Fission dynamics within state-of-the-art Langevin approach

Coordinators: K. Mazurek, C. Schmitt

The Niewodniczanski Institute of Nuclear Physics - PAN, Kraków, Poland Institut Pluridisciplinaire Hubert Curien, 23 Rue du Loess, 67037 Strasbourg Cedex 2, France

November 29, 2024

Outline

Thanks to A. Maj, G. Casini

э

イロト イポト イヨト イヨト

Stochastic approach

Dynamical effect

path from equilibrium to scission slowed-down by the nuclear viscosity
description of the time evolution of the collective variables like the evolution of Brownian particle that interacts stochastically with a "heat bath".

• Monte Carlo method for choosing the shape, initial angular momentum, type and energy of emitted particles....

Coupling to the evaporation

Pre and post- scission emission of neutrons, protons, α and γ .

Ingredients

Inertia $([M^{-1}(\vec{q})]_{ij})$; Friction $(\gamma_i(t))$ and fluctuation (g_{ik}) Macroscopic potential $(V(\vec{a}, K) \rightarrow F(\vec{a}, K) = V(\vec{a}, K) - \mathbf{a}(\mathbf{\hat{o}})T^2)$

Langevin equations

$$\frac{dq_i}{dt} = \sum_j [M^{-1}(\vec{q})]_{ij} p_j$$

$$\frac{dp_i}{dt} = -\frac{1}{2} \sum_{j,k} \frac{d[M^{-1}(\vec{q})]_{jk}}{dq_i} p_j p_k - \frac{dF(\vec{q}, K)}{dq_j}$$

$$-\sum_{j,k} \gamma_{ij}(\vec{q})[M^{-1}(\vec{q})]_{jk} p_k + \sum_j g_{ij}(\vec{q})\Gamma_j(t)$$
Vpot. MeV
Vpot.

Katarzyna Mazurek, IFJ - PAN

4DLangevin

November 29, 2024

Model Ingredients

Energies

• Potential energy in deformation space e.g: FRLDM + Wigner or LSD + Congruence

$$\begin{split} \mathsf{E}_{\mathsf{lsd}}(\mathsf{q}) &= \mathsf{b}_{\mathsf{vol}}\{1 - \kappa_{\mathsf{vol}}\mathsf{I}^2\}\,\mathsf{A} + \mathsf{b}_{\mathsf{surf}}\{1 - \kappa_{\mathsf{surf}}\mathsf{I}^2\}\,\mathsf{A}^{2/3}\mathsf{B}_{\mathsf{surf}}(\mathsf{q}) \\ &+ \mathsf{b}_{\mathsf{curv}}\{1 - \kappa_{\mathsf{curv}}\mathsf{I}^2\}\,\mathsf{A}^{1/3}\mathsf{B}_{\mathsf{curv}}(\mathsf{q}) + \frac{3}{5}\mathsf{e}^2\frac{\mathsf{Z}^2}{\mathsf{r}_0^{\mathsf{ch}}\mathsf{A}^{1/3}}\mathsf{B}_{\mathsf{Coul}}(\mathsf{q}) \end{split}$$

I = (N - Z)/A

• Rotational energy:

 $E_{rot}(q, I, K) = \frac{\hbar^2 I(I+1)}{2J_{\perp}(q)} + \frac{\hbar^2 K^2}{2J_{eff}(q)} \text{ where } J_{eff}^{-1} = J_{\parallel}^{-1} - J_{\perp}^{-1} - \text{the}$

rigid-body moments of inertia.

• The friction parameter controlling coupling between K coordinate and the heat bath. T. Dosing, J. Randrup, Nucl. Phys. A 433,215; J. Randrup, Nucl.Phys. A 383, 468

$$\gamma_{\mathcal{K}} = \frac{1}{R_{N}R_{cm}\sqrt{2\pi^{3}n_{0}}} \frac{J_{\parallel}|J_{eff}|J_{R}}{J_{\perp}^{3}}$$

where R_N - neck radius, R_{cm} - distance between the center of the nascent fragments, $n_0{=}0.0263~{\rm MeV}$ zs fm $^{-4}$ - the bulk flux in standard nuclear mass and $J_R=M_0R_{cm}^2/4$ for reflection symmetric shape.

Collective coordinates(4D)

• Description of the nuclear shape by elongation, neck and asymmetry – 3 parameters.

• K - spin about the fission (symmetry) axis

"Fission-fragment distributions within dynamical approach" K. M., P. N. Nadtochy, E. G. Ryabov, G. D. Adeev, Eur. Phys. J. A, 53 (2017) 79E

イロト 不得 トイヨト イヨト 二日

Energy Models study: LSD or FRLDM, Congruence

PHYSICAL REVIEW C 84, 014610 (2011)

Critical insight into the influence of the potential energy surface on fission dynamics

EPJ Web of Conferences 17, 16006 (2011) DOI: 10.1051/epjconf/20111716006 © Owned by the authors, published by EDP Sciences, 2011

Influence of the potential energy landscape on the fission dynamics

K. Mazurek^{1,2, a}, J.P. Wieleczko¹, C. Schmitt¹, and P. N. Nadtochy³

The change of the fission fragment mass distribution due to different PES taken to solve Langevin equations PHYSICAL REVIEW C 88, 054614 (2013)

Examining fine potential energy effects in high-energy fission dynamics

K. Mazurek,^{1,*} C. Schmitt,² P. N. Nadtochy,³ M. Kmiecik,¹ A. Maj,¹ P. Wasiak,¹ and J. P. Wieleczko²

Vol. 44 (2013)

ACTA PHYSICA POLONICA B

FISSION FRAGMENT MASS DISTRIBUTION AS A PROBE OF THE SHAPE-DEPENDENT CONGRUENCE ENERGY TERM IN THE MACROSCOPIC MODELS^{*} **

K. MAZUREK^a, C. SCHMITT^b, P.N. NADTOCHY^c, A. MAJ^a P. WASIAK^a, M. KMIECIK^a, B. WASILEWSKA^a

Exp: Y. Futami, et al., Nucl. Phys. A607, 85 (1996)

Katarzyna Mazurek, IFJ - PAN

4DLangevin

Other works

EPJ Web of Conferences 62, 02002 (2013) DOI: 10.1051/epiconf/20136202002 © Owned by the authors, published by EDP Sciences, 2013

Pre- and post- scission particle emission in 3D Langevin calculations with various macroscopic potentials

K. Mazurek^{1,a}, P.N. Nadtochy², C. Schmitt³, P. Wasiak¹, M. Kmiecik¹, A. Maj¹, E. Bonnet³, A. J. Frankland³, D. Gruyer³, and J.-P. Wieleczko³

PHYSICAL REVIEW C 100, 064606 (2019)

New procedure to determine the mass-angle correlation of quasifission

C. Schmitt,1,* K. Mazurek 0,2 and P. N. Nadtochv3

Katarzyna Mazurek, IFJ - PAN

4DLangevin

November 29, 2024

イロト イポト イヨト イヨト

Importance

- Statistical models of decay
- Oynamical macroscopic models
- Astrophysics

Level Density Formulas

- Mass dependent LD a(A) = αA
- Deformation depedent (Ignatuk) $a(A) = \alpha A + \beta A^{2/3}$

(N-Z) dependent
$$a(A, Z) = \alpha A / exp[\beta(N - Z)^2]$$

- $(Z Z_0)$ dependent $a(A, Z) = \alpha A / exp[\gamma (Z - Z_0)^2]$ $Z_0 = 0.5042A / (1 + 0.0073A^{2/3})$
- Energy dependent (Reisdorf) $a(U, A, Z) = a(A) * [1 + dWg(Z, N) * f(U_{cor})/(U_{cor})]$ $f(x) = 1 - exp(-\gamma * x)$

Copyright 1972. All rights reserved

NUCLEAR LEVEL DENSITIES' 5531

J. R. HUIZENGA

Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York

AND

L. G. MORETTO

Lawrence Berkeley Laboratory, University of California, Berkeley, California

CONTENTS

INTRODUCTION.	427
THEORETICAL OUTLINE OF THE METHODS AND MODELS	
EMPLOYED IN THE EVALUATION OF LEVEL DENSITIES	428
METHODS OF CALCULATION	429
The combinatorial method	429
The partition function method	430
NUCLEAR MODELS,	431
System of noninteracting fermions.	431
The equidistant model	434
Level densities for more complex sets of single particle levels.	436
Level densities from the shell model	437
System of interacting fermions.	439
Inclusion of collective degrees of freedom	442
EXPERIMENTAL SOURCES OF INFORMATION ON LEVEL DENSITIES	442
NEUTRON RESONANCES.	444
CHARGED-PARTICLE RESONANCES	446
INELASTIC SCATTERING AND NUCLEAR REACTIONS TO RESOLVED LEVELS.	447
SPECTRUM OF EVAPORATED PARTICLES.	450
EXCITATION FUNCTIONS OF ISOLATED LEVELS.	455
ERICSON FLUCTUATION WIDTHS.	456
COMPOUND NUCLEUS LIFETIME AND LEVEL DENSITY FROM THE BLOCKING EFFECT	458
EXCITATION FUNCTIONS	458
SPIN DISTRIBUTION OF THE NUCLEAR LEVEL DENSITY.	458
YRAST LEVELS	460

INTRODUCTION

< □ > < □ > < □ > < □ > < □ > < □ >

Importance

- Statistical models of decay
- Dynamical macroscopic models
- Astrophysics

Level Density Formulas

- Mass dependent LD $a(A) = \alpha A$
- Deformation depedent (Ignatuk) $a(A) = \alpha A + \beta A^{2/3}$
- (N-Z) dependent $a(A, Z) = \alpha A / exp[\beta (N Z)^2]$

• $(Z - Z_0)$ dependent $a(A, Z) = \alpha A / exp[\gamma (Z - Z_0)^2]$ $Z_0 = 0.5042A / (1 + 0.0073A^{2/3})$

• Energy dependent (Reisdorf) $a(U, A, Z) = a(A) * [1 + dWg(Z, N) * f(U_{cor})/(U_{cor})]$ f(x) = 1 - exp(-gamma * x)

Light system

Heavy system

Previous works

- Are the level densities for r- and rp-process nuclei different from nearby nuclei in the valley of stability? S.I. Al-Quraishi et al. PRC 63,065803
- Level densities for 20 ≤A ≤110 S.I. Al-Quraishi et al. PRC 67,015803
- Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation R. J. Charity and L. G. Sobotka, PRC 71, 024310
- Compound nucleus evaporative decay as a probe for the isospin dependence of the level density
 R. Moro et al. EPJA 48,159

	Partial n	ultiplicity	Total multiplicity		
	Protons	Alphas	Protons	Alphas	Neutrons
Exp	1.21 ± 0.18	0.40 ± 0.06	1.79 ± 0.36	0.76 ± 0.15	
NoIso	1.47	0.46	2.17	0.88	2.31
N - Z	1.24	0.47	1.89	0.90	2.57
$Z - Z_0$	2.17	0.61	3.08	1.17	0.68

Fig. 4. Experimental and calculated proton spectra in coincidence with the PPACdown. The laboratory angles of the detectors with respect to the beam direction are indicated in the figure.

Previous work

 Isospin dependence of nuclear level density at A = 120 mass region
 R. Shil et al., PLB 831, 137145.

Katarzyna Mazurek, IFJ - PAN

4DLangevin

(日) (同) (日) (日)

Fusion-Fision - Validation of the method

Fusion-Fision - Verified reactions

	CN	Sym. Fiss.				
²⁵⁶ Fm, E*=108 MeV	²⁵⁶ Fm	¹²⁶ Sn				
a _{N-Z}	56	26				
$a_Z - Z_0$	0.27	-3.68				
²⁵² Fm, E*=150 MeV	²⁵² Fm	¹²² Sn				
a _{N-7}	52	22				
a7_70	1.6	-2.15				
²⁰⁵ Fr. E*=79 MeV	²⁰⁵ Fr	¹⁰² Tc				
a <i>N</i> _7	31	16				
a7_70	4.56	-1.36				
²¹⁵ Fr, E [*] =113 MeV a_{N-Z} a_{Z-Z_0}	²¹⁵ Fr 41 1.1	¹⁰⁵ Tc 19 -2.54				
²⁴⁸ Cf, E*=55 MeV	²⁴⁸ Cf	¹²³ In				
aN-Z	52	25				
$a_Z - Z_0$	0.92	-3.53				
²⁴⁸ Cf, E*=83 MeV a_{N-Z} a_{Z-Z_0}	²⁴⁸ Cf 52 0.92	¹²² In 24 -3.15				

Katarzyna Mazurek, IFJ - PAN

November 29, 2024

4. Current study - Nuclear level density

Nuclear level density - Testing both side of stability line

The ${}^{x}Ca + {}^{y}Pb$ collisions which populate the No chain by fusion is very good candidates, since several projectile-target combinations can be readily accessible at current accelerator facilities. The further enhancement of this set of reactions with ${}^{22}Ne + {}^{238}U$ involving a radioactive beam that is currently available. The PARIS+VAMOS detection system ca be used

Katarzyna Mazurek, IFJ - PAN

November 29, 2024

a) Angular momentum of fission fragments (with J. Randrup)

Useful <u>framework</u> for discussion of fission fragment angular momenta:

Normal modes:

Fission populates several distinct *rotational modes* whose presences reflect the physical *mechanisms* generating the angular momenta of the fragments

Generation of fission fragment angular momenta by <u>nucleon exchange</u>:

 $t_{wrig} < t_{fiss} \approx t_{bend} < t_{twst} << t_{tilt}$ Wriggling will reach equilibrium

Bending probably has some presence; it increases with the mass asymmetry

Twisting is unlikely to play a major role; it grows more prominent with excitation

Jørgen Randrup	Zakopane 2024	26	596
Katarzyna Mazurek, IFJ - PAN	4DLangevin	November 29, 2024	13 / 19

a) Angular momentum of fission fragments

5. Plans

a) Angular momentum of fission fragments

5. Plans

Pb + Pb Collision - Dynamic Evolution of Spectator

The excited Compound Nuclei (eight) have been evaluated in 4D Langevin code to estimate the evaporation and fission channels. We assume $\frac{Z_S}{A_S} = \frac{Z_{Pb}}{A_{Pb}}$

Spectator Mass

Evaporation Residue charge distribution

Fission Fragment charge distribution

K. M., A. Szczurek, C. Schmitt, P.N. Nadtochy, Phys. Rev. C, 97 (2018) 024604

Katarzyna Mazurek, IFJ - PAN

5. Plans

Pb + Pb Collision - Dynamic Evolution of Spectator

Impact parameter b=10.5 fm

following predictions of A. Rybicki and A. Szczurek, PRC75 (2007)

Katarzyna Mazurek, IFJ - PAN

b) Fission in ultrarelativistic collisions

Nuclear processes in ultrarelativistic, ultraperipheral Pb+Pb collisions

P. Jucha, M. Klusek-Gawenda, A. Szczurek, M. Ciemala, and K. Mazurek, arXiv:2411.17865

(I) < (II) <

Summary

- The fission description with Langevin type transport equation solving gives good estimation of various observables: mass, charge, TKE, angular distributions, emitted particles multiplicities and spectra and so on.
- The study of the correlation between mass and angular distributions allows to distinguish between fission and quasifission reactions.
- Four different prescriptions of *ã* have been implemented in the code, and their predictions for a number of reactions and the pre- and post-scission neutron multiplicity observables were analyzed.
- A single fission reaction makes available simultaneously two observables, viz. M_{pre} and M_{post}, which scan different regions of the (N , Z) phase space with the CN and fragments, respectively.
- Such analytical parameterizations remain of valuable guidance for fundamental theory, in particular for probing the relative evolution with a specific quantity, like e.g. here the isospin.
- The angular momentum of the fission fragments will be estimated, including the effects of exotic rotation on the path from the saddle to the scission point.
- The new field of interest for fission fragment calculations is the deexcitation of spectators in ultrarelativistic ultraperipheral Pb+Pb collisions.

3

19/19

イロト 不得 トイヨト イヨト