

Latest results from the XENONnT experiment

Dr. Maxime Pierre

On behalf of the XENON collaboration

maxime.pierre@nikhef.nl

UNIVERSITEIT VAN AMSTERDAM Nikhef ×××

Light and Charge readout

- Prompt scintillation signal (S1)
- Secondary proportional scintillation signal in GXe from drifted electrons (S2)

Event reconstruction

- O 3D Position:
 - Z from drift time
 - (X, Y) from PMTs hit pattern \odot
- Energy $\rightarrow E = W \cdot (n_{ph} + n_e)$

Particle discrimination

Interaction type Nuclear Recoil (NR)/Electronic \bigcirc Recoil (ER) through S1/S2 ratio

$$\left(\frac{S2}{S1}\right)_{NR} < \left(\frac{S2}{S1}\right)_{ER}$$

Primary Goal is to search for direct detection of WIMPs interaction... but can do much more!

Maxime Pierre maxime.pierre@nikhef.nl

Light and Charge readout

- Prompt scintillation signal (S1)
- Secondary proportional scintillation signal in GXe from drifted electrons (S2)

Event reconstruction

- O 3D Position:
 - Z from drift time
 - (**X**, **Y**) from PMTs hit pattern \bigcirc
- Energy $\rightarrow E = W \cdot (n_{ph} + n_e)$

Particle discrimination

Interaction type Nuclear Recoil (NR)/Electronic \bigcirc **Recoil (ER)** through **S1**/S2 ratio

$$\left(\frac{S2}{S1}\right)_{NR} < \left(\frac{S2}{S1}\right)_{ER}$$

Time [YYYY-MM, UTC]

Maxime Pierre

Ar aintenance distillation 1-only)	• • • • • • • • • • • • • • • • • • • •		
ults 305	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • •		
	• • • • •		

Time [YYYY-MM, UTC]

- Radon suppression milestone: distillation with combined gaseous and liquid xenon flow
- Stable detector response: achieving < 0.3%
 - (1.1%) variation in Light and Charge Yields

Time [YYYY-MM, UTC]

³⁷Ar Maintenance & distillation (S1-only)

2023.07

Science Run 1 Highlights

- Radon suppression milestone: distillation with combined gaseous and liquid xenon flow
- Stable detector response: achieving < 0.3%
 - (1.1%) variation in Light and Charge Yields
- Excellent electron lifetime $\sim O(10)$ ms

Time [YYYY-MM, UTC]

Maintenance & distillation (S1-only)

2023.07

Science Run 1 Highlights

- Radon suppression milestone: distillation with \bigcirc combined gaseous and liquid xenon flow
- Stable detector response: achieving < 0.3%
 - (1.1%) variation in Light and Charge Yields
- Excellent electron lifetime $\sim O(10)$ ms
- Calibration plan follows SR0 strategy with three new features:
 - New ER calibration source: 222 Rn (β) and 232 Th (χ)
 - New low-energy NR calibration source: ⁸⁸YBe

New Result from XENONnT

Next science case focus?

Maxime Pierre

New Result from XENONnT

Entering the Neutrino Fog Coherent Elastic neutrino Nucleus Scattering

Maxime Pierre

maxime.pierre@nikhef.nl

Never measured in a DM direct detection experiment Never measured in a xenon target **Never** measured from astrophysical source

The ⁸B Solar Neutrino CE_vNS Gate

$CE_{\nu}NS$ search in XENON:

Nearly indistinguishable from a ~6 GeV WIMP with $\sigma_{SI} = 4.4 \text{ x}$

 $10^{-45}\,\mathrm{cm}^2$

Boost in cross section from \bigcirc coherent effect...but low energy recoil (< 1.5 keV_{NR} in LXe)

⁸B CE_vNS - Signal Region of Interest Maxime.pierre@nikhef.nl

Boost sensitivity by lowering our energy threshold

⁸B event rate in the conventional WIMP "3-fold analysis" (SR0): ~1% detection efficiency \rightarrow 0.2 events / (t x yr)

Lowering our S1 and S2 threshold → improve our expected event rate to 3.7(3.3) events / (t x yr) in SR0(1)

Boost sensitivity by lowering our energy threshold

Blinded Region of Interest

S1 ROI: 2 or 3 hits ; A hit corresponds to a recorded photon by PMT+DAQ+software **S2 ROI:** [120 - 500] PE \rightarrow Reject high rate of isolated S2 background signal

Main Source: Accidental Coincidences

- Accidental Coincidence (AC): Random pairing of isolated S1 and **isolated S2**, whose exact origin is under investigation. Current culprit:
 - **Isolated S1 signals**: from pile-up induced single PMT hits, misclassified single electrons,...
 - **Isolated S2 signals**: from few-electron pile-up events, notably following high-energy interactions,...

Maxime Pierre

Background Model

Accidental Coincidences Suppression:

1-Time Shadow

- Use space/time correlation with previous high-energy interaction \bigcirc
 - → Isolated S1 rate: $15 \text{ Hz} \rightarrow 2.3 \text{ Hz}$
 - **Isolated S2 rate**: 150 mHz \rightarrow 25 mHz

XENO

Background Model

Accidental Coincidences Suppression:

1-Time Shadow

- Use space/time correlation with previous high-energy interaction \bigcirc
 - → Isolated S1 rate: $15 \text{ Hz} \rightarrow 2.3 \text{ Hz}$
 - **Isolated S2 rate**: 150 mHz \rightarrow 25 mHz

2- Two Boosted Decision Tree (BDT)

- **S1 BDT:** leverage S1 pulse shape and spatial \bigcirc distribution across the PMT arrays.
- **S2 BDT:** check that S2 pulse shape correlated with the diffusion of the drifting electron cloud law.

Expected # of AC events:

 7.5 ± 0.7 (SR0) and 17.8 ± 1.0 (SR1)

Background Model

Accidental Coincidences Suppression:

1-Time Shadow

- Use space/time correlation with previous high-energy interaction \bigcirc
 - → Isolated S1 rate: $15 \text{ Hz} \rightarrow 2.3 \text{ Hz}$
 - **Isolated S2 rate**: 150 mHz \rightarrow 25 mHz

2- Two Boosted Decision Tree (BDT)

- **S1 BDT:** leverage S1 pulse shape and spatial \bigcirc distribution across the PMT arrays.
- **S2 BDT:** check that S2 pulse shape correlated with the diffusion of the drifting electron cloud law.

Expected # of AC events:

 7.5 ± 0.7 (SR0) and 17.8 ± 1.0 (SR1)

Yields model from ⁸⁸YBe Calibration Maxime Pierre maxime.pierre@nikhef.nl

Constrain Yield Models:

- Great agreement between data and model.
 - Background originating from Accidental Coincidences (AC) are modelled with data-driven simulation framework.
- Light (LY) and Charge Yields (CY) were extracted down to 0.5 keV_{NR} at XENONnT electric field of 23 V/cm with latest NEST parametrisation.
- Yield model uncertainty leads to ~ 30% signal rate uncertainty.

 $\gamma(^{88}\text{Y}) + ^{9}\text{Be} \rightarrow n + ^{8}\text{Be}$

⁸B CE_vNS search - Prediction

- (4.1) tonnes in SRO (SR1) leading to a total exposure of 3.51 t x yr

48% to observe > 3\sigma significance

Component	Expectation	Best-fit
AC (SR0)	$7.5~\pm~0.7$	
AC (SR1)	$17.8~\pm~1.0$	
\mathbf{ER}	$0.7~\pm~0.7$	
Neutron	$0.5\substack{+0.2 \\ -0.3}$	
Total background	$26.4^{+1.4}_{-1.3}$	
⁸ B	$11.9\substack{+4.5 \\ -4.2}$	
Observed		

XENO

• **B neutrino flux**: $4.6^{+3.6}_{-2.3} \times 10^{6}$ cm⁻² s⁻¹ at 68% C.L. no tension with literature value

Background only hypothesis rejected with 2.73σ significance

Strong evidence of CEvNS Interaction

Component	Expectation		Best-fit
AC (SR0)	$7.5~\pm~0.7$		$7.4~\pm~0.7$
AC (SR1)	$17.8~\pm~1.0$		$17.9~\pm~1.0$
\mathbf{ER}	$0.7~\pm~0.7$		$0.5\substack{+0.7\\-0.6}$
Neutron	$0.5\substack{+0.2 \\ -0.3}$		$0.5~\pm~0.3$
Total background	$26.4^{+1.4}_{-1.3}$		26.3 ± 1.4
⁸ B	$11.9\substack{+4.5 \\ -4.2}$		$10.7\substack{+3.7 \\ -4.2}$
Observed		37	

⁸B CE_vNS search - Unblinding

- **B neutrino flux**: $4.6^{+3.6}_{-2.3} \times 10^6$ cm⁻² s⁻¹ at 68% C.L. no tension with literature value

with 2.73σ significance

With constrain from SNO flux \rightarrow Measure the flux-weighted CE_vNS cross section: $1.1^{+0.8}_{-0.5} \times 10^{-39}$ cm²

A reminder that CE_vNS is a background for DM search

- Focus on light DM models such as asymmetric and self-interacting DM
- Benefit from the work done for the 8B CE ν NS analysis

Maxime Pierre

Strong evidence for CEvNS interaction in XENONnT: A first step into the neutrino fog

First Light DM results near the neutrino fog

More results to come:

- Stay tuned for the **incoming WIMP results** with SR0+SR1 datasets
- We continue to take data, SR2 ongoing with Gd-loaded Water in nVeto to improve our neutron tagging efficiency.
 - → Improved significance for ⁸B CE ν NS with increased exposure
 - Broad physics program with active analyses ongoing whose scope goes beyond WIMP search

- R0+SR1 datasets loaded Water in
- eased exposure ongoing whose

Back-Up

Background Model

Subdominant Source:

Background Model

Subdominant Source:

Nuclear Recoil:

- Radiogenic neutrons (fission, α-n),
 simulation and data-driven (NV) model
 - Projection SR0: 0.13 ± 0.07 events
 - Projection SR1: 0.33 ± 0.19 events

Maxime Pierre

XENO

Background Model

Subdominant Source:

Nuclear Recoil:

- Radiogenic neutrons (fission, α-n),
 simulation and data-driven (NV) model
 - Projection SR0: 0.13 ± 0.07 events
 - Projection SR1: 0.33 ± 0.19 events

Electronic Recoil:

- Dominated by ²¹⁴Pb flat β-spectra
 - Projection SR0: 0.13 ± 0.13 events
 - Projection SR1: 0.56 ± 0.56 events

Maxime Pierre

XENO

Background Model

Subdominant Source:

Nuclear Recoil:

- Radiogenic neutrons (fission, α-n),
 simulation and data-driven (NV) model
 - Projection SR0: 0.13 ± 0.07 events
 - Projection SR1: 0.33 ± 0.19 events

Electronic Recoil:

- Dominated by ²¹⁴Pb flat β-spectra
 - Projection SR0: 0.13 ± 0.13 events
 - Projection SR1: 0.56 ± 0.56 events

Surface Event:

- ER from ²¹⁰Pb plate out at detector walls
 - Data-driven model SR0/1: <0.3 events</p>

Maxime Pierre

Yields model from ⁸⁸YBe Calibration Maxime Pierre maxime.pierre@nikhef.nl

New calibration source:

- Low-energy NR calibration using external photoneutron source.
- Quasi-monoenergetic 152 keV \bigcirc neutrons produced via:

 $\gamma(^{88}\text{Y}) + ^{9}\text{Be} \rightarrow n + ^{8}\text{Be}$

⁸B CE_vNS search - Unblinding

.....

......... •••••

Maxime Pierre

Yields uncertainties

.......

XENON

 $\left(t_{ly},t_{qy}\right)$ two morphers of the yields: uncertainties of the emission model

 $LY(t_{ly}) = \langle LY \rangle + t_{ly} \cdot \sigma_{LY}(sign(t_{ly}))$ $QY(t_{qy}) = \langle QY \rangle + t_{qy} \cdot \sigma_{QY}(sign(t_{qy}))$

with: $t_{ly} \sim N(0,1); t_{qy} \sim N(0,1)$

- Waveform-feature-based S1 BDT differentiates isolated S1 signals from random PMT hit clustering.
- Input features: double photo-electron emission, S1 pulse shape, S1 hit counts, PMT channel distribution of S1.
- Trained with a data-driven sample of isolated S1 and simulated ⁸B S1
- S1 area in the largest-contributing PMT is the most important feature due to the signal-only double photoelectron emission (DPE), where a single photon striking the PMT photocathode produces two photoelectrons with $p \approx 0.2$.
- Enhances signal vs. background discrimination but is significantly weaker than the S2 BDT.

Maxime Pierre

BDT trained using simulated signal and datadriven AC background, with each feature rigorously validated between data and simulation.

and data.

Maxime Pierre

AC Validation

VALIDATION OF AC MODEL

arXiv:2408.02877

- Validated by AC sideband unblinding (events that failed S2 BDT cuts) Validated by ³⁷Ar L-shell 0.27 keV ER calibration data
- The difference (<10%) is considered when determine systematic uncertainty Constrained ER light yield with 1598 observed events

Maxime Pierre

maxime.pierre@nikhef.nl

Credit slide: Langing Yuan

- Unlike WIMP, the B8 FV was not optimized based on signal and bkg predictions. It was selected to:
 - top/bottom → no areas with limited detector modelling
 - radius → minimize surface bkg to a negligible level.

Credit slide: Matteo Guida

- Events near wires are excluded from analysis due to insufficient simulation fidelity.
- S2 pulse shape varies near perpendicular wires, causing systematic errors if S2 BDT (trained on simulation) is applied.

Signal and Bac	kgrou
AC: uncertainty from discrepancy in derived the sideband unblinding.	d by
B8: 35% uncertainty from yields & efficience Flux is a free parameter.	с у. Е
ER: Electronic recoil background with flat spectrum 0-10 keV Conservative 100% uncertainty from yields.	Neutro
RG: Radiogenic neutron background, 58% uncertainty derived from the sideband.	Total backgrour
Surface background: not included in likelihe Fiducial volume such that it can be neglected	ہ ood. ed.
•	

ind model

Maxime Pierre

From XENON1T to XENONnT

