

# Rare event physics Activity report



#### Our ambitious mission:


- Show the **state of the art** of the physics of rare events
- Cover for both experimental and theoretical aspects
- Provide hints for the exploration of next generation experiments (link with <u>WG5</u>)
- Provide a guideline for experimental and technological efforts, like constraints for low cosmo- and radio-purity techniques (<u>WG2</u>), for detection methods (<u>WG3</u>) and analysis tools (<u>WG4</u>)
- Being inclusive to any other scientific fields that would profit of deep underground sites



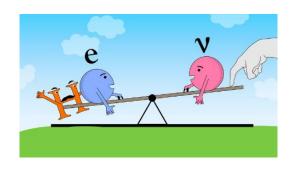
## Two major axes

WG1

1. Dark Matter



## We will keep a particular eye on direct search of dark matter :


- Scoping the whole zoology of models (WIMP, WISP, axions, ...), nucleo- or lepto-philic
- Exploring a wide (and experimentally accessible) range of masses/energies ( >GeV, sub-GeV, down to μeV)
- Looking for any trace of daily and seasonal modulation
- Using a plethora of targets and combinations of energy losses
- Complementarity with colliders (new particles) and indirect evidences (annihilation)



## Two major axes

WG1

2. Neutrinoless double beta decay



### We will keep an eye on the search for the intimate nature of neutrinos :

- Nature of neutrino (Majorana/Dirac)
- Fixing the neutrino mass scale and possible mass scenarii
- Proof of a lepton number violation
- Neutrino hierarchy
- Impact on baryon asymmetry of the Universe via Leptogenesis



## ... and more



## Many other challenges and synergies, some of them scoping physics beyond Standard Model:

- Double electron capture
- Proton stability
- Solar neutrino flow
- Coherent elastic neutrino-nucleon scattering
- Contribution to detection and study of supernovae properties
- Geo-neutrinos
- Sterile neutrinos



# Links with other communities



## Our mission naturally includes the connection with other communities :

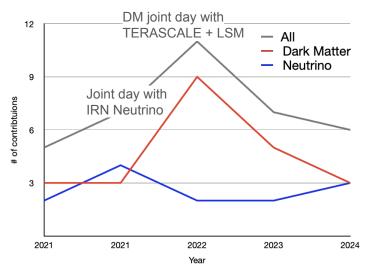
- GDR Neutrinos (<a href="http://gdrneutrino.in2p3.fr/">http://gdrneutrino.in2p3.fr/</a>) for 0vββ and any other low background physics
- GDR RESANET (<a href="http://resanet.in2p3.fr/">http://resanet.in2p3.fr/</a>) for nuclear physics processes
- GDR Terascale ((<a href="http://terascale.in2p3.fr/">http://terascale.in2p3.fr/</a>) for particle physics beyond Standard Model
- Accelerator physics
- Cosmology
- Anything else related to underground physics (geology, biology, chemistry, ...)
- Finally, involving other institutes and countries



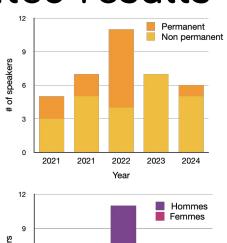
## Deliverables

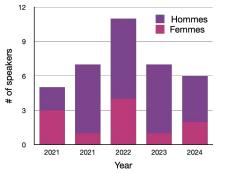
## Practically speaking, we aimed to :

- Encourage people, especially young ones, to present freshly new theoretical and experimental results
- ⇒ Done, see next slide
- Coordinate the efforts for the preparation of a biennial summary document (ideally early 2023 and 2025) with the state of the art of the field (form to be defined: short communication, activity report, ...)
  - Done only once, and with other WGs
- Develop and maintain a web page (in GDR web site or linked to it) with a collection of the existing experimental results (as a form of publications, oral talks and summary plots)
- Done, through multiple initiatives


Promote round tables, seminars, outreach events

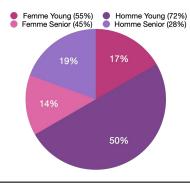
⇒ Done





## Presented results

#### Deep Underground Physics




 6/36 talks (2021, 2022) on theory, nuclear physics, LHC, indirect search



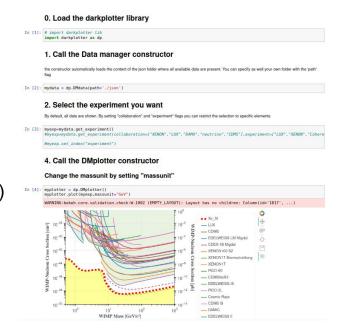











## **DMPlotter**



#### The Dark Matter Plotter is:

- © Open Science
- an Open Science Initiative (shared data and code)
- a Collaborative Online Tool
- meant for everyone: scientifics and general public
- a bibliographic source (each piece of data contains a full reference)
- downloadable (git) to use locally and runnable online (via Binder)
- under continuous improvement (needs your feedback!)

Code maintainer : Olivier Dadoun (LPNHE) <a href="https://github.com/odadoun/DarkPlotter">https://github.com/odadoun/DarkPlotter</a>





# Conclusion and outlook

### Quite a lot of activities during those years, with great outcomes :

- Deliverables aimed at the beginning of the GDR mostly done
- Great opportunity to better know the (inter)national community
- Improved networking with other GDR/IRN

#### Outlook:

- Reshaping the WG
  - Breaking theory+phenomenology vs experiment ?
  - Including relevant news from other communities (astrophysics, cosmology, HEP, ...)
  - Merging present and future (WG1+WG5)?

## New ideas (out of the scope of WG1, a new WG?)

- On outreach :
  - Participate / organize tematic days
     (DM / neutrinos / UG)
  - Prepare outreach material (posters, videos, comics, stikers, flyers,...), targeting young public
  - Organize challenges on "my thesis/my research in a single slide"
  - Science and art
- On society :
  - Work on sustainability and inclusivity in our community