \left[1 + \frac{2\tilde{\beta}^2 k^2}{a^2 m^2 + k^2} \left(\frac{\rho_c}{\rho_m} \right)^2 \left(\frac{\delta_c}{\delta_m} \right) \right]$$

$$(21)$$