Nuclear structure close to N=Z=50

Marcin Palacz HIL Warsaw

for the COPIGAL project M. Palacz, G. de France, et al.

Agenda

- History of the collaboration: devices and physics
- The EAGLE-NEDA-DIAMAND setup at HIL-Warsaw
- EAGLE experiments 2023–2024
- ⁵⁷Cu HIL105
- ¹³⁴Sm HIL114

The collaboration started in 2005

- We were involved in the:
 - Installation of NWALL at GANIL (2005)
 - Experimental campaigns with the EXOGAM+NWall(+DIAMANT) in 2005, 2006, 2009, 2012, 2014, altogether 12 experiments.
 - Construction of NEDA 2007–2018
 - Experimental campaign with AGATA-NEDA in 2018

Physics topics at N~Z in GANIL with EXOGAM/AGATA-NEDA/NWall-DIAMANT

- Isospin symmetry, A =23, A =58, A=63, A =67, A=71 (6 experiments);
 A. Gadea, G. de Angelis, S. Lenzi, F. Recchia, A. Boso et al.
- Search for T = 0 pairing, ⁸⁸Ru, ⁹²Pd, ⁹⁶Cd, (5 experiments);
 B. Cederwall, R. Wadsworth, G. De France et al.
- SPE energies and ¹⁰⁰Sn core excitations studied in ^{102,103}Sn; (2 experiments);
 J. Nyberg, M. Palacz, A. Ataç et al.
- Octupole and Quadrupole Correlations above ¹⁰⁰Sn (1 experiment);
 - J.J. Valiente Dobon, E. Clement et al.

AGATA-NEDA at GANIL (2018)

Drawing courtesy Ian Burrows

NEDA moved to HIL-Warsaw in December 2021

NEDA@HIL

EAGLE (HPGe):

- 5 dets @ 101°
- 5 dets @ 117°
- 5 dets @ 143°

NEDA:

- 6/7 dets ~0°
- 15 dets @ 37°
- 15 dets @ 63°
- 15 dets @ 79°

- $eff(\gamma) = 1.5\% @1.3 \text{ MeV}$
- eff(1n) = 20-25%, eff(2n) = 3%

EAGLE-NEDA: electronics, DAQ

Transformation from: EAGLE: analog CAMAC based system, some digital elem. NEDA: numexo2 (diff. input), GTS, Trigger Processor

- New system built both for NEDA and EAGLE
- 6 CAEN V1725(S)(B) digitizers (6x16 channels, 14-bit, 250 MHz sampling):
 - 2 units with PHA firmware for HPGe and ACS
 - 4 units with PSD firmware for NEDA ("at least one PSD discriminated neutron" signal available for the trigger request)
- trigger validation logic implemented in external NIM units; for validated events: readout of all non-zero channels
- Software:
 - XDAQ (CERN) with LNL applications;
 - Spy and GreWare for on-line spectra;
 - GRAFANA for monitoring of rates;
 - ROOT selector for off-line (\rightarrow RadWare, TV, etc.).
- Reasons to and advantages of developing a new DAQ system for NEDA
 - lack of numexo2 style hardware to support EAGLE as well;
 - \circ possibility to use NEDA as a time ref. and a γ -ray multiplicity filter
 - 2x better NEDA dynamic range;
 - basing the system on commercial digitizers opens prospects for further development

(ex. coulex DSSD array recently commissioned, soon fast scintillators, electron spectrometer, etc.)

DIAMANT

80 CsI detectors, rhombicuboctahedron, plus f.w. able to register and distinguish protons and alpha particles emitted in a fusion-evaporation reaction

 $\epsilon_{p} \approx 0.6$ $\epsilon_{\alpha} \approx 0.4$

DAQ:

- present: NUMEXO2 digitizers and GANIL software, AGAVA;
- in progress: new CAEN R5560 digitizer purchased by ATOMKI to replace NUMEXO2 128 channels/125 MHz/14 bit (double trapezoid firmware development in progress)

I. Kuti, J. Molnar et al. ATOMKI Debrecen

Will be available at HIL also after NEDA leaves

EAGLE experiments January 2023 – November 2024

id	dates	spokeperson	title	beam	ancillary devices
HIL 099	1/03–12/03/2023 11 days	B. Saygi	Lifetime measurement of excited states in 134Sm	32S, 150 MeV	NEDA, Köln plunger
HIL 097	20/03–4/04/2023 14 days	C. Petrache	Shape coexistence and octupole correlations in the light Xe, Cs and Ba nuclei	16O, 86 MeV	NEDA, Köln plunger
HIL 106	13/06–29/06/2023 14 days	C. Petrache	Shape coexistence and octupole correlations in the light Xe, Cs and Ba nuclei (continuation of HIL097)	32S, 150 MeV	NEDA, Köln plunger
HIL 105	13–30/11/2023 16 days	M. Palacz	Single-proton states and N=Z=28 core excitations in 57Cu	32S, 82 MeV	NEDA, DIAMANT
HIL 115	5-20/12/2023 15 days	M. Matejska-Minda P. Bednarczyk	Study of the anomalous behavior of the Coulomb energy difference in the A = $70,T = 1$ izobaric multiplet	32S, 88 MeV	NEDA, DIAMANT
HIL 114	17–31/01/2024 14 days	B. Saygi, M. Palacz	Gamma-ray spectroscopy of 134Sm	32S, 145 MeV	NEDA, DIAMANT
HIL 117	18–26/03/2024 7 days	K. Miernik	144Dy fission studies	32S, 212 MeV	NEDA, DIAMANT
HIL 126	10–24/05/2024 14 days	I. Kuti	Search for candidate wobbling bands in 103Pd and in 101Ru	32S, 212 MeV	NEDA, DIAMANT
HIL 109	21–27/11/2024 6 days	C. Fransen	Lifetime studies in neutron-deficient 1720s	32S, 170 MeV	Köln plunger

9 experiments, 111 beam-on-target days, additionally 3 commissioning runs (~12 days)

Single proton-particle levels at N = Z = 28 and core softness by studying excited states of ⁵⁷Cu – HIL105

Cu- 56	Cu- 57	Cu- 58	
93ms	196.3ms	3.204s	
Ni- 55	Ni- 56	Ni- 57	
204.7ms	6.075d	35.60h	
Co- 54 *1.48m 193.28ms	Co-55 17.53h	Co-56 77.236d	

Excitation Energy (MeV)

2

0

⁵⁷Cu, ⁵⁶Ni and the astrophiscal rp-process

 $T_{1/2}$ (⁵⁶Ni) = 6.08 d S_n(⁵⁷Cu)=690 keV

proton capture followed by proton emission from excited states in ⁵⁷Cu

waiting point at ⁵⁶Ni

structure of excited states in ⁵⁷Cu essential for the rate of flow of material along the proton drip-line above ⁵⁶Ni.

Known excited states in ⁵⁷Cu

aiming at observation of:

- 7/2⁻ (possibly 2520 keV ?)
- 9/2⁺
- core excited states
- firm confirmation of known spins

5710

7/2- 5350

⁵⁷Cu – the experiment (HIL105)

- ${}^{32}S(82 \text{ MeV}) + {}^{28}Si(3.4 \text{ mg/cm}^2 \text{ on Au backing})$ $\rightarrow {}^{60}Zn(CN) \rightarrow 1p2n + {}^{57}Cu$
- A method to produce the ²⁸Si targets developed by A. Stolarz
- Total fusion-evaporation x-section 400 mb ⁵⁷Cu x-section: ~0.1 mb (HIVAP)
- EAGLE-NEDA-DIAMANT, 16 beam-on-target days, 13-30/11/2023

HIL105(⁵⁷Cu) – data analysis

M. Regulska bachelor thesis, completed July 2024 based on 24 hours of data taking, preliminary gates

A. Malinowski, master thesis, in progress

Spectroscopy of ¹³⁴Sm (¹³⁵Eu) – HIL114

- ¹³⁴Sm (N=72, Z=62): 6 excited states known Aim: to extend the level scheme, for indications of shape change from prolate g.s. to oblate and/or to identify gammavibrational states
- ^{135, 136}Eu no excited states known (HIL127 EAGLE-NEDA-DIAMANT proposal accepted A. Fijałkowska, G. Jaworski et al., specifically aiming at ¹³⁶Eu, ¹³⁵Eu)

HIL114 – the experiment

- ${}^{32}S(145 \text{ MeV}) + {}^{106}Cd(4 \text{ mg/cm}^2 \text{ on Au backing}) \rightarrow {}^{138}Gd(CN) \rightarrow 2p2n + {}^{134}Sm$
 - \rightarrow 1p2n + ¹³⁵Eu, 1p1n + ¹³⁶Eu
- X-sections (HIVAP): total fusion-evaporation 500 mb
 ¹³⁴Sm ~5 mb
 ¹³⁵Eu, ¹³⁶Eu, x-section similar but channels more difficult to discriminate
- EAGLE-NEDA-DIAMANT, 14 beam-on-target days, 17-31/01/2024

HIL114 – data analysis

P. Sekrecka PhD work

HIL114 – ¹³⁴Sm, xsection and 2n gating

HIL114 – neutron/gamma and 1n/2n discrimination

neutron/gamma

0.9

0.8

time (ns) 00

50

40

30

20

10

0

70000F

60000

50000

40000

30000

20000

10000

0

0.1

02

0.4

0.5

0.6

0.7

0

0.1

0.2

Summary

- Studies of proton-rich nuclei at N~Z extensively pursued at GANIL in years 2005–2018, are now continued at HIL-Warsaw
- Several experiments have been performed with EAGLE-NEDA-DIAMANT
- Data analysis is in progress at HIL, aiming at identification of new excited states in ⁵⁷Cu, ¹³⁴Sm (and neighbouring nuclei)...
- ... which may result in obtaining new information on SPE and core excitations at the N=Z=28 double shell closure, as well as on shape coexistance/transitions in proton-rich mid-shell rare earth nuclei.

Installation and use of NEDA at HIL is financed by the NCN grant no. 2020/39/D/ST2/00466. EURO-LABS support is acknowledged GAMMAPOOL is acknowledged for providing HPGe detectors.

EAGLE-NEDA contributors

- G. Jaworski (NEDA, DAQ)
- A. Goasduff, N.Toniollo (DAQ)
- I. Kuti, J. Molnar (DIAMANT, DAQ)
- M. Kowalczyk, P. Kulessa, M. Ciemała (DAQ, nearline)
- J. Grębosz (spy, GreWare online spectra)
- M. Komorowska, M. Kisieliński, M. Spaček, T. Abraham, W. Okliński (HPGe detectors, EAGLE front-end hardware)
- C. Fransen et al. (plunger)
- G. Colucci, A. Fijałkowska, K. Hadyńska-Klęk, A. Korgul, K. Wrzosek-Lipska, I. Piętka, P.J. Napiorkowski, J.Samorajczyk-Pyśk, P.Sekrecka, A. Tucholski (various on-site support)
- B. Radomyski, M. Matuszewski (mechanical design)
- R. Kopik, P. Jasiński, M. Antczak (mechanical workshop)
- A. Stolarz, J. Kowalska (targets)
- undergraduate students:
 A. Malinowski, A. Otręba, W. Poklepa, M. Regulska, K. Solak, K. Szlęzak, K. Zdunek
- All HIL staff: https://www.slcj.uw.edu.pl/en/staff/
- spokepersons and participants of the experiments