IRP COPIGAL project No. 6

MAGNETIC MOMENTS OF SHORT-LIVED STATES USING TDRV TECHNIQUE

Georgi Georgiev (IJC Lab, Orsay, France) Joa Ljungvall (IPHC, Strasbourg, France) Konstantin Stoychev (IJC Lab, Orsay, France)

<u>Natalia Cieplicka-Oryńczak</u> (IFJ PAN, Kraków, Poland) Bogdan Fornal (IFJ PAN, Kraków, Poland)

Shell-model of atomic nucleus

The nuclear magnetic dipole moment is sensitive to the single-particle structure!

Magnetic dipole moment

The **magnetic moment** is a property of a magnet that interacts with an externally applied magnetic field to generate a mechanical moment. Spinning charge generates the magnetic field, so spinning protons act like small magnets.

In particular, the **g factor** reveals which single particle orbits are occupied by the valence nucleons and can be used as a rigorous probe for the proton-neutron character of the nuclear states.

Measurement of magnetic moments of excited states

Nuclear spin gives rise to nuclear magnetic moment which leads to magnetic interaction with environment.

Larmor frequency

1) Excited nuclear states de-excite through gamma-ray emission

Randomly oriented nuclear spins:
) = const

Spin-aligned nuclear ensemble:

 ω_L \leftarrow)

2) Half-lives of excited states span multiple orders of magnitude

 Period of precession must be similar to the half-life of the state of interest

 $T_{1/2} \approx \text{ns, } \mu \text{s} \ B \approx [T] \quad \text{Electromagnets}$ Select B $T_{1/2} \approx \text{ps} \ B \approx [kT] \quad \text{Hyperfine fields}$

Time-Differential Recoil-In-Vacuum technique

Particle-gamma angular correlations

TDRIV on Radioactive Ion Beams

TDRIV on RIB: N=20 Island of Inversion

The aim of that measurement was to reveal possible *fp* admixtures in the Mg isotopes when approaching the Island of Inversion around ³²Mg.

Where does the Island of Inversion for the Mg isotopes begin \rightarrow ³¹Mg?

Recent calculations predict *fp* admixtures in the ground state of ³⁰Mg and even in the ground state of ²⁸Mg (*N. Tsunoda, et al., Phys. Rev. C* 95 021304(*R*) (2017))

TDRIV on RIB: N=20 island of inversion

Comparison of USDB shell model calculations and experiment for Mg isotopes g-factor values. The theoretical g factors for ³⁰Mg and ³²Mg in a more realistic sdpf model space are shown by the stars.

TDRIV measurement of $g(2_1^+, {}^{28}Mg)$ with H-like ions:

- Test the feasibility of the TDRIV method on a RIB
- A sensitive tool to study the composition of the excitations at N=16 and, thus, probe the boundaries of the Island of Inversion

Miniball setup

CD DSSSD particle detector

Miniball plunger

Target: 3.9 mg/cm² ⁹³Nb Degrader: 1.1 mg/cm² ¹⁸¹Ta

Experiment IS628

- 1) A test measurement (calibration) with ²²Ne beam of 121 MeV (5.5 MeV/A, ~10⁷ pps)
 - reaction beam Coulex
 - 25 plunger distances
 - testing the setup with a well known case (g=0.326(12))
 - plunger's zero offset important to determine on known case for TDRIV technique

1) ²⁸Mg (5.5 MeV/A, ~10⁶ pps)

- high HPGe rates from β decay
- beam contamination ²⁸Si (~40%)
- determining the oscillation frequency plunger's zero offset is a free parameter (to be determined from ²²Ne)
- 10 plunger distances

$T_{1/2} = 3.60(5) \text{ ps}$

²²Ne results

Such a big discrepancy shows that the literature value cannot be used in the analysis of our ²⁸Mg data.

A new, high precision measurement was needed!

²⁸Mg results

Initial goals of IS628:

- ✓ Test the feasibility of the TDRIV method on a RIB
- X Probe the boundaries of the island of inversion

Correlation curve

The maximum that is presently achievable is a correlation between the g factor values of ²²Ne and ²⁸Mg

Courtesy of K. Stoychev

²²Ne TDRIV at GANIL (September 2024)

Beam: ²²Ne @ 5.5 MeV/A Intensity: ~10⁹ pps (~0.2 pnA) Target: 3.4 mg/cm² ⁹³Nb Reset foil: 1.9 mg/cm² ¹⁸¹Ta + 20µg/cm² ¹²C

Experimental setup

- 12+ EXOGAM Clover detectors
 - ~12 % efficiency
 - more sensitive angular positions
- Orsay Particle Scintillator Array (OPSA)
 - two rings of LYSO+SiPM
 - good granularity and high acceptable rate
- Orsay Universal Plunger System (OUPS)

Aim: obtain a high-accuracy value (\sim 2%) for the g factor of ²²Ne that would:

- 1) Allow for a reliable comparison with the theory
- Provide a sufficiently accurate value for the g factor of ²⁸Mg

OPSA particle detector

²²Ne TDRIV at GANIL (September 2024)

Beam: ²²Ne @ 5.5 MeV/A Intensity: ~10⁹ pps (~0.2 pnA) Target: 3.4 mg/cm² ⁹³Nb Reset foil: 1.9 mg/cm² ¹⁸¹Ta + 20µg/cm² ¹²C **Aim**: obtain a high-accuracy value (\sim 2%) for the g factor of ²²Ne that would:

- 1) Allow for a reliable comparison with the theory
- Provide a sufficiently accurate value for the g factor of ²⁸Mg

OPSA particle detector

²²Ne TDRIV at GANIL (September 2024)

Beam: ²²Ne @ 5.5 MeV/A Intensity: ~10⁹ pps (~0.2 pnA) Target: 3.4 mg/cm² ⁹³Nb Reset foil: 1.9 mg/cm² ¹⁸¹Ta + 20µg/cm² ¹²C Aim: obtain a high-accuracy value (~2%) for the g factor of ²²Ne that would:

- Allow for a reliable comparison with the theory 1)
- Provide a sufficiently accurate value for the g 2) factor of ²⁸Mg

OPSA particle detector

Courtesy of K. Stoychev

More precise value of g factor for ²²Ne should be obtained!

Courtesy of K. Stoychev

TDRIV on RIBs at the presently available beam intensities require test measurements with stable beams with well defined g factors.

It appears that not all old high-precision values are not accurate enough and my need to be revisited.

✓ First TDRIV experiment on a RIB at ISOLDE
X g(2⁺, ²²Ne) discrepancy with literature value

✓ A repeat TDRIV measurement of $g(2^+, {}^{22}Ne)$ at **GANIL** (2024) - may solve the puzzle both on the experimental and theoretical sides

Analysis of the collected data

Re-visit ISOLDE data to extract g(2⁺, ²⁸Mg) from correlation curve

Return to GANIL or ISOLDE for future TDRIV measurements on RIBs

Thank you for your attention!