First axion and dark photon dark matter searches with MADMAX

Pascal Pralavorio

pralavor@cppm.in2p3.fr

Aix-Marseille Université, CNRS/IN2P3, CPPM (Marseille, France) on behalf of the MADMAX collaboration

https://madmax.mpp.mpg.de/

- 1- Scientific context
- 2- MADMAX, a dielectric haloscope
- 3- Dark matter searches with MADMAX prototypes
- 4- Conclusions

Motivation

No CP violation observed in the strong interaction [Weak CP violation discovered in 64]

- Even if a CP violating parameter (Θ) exists in the Lagrangian ...
- ... $|\Theta| < 10^{-10}$ is measured from neutron electric dipole moment

Motivation

No CP violation observed in the strong interaction [Weak CP violation discovered in 64]

- Even if a CP violating parameter (Θ) exists in the Lagrangian ...
- ... $|\Theta| < 10^{-10}$ is measured from neutron electric dipole moment

□ Axion preferred solution to the strong CP problem

- Mechanism: new global U(1) symmetry (Peccei-Quinn, 77) spont. broken at scale f_a [f_a >> f_{ElectroWeak}]
 - o Can occur before or after inflation
 - $\,$ o Non-thermal massive axion production at T~ Λ_{QCD}
- Consequence: pseudo-Goldstone boson of the theory = axion (Weinberg-Wilczek, 78)
 - Tiny mass $[m_a \approx m_\pi f_\pi/f_a < eV]$, weakly interacting $[g_a \text{ suppressed by } f_a]$, long-lived $[\tau_{axion} > t_{Universe}]$
- Dark matter candidate (Preskill et al, 83) [relaxing m_a constraint → axion-like particles (ALPs)]
 - \circ m_a can be computed in post-inflationary scenario

Post-inflationary scenario predicts m_a ≈ O(100) μeV

P. Pralavorio (CPPM)

Axion searches

Haloscope (using a- γ coupling) main way to search for dark matter axion

MADMAX one of the few exp. sensitive to $m_a = O(100) \mu eV$

MADMAX

Principles of dielectric haloscope

 Constructive interference of coherent photons emitted at the disk surface + resonant enhancement (~*leaky resonator cavities*): boost factor β² (*« ε, N_{disk}*) wrt mirror only

Axion mass scan: by moving discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

EPJC 79 (2019) 186

MADMAX

Principles of dielectric haloscope

EPJC 79 (2019) 186

 Constructive interference of coherent photons emitted at the disk surface + resonant enhancement (~leaky resonator cavities): boost factor β² (∝ ε, N_{disk}) wrt mirror only

Axion mass scan: by moving discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

MADMAX exploits a new concept to cover an uncharted phase space

MADMAX

Formed in 2017. 11 institutes, ~50 people

Prototyping phase since 2020 to validate the concept

Prototype boosters

Gradually building the final 'open' booster

- Set-up: CERN Morpurgo magnet (1.6 T) + prototype cryostats (G10, stainless-steel)
- Disks (sapphire): moveable (piezo motors), good planarity (<10 μm), controlled thickness (1000±10 μm)
- Receiver chain: low noise amplifier (НЕМТ) + Spectrum Analyser or custom-made board

	Name	Goal	Booster	Disks	Test	
	CB100	RF studies +	Closed	3, fixed φ = 100 mm	<u>2022, 23</u> , <u>24</u>	
	CB200	First ALP searches	Closed	3, fixed φ = 200 mm	<u>24</u>	Room Temp. Cold (10 K)
	OB300v1	Scan DP* @ 80 μeV	Open	3, fixed φ = 300 mm	23-24	<u>Bfield</u> Prospects
	OB200	Piezo-motor + mechanics	Open	1, moveable φ = 200 mm	<u>2022</u> , 22	
	OB300v2 (in prep.)	Scan ALP @ 80 μeV	Open	3-20, moveable φ = 300 mm	<u>26-28</u>	

*Dark Photon

Preparatory work

Name	Booster	Disks	Test @CERN
CB100	Closed	3, fixed φ = 100 mm	<u>2022, 23</u>

- CERN refurbished the area and the magnet for MADMAX
- Checked that no RF interference with CERN environment
- Checked stability of data taking @19 GHz, 1.6 T: $t_{Live} \propto 1/\sigma_{Noise}^2$
- Calibrated @10% receiver chain power: P \propto T_{sys} = f(Γ_{RC} , G, v)

Validated that CERN environment suited for prototype tests

Room Temp.

Cold (10 K)

Prospects

Bfield

Axion search (1/5)

Name	Booster	Disks	Test @CERN
CB200	Closed	3, fixed φ = 200 mm	<u>2024</u>

- Before going to CERN, prepared **5 disk configurations** with different β_{peak}^2 frequency
- Configurations obtained by changing manually the disk distances (separation rings, tuning rod)

14.5-day physics run @18.5, 19.2 GHz and under B = 1 - 1.6 T

Room Temp.

Cold (10 K)

Prospects

Bfield

Axion search (2/5)

Computing the boost factor

- Booster & receiver noise model through fits of reflectivity and noise measurements
- Boost factor curves $\beta^2(v)$ determined with ~15% systematics
 - ✓ $β_{peak}^2 ≈ 0(2000)$ and scan 100 MHz with $β^2 > 500$

Demonstrating the scanning capacity of MADMAX booster

(1 paper in prep.)

Axion search (3/5)

□ Full power spectrum data analysis

- Build the normalized power excess spectrum (HAYSTACK procedure, PRD 96 (2017) 123008):
 - ✓ (Savitsky-Golay -- SG) filter of the calibrated power spectra
 - ✓ Residuals divided by σ_{Noise} (\propto T_{sys}) → Normalized power excess vs frequency
 - ✓ Combine spectra by weighting with the expected SNR in each 0.9 kHz bin
- See no excesses \rightarrow set limit at 95% CL on $|g_{a\gamma}|$ for each bin

Axion search (4/5)

\Box Setting limit in the $|g_{a\gamma}| - m_a$ plane

2409. 11777

- Limits below (new) CAST and globular clusters, down to |g_{aγ}| ~ O(1.5x10⁻¹¹) GeV⁻¹
- Validate the dielectric haloscope concept with a small prototype set-up

First dark matter axion search with a dielectric haloscope

Axion search (5/5)

Name	Booster	Disks	Test @CERN
CB100	Closed	3, fixed φ = 100 mm	<u>2024</u>

- Developed low-cost cryostat in G10 with CERN cryolab: O(20) hours below 10 K
- Established receiver chain calibration procedure at cold (validated at the CERN cryolab)

First operation of a dielectric haloscope at cold under B field

(data analysis ongoing \rightarrow 3 papers in prep.)

Room Temp.

Cold (10 K)

Prospects

Bfield

Dark photon search (1/3)

Booster Test @DESY Name Disks OB300v1 Open 3, **fixed** 2023-24 φ = 300 mm Booster (mirror + 3 sapphire Faraday Focusing Mirror disks $\phi = 30$ cm) Bead Cage -30dB 30 cm Mirror 9.8 8.3 mm 9.8 **DAQ Board** Xilinx RFSoC 4×2 Horn X Antenna Δ -⊳z Local Oscillator 18.5 GHz 12-day physics run @19.0-20.3 GHz with open **Receiver Chain booster** (no waveguide) and without Bfield \approx LNA Filter LNA Filter Filter Filter Mixer LNA 14-25 GHz 23 dB 14-25 GHz 23 dB 19.0-20.4 GHz 0-2GHz 28dB

Low Noise Amplifiers (LNA) + filters + mixer

Room Temp.

Cold (10 K)

Prospects

Bfield

Dark photon search (2/3)

Dark photon search (3/3)

\Box Setting limits in the χ – m $_{\chi}$ plane

- β_{peak}²=600 extending on 1.3 GHz
- No signals of unknown origin detected \rightarrow Set 95% CL limit on Dark Photon kinetic mixing χ
 - ✓ World best limits in m_{χ} [78-6, 83.9] µeV
 - 1-3 order of magnitude below previous limits

Demonstrated the broadband capacity of MADMAX booster

arXiv:2408.02368 (submitted to PRL)

Tunable open booster (1/2)

Room Temp. Cold (10 K) <u>Bfield</u> Prospects

JINST 18 (2023) P08011

- 2021: Successful test of 1 piezo motor at 5 K and 5.3 T (ALP magnet in DESY)
- 2022: OB200 proto tested in the lab, in a CERN cryostat (35 K) ... and in 1.6 T at CERN

Validated piezo motors and mechanics for open booster

Final prototype

Plan 3 months of axion search / year at CERN in 2026-28 → Final MADMAX

Room Temp.

Cold (10 K)

Bfield

Conclusions

Δ MADMAX: dielectric haloscope for dark matter axion search ~100 μeV

P. Pralavorio (CPPM)

MADMAX in France

- CEA-IRFU innovation partner for the magnet, Institut Néel (INP) involved in LNA (TWPA)
- IN2P3: CPPM MADMAX member (>2019), IJCLab associate MADMAX member since (>2023)
- + CNRS IRL "DMLab" @ DESY (with Helmholtz centers) → MADMAX is a central project

□ Main IN2P3 contributions to MADMAX

- Mechanics:
 - ✓ Disk planarity measurements
 - Precision mechanics for the prototype boosters
 - ✓ Design of RF absorbers
 - ✓ Equipment for tests at CERN
- Coordination of prototype tests at CERN
- Simulation / data analysis

Pioneering experimental work at IN2P3 on DM axion search

Axion scales

APPEC Committee Report

Rept. Prog. Phys., 85(5):056201, 2022, 2104.07634

Axion search strategy

Complementarity of 3 experimental approaches

Dielectric haloscope

 Constructive interference of coherent photons emitted at dielectric layer surface + resonant enhancement (~*leaky resonator cavities*): boost factor β² (∝ ε, N_{disk}) wrt mirror only

Mirror only

Dielectric haloscope

Disk planarity

arXiv:2407.10716 (accepted by JINST)

Closed vs open booster

Closed booster

- Booster enclosed in cylindrical waveguide, ensuring fixed boundary conditions
- ➤ Fundamental mode (cylindrical TE11 mode) dominant and coupled to receiver (lens)
 → simplifies RF response modelling
- > 1D model enough to extract boost factor, with $1D \rightarrow 3D$ correction (field overlap with axion field)
- Difficult to insert bead for boost factor measurement with bead-pull method

Open booster

- Free space outside disks
- Higher-order transverse modes wrt fundamental Gaussian mode can propagate and resonate
- Easy to insert bead for boost factor measurement with bead-pull method

Room Temp. **Tuneable setup** Cold (10 K) Bfield Prospects arXiv:2407.10716 Name **Booster Disks** Test @CERN (accepted by JINST) <u>2022</u>, **22 OB200** Open 1, moveable ϕ = 200 mm Motors positioned at 10 μ m v > 200 µm / s MADMAX 293 K, 1.6 T 293 K, 1.6 T 1000 Position - target Position (μm) Bosition 10000 10000 2204015 Backbone Disk support ring Structure 500 315 L. mis motor 1 motor 2 10 Moto motor 3 eramic rai 0 0 5 C <Position> 20 30 -10 motor 1 (M1) motor 2 10 Position - M1 motor 3 10 0 osition -10-10-20 200 Ó 2 8 10 12 14 16 18 Ó 50 100 150 250 300 4 Time (s) **Position step**

Boost factor

MADMAX Versatility

Reciprocity approach

- Lorentz reciprocity theorem relates EM fields of 2 different sources
 - J_a = axion effective current density in B-field, sourcing axion-induced fields E_a, H_a
 - J_R = current density from external injected signal, sourcing reflectioninduced fields E_R, H_R
- Allows to express haloscope sensitivity to axions from its response to reflection measurement

$$P_{\rm sig} = \frac{g_{a\gamma}^2}{16P_{\rm in}} \left| \int_{V_a} \mathrm{d}V \mathbf{E}_R \cdot \dot{a} \mathbf{B}_e \right|^2 \quad \propto \beta$$

Bead-pull method

JCAP 04 (2023) 064 JCAP 04 (2024) 005

Boost factor determined using bead-pull method (non-resonant perturbation theory) + reciprocity theorem

First MADMAX DM searches (11/10/24)

Axion search

→ Sensitive to ALP signal power of O(10⁻²¹ W)

Axion limit

Axion limit

Systematics on $|g_{a\gamma}|$ (configuration dependent)

Effect	Uncertainty in $ g_{a\gamma} $
Y-factor power calibration	3% to $5%$
Receiver chain power stability	$\leq 2\%$
Axion field – TE_{11} overlap	6%
Booster model parameters	3% to $6%$
LNA impedance mismatch	$\leq 7\%$
Frequency stability of TE_{11} mode	< 1%
Total	5% to 10%

Systematics from boost factor determination

Dark Photon search

→ Sensitive to dark photon signal power of $O(10^{-21} \text{ W})$

Dark Photon limit

Systematics on $\boldsymbol{\chi}$

Effect	Uncertainty on χ	
Bead-pull measurements	2 to 17%	(frequency dependent
Bead pull finite domain correction	5%	
Receiver chain impedance mismatch	$<\!1\%$	
Y-factor calibration	4%	
Power stability	3%	
 - Frequency stability	2%	
Line shape discretization	4%	
Total	9 to 19%	

Systematics from boost factor measurement

Final prototype test at CERN

Towards final MADMAX

Magnet

 Design completed: 2x9 skateboard coils with novel copper CICC conductor [NbTi with Cu jacket @ 1.8K]

- Demonstrated that coils will be safe in terms of quench protection IEEETAS 33 (2023) 1
- Budget secured for a demonstrator coil
 → Expected in 2027

Receiver Chain

- For now use classic low noise amplifier HEMT (G=33 dB, 4K added noise) below 40 GHz
- Josephson Junction being developed to further minimize noise (quantum limit)

TWPA prototype with G>20 dB and 1K added noise at 10 GHz

Next: >40 GHz technology to be developed