Recherche du partenaire supersymétrique du quark bottom. Études sur l'énergie transverse manquante

Samuel Calvet Sous l'encadrement d' Éric Kajfasz et d'Arnaud Duperrin 25 septembre 2006

La supersymétrie

- Extension du Model Standard qui apporte des solutions aux problèmes de hiérarchie et d'unification des interactions
- Dans les modèles avec conservation de la R-parité (hypothèse de cette analyse), les particules supersymétriques sont produites par paires et la plus légère d'entre elles (LSP) est stable
- On se place dans le cadre de certains modèles où le neutralino χ₁⁰ (particule supersymétrique partenaire des bosons de Higgs, du Z⁰ et du photon) est la LSP

La supersymétrie

 La supersymétrie fournit 2 partenaires scalaires à chaque fermion (quark ou lepton)

Mass

$$\underbrace{\tilde{g}}_{\tilde{d}_{R},\tilde{u}_{R}} \underbrace{\tilde{c}_{L},\tilde{s}_{L}}_{\tilde{s}_{R},\tilde{c}_{R}} \underbrace{\tilde{b}_{2},\tilde{t}_{2}}_{\tilde{b}_{1}} \\
\underbrace{\tilde{\chi}_{3}^{0},\tilde{\chi}_{1}^{0}}_{\tilde{c}_{R}} \underbrace{\tilde{\chi}_{3}^{t}}_{\tilde{c}_{R}} \underbrace{\tilde{\chi}_{3}^{t}}_{\tilde{c}_{R}} \underbrace{\tilde{\chi}_{3}^{t}}_{\tilde{c}_{R}} \underbrace{\tilde{\chi}_{3}^{t}}_{\tilde{c}_{R}} \underbrace{\tilde{\chi}_{3}^{t},\tilde{\chi}_{1}^{t}}_{\tilde{c}_{R},\tilde{c}_{R}} \underbrace{\tilde{v}_{\mu},\tilde{\mu}_{L}}_{\tilde{c}_{R},\tilde{c}_{L},\tilde{v}_{T}} \underbrace{\tilde{v}_{2},\tilde{v}_{T}}_{\tilde{c}_{L},\tilde{v}_{T}} \\
\underbrace{\tilde{\chi}_{3}^{0},\tilde{\chi}_{1}^{0}}_{\tilde{c}_{R},\tilde{c}_{R}} \underbrace{\tilde{v}_{\mu},\tilde{\mu}_{L}}_{\tilde{\mu}_{R}} \underbrace{\tilde{\tau}_{2},\tilde{v}_{T}}_{\tilde{\tau}_{1},\tilde{L}} \underbrace{h^{0}}_{\tilde{c}_{R}} \underbrace{h^{0}}_{\tilde{c}_{R},\tilde{c}_{R}} \underbrace{\tilde{v}_{\mu},\tilde{\mu}_{L}}_{\tilde{c}_{R},\tilde{c}_{R}} \underbrace{\tilde{v}_{2},\tilde{v}_{T}}_{\tilde{c}_{1},\tilde{c}_{L}} \underbrace{h^{0}}_{\tilde{c}_{R},\tilde{c}_{R}} \underbrace{\tilde{v}_{2},\tilde{v}_{T}}_{\tilde{c}_{L},\tilde{c}_{L},\tilde{c}_{L},\tilde{c}_{L}} \underbrace{\tilde{v}_{2},\tilde{v}_{T}}_{\tilde{c}_{L},\tilde{c}_{L$$

Pour de grandes valeurs de tanβ (rapport des valeurs dans le vide des champs de Higgs) le s-bottom le plus léger peut avoir une masse une masse relativement faible (donc accessible au Tevatron)

 $BR(\tilde{b} \rightarrow b \chi_1^0) = 100 \%$ indétectable \rightarrow énergie manquante

Le détecteur DØ au Tevatron

~DØ

- Collisions protons-antiprotons
- Énergie dans le centre de masse : 1.96TeV

Chambres à muons ----->

Calorimètre ·

Trajectographe :

- pixels en silicium
- fibres scintillantes

Données prises sur DØ et analyses liées a la thèse

Études sur les triggers

Études sur l'énergie transverse manquante (MET) au niveau 1 du système de déclenchement

La MET d'un point de vue on-line

Études faites au démarrage du RunIIb

• Le Run IIb a commencé début juin 2006

87%

Rapide montée en puissance

Améliorations apportées :

entre autres :

- Couche de silicium supplémentaire pour de détecteur de traces sur un nouveau tube à vide
- Nouveau système de déclenchement, avec le niveau 1 lié au calorimètre totalement revu.

nouvelle variable au niveau 1: la MET

<u>Système de déclenchement</u> <u>du run IIb</u> (3 niveaux)

La MET au niveau 1 des triggers

- Seules les tours de triggers du calorimètre du niveau 1 de plus de 1GeV sont utilisées
- Le seuil de 1GeV permet de réduire notablement le bruit (collisions molles et bruit électronique)
- L1MET= $||\Sigma \vec{E}_T(tours)||$

Tours de triggers

=2x2 tours de cellules projectives off-line

10

Rôle lors du «commissioning»

- Valider le plus rapidement possible le code du firmware de la L1MET
 - Émulation du firmware dans
 l'environnement de travail de DØ

Rôle lors du «commissioning»

- Valider le plus rapidement possible le code du firmware
- Étudier les impacts des différentes calibrations du niveau 1 du calorimètre
 - calibration en énergie des tours L1
 - calibration des piédestaux des tours L1
- émulation des changements

Rôle lors du «commissioning»

- Valider le plus rapidement possible le code du firmware
- Étudier les impacts des différentes calibrations du niveau 1 du calorimètre
- Mise en place d'outils pour les analyses futures qui utiliseront la L1-MET
 - Paramétrisation des courbes d'efficacité (turn-on)

- Validation sur une analyse $W \rightarrow e_V$ (une des 1eres avec les nouvelles données)

Paramétrisation/validation de la L1MET

- Besoin d'une variable off-line qui permette de répercuter les efficacités des triggers dans le MC
- → OFFMET: MET calculée à partir des cellules off-line de la même façon qu'au L1

Paramétrisation/validation de la L1MET

 Évolutions des constantes de la fonction d'ajustement en fonction des calibrations successives sont prédites et/ou confirmée par des simulations

Outils pour les analyses futures

 Peut-on propager l'effet d'un trigger sur du MC à partir d'une paramétrisation venant des données?

Masse transverse du W en électron, 1eres données du Run IIb (noir) et MC (rouge)

La OFFMET est similaire dans les données et le MC (dans l'échantillon W→enu)

→Paramétrisation applicable sur le MC

L1MET - conclusion

- L1MET certifiée
- Outils développés pour son utilisation
- Trigger semble particulièrement intéressant pour diverses analyses (recherche de Higgs, mais aussi mesure de la masse transverse du W)
- dØ-note en cours de rédaction

La recherche du s-bottom

Analyse sur le 1er lot de données du Run IIa ~ 310pb⁻¹

Cadre de l'analyse

- Production des s-b quasiment indépendante du model
- Recherche de 2 quarks b + MET:

L'analyse dépend fortement du point étudié:

- Faible masse du s-b
 - Jets de bas pT, faible MET
 - Faible efficacité des triggers
 - Bruit de fond important (électrofaible, multijet=QCD)
 - Grande section efficace

Cadre de l'analyse

- Production des s-b quasiment indépendante du model
- Recherche de 2 quarks b + MET:

L'analyse dépend fortement du point étudié:

- Faible masse du s-b (jets de bas pT, faible MET, faible efficacité des triggers, bruit de fond, important, grande section efficace)
- Grande masse du s-b
 - Jets de grand pT, grande MET
 - Petite section efficace (~0.1 pb)

Cadre de l'analyse

- Production des s-b quasiment indépendante du model
- Recherche de 2 quarks b + MET:
- Faible masse du s-b

(jets de bas pT, faible MET, faible efficacité des triggers, bruit de fond, important, grande section efficace)

Grande masse du s-b

(jets de grand pT, grande MET, petite section efficace)

• Point de référence m(sb)=140GeV, m(χ_1^0)=80GeV

20000

Bruits de fond

- <u>Philosophie de l'analyse</u>: se placer dans une région avec très peu de QCD, puis faire du b-tagging —> la QCD devient négligeable (et la limite est conservative)
- Fonds électrofaibles:

	σ (pb) (NLO)	
$W \rightarrow \tau v + \geq 1jet$	1136	
$W \rightarrow (e/\mu)_V + \ge 2jets$	621	
$Z \rightarrow vv + \ge 2jets$	182	
Dibosons (WW,WZ,ZZ)	18	
tt	4	

topologie similaire
 à celle du signal

grandes sections
 efficaces + mauvais
 étiquetage des jets
 → ne les élimine pas
 tous

Présélection

Qualité des données:

- bons runs, pas de bruit dans les détecteurs
- |z| < 60cm = acceptance du détecteur de vertex Triggers

Présélection

2 bons jets :

- pT(jet1) > 30GeV/c
- pT(jet2) > 15GeV/c
- confirmation des jets 1 et 2 par des traces

Topologie :

- $||\Sigma pT (jet_i)|| > 40GeV/c$
- Δφ (jet₁, jet₂) < 165°

efficace contre les événements di-jets

- MET > 60 GeV

MET après la présélection

Sélection (séquentiel)

Sélection (séquentiel)

Sélection

11) 2 ou 3 jets

Sélection: nombre de traces isolées

- Les jets issus de désintégrations de τ (un bruit de fond important) sont moins « volumineux » que les jets de quarks
- \rightarrow On rejette les traces ou les groupes <u>de traces isolés</u>

trace de pT>5GeV/c

S'il n'y a pas de traces dans le cône « troué » (en bleu)

 \rightarrow le jet est « fin » (donc probablement issu d'un τ)

l'événement est rejeté

Après la sélection

		events remaining				
	Criterion	Data	SM (no QCD)	Signal		
Presel :	Table II $+$ Preselection cuts	40886	11266 ± 670	161 ± 6		
C1:	$E_T > 60 { m GeV}/c$	16279	8274 ± 473	129 ± 5		
C2:	1st leading jet $p_T > 40 \text{ GeV}/c$	15643	7759 ± 438	125 ± 5		
C3:	2nd leading jet $p_T > 20 \text{ GeV}/c$	14095	6834 ± 392	114 ± 4		
C4:	$ \eta_{ m jet1}^{ m det} < 1.1$	9732	5345 ± 303	102 ± 4		
C5:	$ \eta_{ m iet2}^{ m det} < 2.0$	9653	5278 ± 299	101 ± 4		
C6:	$35^{\circ} < \Delta \phi_{min}(E_T, any \ good \ jet) < 120^{\circ}$	3149	2705 ± 164	69 ± 3		
C7:	$\Delta \phi_{max}(E_T, any \ good \ jet) < 175^{\circ}$	2783	2369 ± 143	64 ± 2		
C8:	Iso. EM veto $p_{\rm T} > 5 \ {\rm GeV}/c$	2059	1884 ± 97	61 ± 2		
C9:	Iso. Muon veto $p_T > 5 \text{ GeV}/c$	1809	1471 ± 73	61 ± 2		
C10:	Iso. Track veto $p_T > 5 \text{ GeV}/c$	756	622 ± 26	46 ± 2		
C11 :	Nj = 2, 3	671	556 ± 23	43 ± 2		

(le bruit de fond multijet n'est pas simulé = ~ 109 événements)

Après la sélection

32

L'étiquetage des jets de quarks b

 Utilisation d'un algorithme qui recherche les traces à grand paramètre d'impact (IP)

Vertex primaire

<u>Efficacité d'étiquetage d'un</u> <u>jet en fonction de son</u> <u>énergie (point Medium)</u>

Après le b-tagging

Données Électrofaible QCD (estimation) Signal (140, 80) 22

4

 21.5 ± 0.7

 23.1 ± 0.9

 ± 2

40 20 Events GeV Data Data single b-tag single b-tag 18 35 Signal Signa (UltraTight) (UltraTight) 9 SingleTop SingleTop 16 Wcj 30 Wcj Events / 14 Ζττj Ζττί W tv bb Wtvbb 25 12 Zvvbb Zvvbb tī tŦ 10 20 WW/WZ/ZZ WW/WZ/ZZ Wτj Wτj 8 15 Ζννjj Zvvjj -- Systematics 6 Systematics 10 4 5 2 0 50 2 0 250 300 ∉_⊤ (GeV) 150 200 5 8 9 100 0 2 3 6 10 1 7 number of jets 10 10 Events / 10 GeV Events / 5 GeV Data Data single b-tag single b-tag 9 9 Sianal Signal (UltraTight) (UltraTight) SingleTop SingleTop 8 8 8 7 6 5 4 3 2 1 0 0 Wcj Wcj 7 6 5 4 3 Ζττί Ζττj Wtvbb Wtvbb Zvvbb Zvvbb tī tī WW/WZ/ZZ WW/WZ/ZZ Wτi Wτj Ζννjj Zvvjj Systematics Systematics 2 2 1 0L 0 $\begin{array}{ccc} 200 & 250 & 300 \\ \text{leading jet } P_{T} \text{ (GeV)} \end{array}$ 50 100 150 20 40 60

Erreurs systématiques

•	« Jet Energy	Scale » relative (1)	SM	+3.5/-5.8%
			signal	+4.0/-7.4%
•	« Jet Energy	Scale » relative (2)	SM	-6.2%
			signal	-2.8%
•	Luminosité			6.5%
•	Sections effic	caces des bruits de fond	(NLO)	15%
•	Effet des pdf	sur l'acceptance du sigr	nal	+7.0/-5.7%
•	b-tagging	(UltraTight)	SM	+9.6/-9.5%
			signal	+7.4/-7.6%

Exclusion

Pas d'excès observé

On peut donc exclure une région de l'espace des paramètres:

- Détermination de la section efficace exclue à 95% pour un point signal donné
- Comparaison avec la section efficace théorique

Recherche du s-bottom

- 1ere analyse du Run II sur ce sujet au Tevatron
- Des étapes de l'analyse n'ont pas été présentées aujourd'hui:
- Optimisation des coupures pour les grandes/faibles masses
- Efficacité données vs MC
- Comparaison double/simple b-tagging

Conclusion

Études sur l'Énergie transverse manquante (MET) - MET on-line (dØ-note 5198) ✓ Analyse

- 1er lot de données du Run IIa soumis à *Physical Review Letter*
- lot entier du Run IIa (1.2 fb⁻¹)

commence maintenant

Dépendance de la topologie en fonction du point (1)

$m_{\tilde{b}_1}[{ m GeV}/c^2]$	90	100	110	120	130	140	150	155	160	165	175	185	195
$m_{\tilde{\chi}^0_1}[\text{GeV}/c^2]$													
0									92.3	94.8	108.3	107.4	115.2
									107.5	110.6	116.1	121.8	126.6
									58.3	59.9	62.0	65.7	67.0
35										91.0			
										106.4			
										58.5			
40								83.6	86.1				
								97.1	100.7				
								53.0	55.1				
60	32.8	41.6					75.3	77.0					
	38.4	46.6					86.0	89.0					
	24.7	28.8					47.5	48.9					
65		36.6							77.7				
		43.1							89.5				
		27.1						_	49.6				
70		33.5	41.7	49.0	55.3	62.6	71.8	72.4					
		39.5	48.0	56.8	64.4	72.6	80.0	83.7					
		25.0	29.2	33.4	36.9	40.6	44.7	46.4					
75				45.9	52.1		66.5						
				52.6	61.5		77.1						
				31.5	36.1	NO.0	43.1						
78						58.9							
						68.0							
						38.9							
80						57.1							
						65.4							
						37.6							
82					49.9								
					57.0								
100					33.3	49.0							
100						43.0							
						49.8							
						29.8							I

Dépendance de la topologie en fonction du point (2)

Toute les autres coupures étant identiques

$(m_{\tilde{b}}, m_{\tilde{\chi}_1^0})$ in GeV/ c^2	(180,90)	(215,0)
C1: ₽ _T [GeV]	60	80
C2: jet 1 p_T [GeV]	70	100
C3: jet 2 p_T [GeV]	40	50
C6: $\Delta \Phi_{min}(\not\!\!E_T, any \ good \ jet) < [\circ]$	135	145
data	7	0
SM	8.9 ± 0.3	3.2 ± 0.2
signal	9.4 ± 0.3	4.6 ± 0.1

Incertitudes systématiques sur... (1)

- Luminosité
- « Jet Energy Scale » relative (1)
- « Jet Energy Scale » relative (2)
- Interaction JES relative/b-tagging

6.5%SM+3.5/-5.8%signal+4.0/-7.4%SM-6.2%signal-2.8%SM2.2%signal1.7%

Incertitudes systématiques sur... (2)

	Sections efficaces des bruits de	15%		
	Effet des pdf sur l'acceptance	du signal	+7.0/-5	7%
	Statistiques sur le MC	SM	jusqu'à	10%
(varies selon les coupures)	signal	jusqu'à	5%
	Identification des jets			1%
	Jet Energy smearing			4%
	Veto sur les mauvais jets			1%
	Confirmation des jets par les t	races		1%

	Incertit	udes systéma	atiques su	ur (3)
•	Identification Efficacité de Δφ _{max} (jets, N Mauvaise ide	n des électrons et des n reconstruction des trac MET) entification du vertex pr	nuons es isolées imaire	5% 5% 2% 2%
•	b-tagging	(UltraTight)	SM signal	+9.6/-9.5% +7.4/-7.6%
•	Taggabilité	(Medium-ExtraLoose)	SM & signal SM signal	+15 /-13 % 4% 3%
•	Tagging des Triggers	jets de τ		5% 5%