DarkSide-20k sensitivity to light dark matter particles

Fabrice Hubaut (hubaut@in2p3.fr)

Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

On Behalf of the DarkSide-20k Collaboration

DUPHY GDR meeting, October 9-11 2024

Introduction

DarkSide-50, double phase TPC, used 50 kg of low-radioactivity underground argon (UAr)

Obtained world best limits on WIMP-nucleon σ_{sl} for light WIMPs (1.2-3.6 GeV)
 PRD 107 (2023) 063001

Extended down to 40 MeV using Migdal effect + limits on leptophilic light DM candidates

DarkSide-20k sensitivity to light dark matter particles

DarkSide-20k in a nutshell

- DarkSide-20k = next generation LAr double phase TPC (unique world-wide collaboration)
- Construction started at LNGS
 Should start data taking in 2027

DS-20k: low mass DM analysis

exposure = 17.4 ton.year for 1 year of data taking

→ Need to mitigate and accurately model ER background

DarkSide-20k sensitivity to light dark matter particles

Model: internal LAr background

- ³⁹Ar and ⁸⁵Kr \rightarrow β-emitters uniformly distributed in LAr active volume
- Both unique first-forbidden β-decays → spectra from latest calculations of atomic exchange and screening effects Phys.Rev.A 90 (2014) 012501, Phys.Rev.C 102 (2020) 065501

Model: external background

- Sources of γ and X-rays from inner detector material : photo-electronics (PDM), TPC structure and stainless-steel vessel
- Spectra from GEANT-4 based simulations
- Normalisation from material screening campaigns

Radio-	Activity (Bq)		
contaminant	TPC	PDMs	SS vessel
238 U up	16.1	38.8	21
238 U mid	11.5	18.4	8.8
238 U low	16.4	449	62
232 Th	4.2	17.8	33
$^{235}\mathrm{U}$	0.7	1.8	1.0
137Cs	2.5	2.9	5.0
60 Co	2.0	5.1	13
40 K	102	269	49

 \rightarrow 2.5x reduced bkg contamination per surface area \perp to drift wrt DS-50

Model: spurious e⁻background

- **Spurious e⁻ (SE)** origin might be electrons trapped by impurities and released later
- Model built by fitting DS-50 data and extrapolating to DS-20k (50x higher background rate and 10x larger drift length. 23% single electron response resolution)

Model: neutrino background

Model: WIMP signal

Profile Likelihood and systematics

В	15% OII AF activity	Ar
plit	15% on 85 Kr activity	⁸⁵ Kr
[H]	20% on SE normalization	SE
A	10% on activity from PDMs	PDMs
	10% on activity from the vessel	Vessel
	10% on activity from the TPC	TPC
	10% on neutrinos normalization	Neutrinos
	atomic exchange and screening	³⁹ Ar
	atomic exchange and screening	⁸⁵ Kr
ape	1% on the ³⁹ Ar-decay Q-value	³⁹ Ar
Shi	0.4% on the ⁸⁵ Kr-decay <i>Q</i> -value	⁸⁵ Kr
•1	SE modelling	SE
	ER ionization response	All backgrounds
		but $CE\nu NS$, SE
	NR ionization response	WIMP, $CE\nu NS$

Strong constraints on nuisance parameters associated to dominant backgrounds and ER ionization yield

F. Hubaut (CPPM)

response calibration, SE)

Sensitivity to low mass WIMPs (1/3)

→ Sensitivity to WIMP-nucleon $\sigma_{sl} < 1 \times 10^{-42} \text{ cm}^2 \text{ for } m_{\chi} > 800 \text{ MeV}$

 \rightarrow > 1 order of magnitude improvement wrt to current experiments in 1 year

Sensitivity to low mass WIMPs (2/3)

Sensitivity to low mass WIMPs (3/3)

 Including Migdal effect (not yet observed) → additional electrons to NR signal → enhanced sensitivity to low mass WIMPs

 \rightarrow > 1 order of magnitude improvement wrt to current experiments in 1 year

Bremsstrahlun

Sensitivity to leptophilic DM (1/3)

 \rightarrow > 1 order of magnitude improvement wrt to current experiments in 1 year

Sensitivity to leptophilic DM (2/3)

• Inelastic scattering of sterile neutrino, mixing with active neutrino through angle $|U_{e4}|^2$, off bound electrons

 \rightarrow > 1 order of magnitude improvement wrt to current direct limits in 1 year

Phase space already rejected by indirect measurements (NuSTAR)

Sensitivity to leptophilic DM (3/3)

 \rightarrow O(1) order of magnitude improvement wrt to current experiments in 1 year

□ Dual phase LAr TPC = one of leading techno for light (<10 GeV) DM search

- Demonstrated by DS-50 → world best limits for WIMPs & leptophilic DM phase spaces
- Next generation DS-20k under construction → start data taking in 2027
- In 1 year, expect >1 order of magnitude sensitivity improvement for a variety of DM models

[WIMPs w/wo Migdal in MeV-GeV mass range - LDM, ALP, DP, SN in keV or sub-keV mass range]

arXiv:2407.05813 (submitted to Nature Communications)

□ IN2P3 = leader of DarkSide light DM searches

- Calibration of LAr ionisation response at low energy
- DS-50 light dark matter searches
- DS-20k sensitivity to light dark matter particles

- see talk at GDR DUPHY 2021
- see talks at GDR DUPHY 2022, 2023
- this talk at GDR DUPHY 2024

F. Hubaut (CPPM)

DarkSide-20k sensitivity to light dark matter particles

F. Hubaut (CPPM)

DarkSide-20k sensitivity to light dark matter particles

Purified underground argon

- Argon isotopes: ⁴⁰Ar (stable) and ³⁹Ar (β emitter)
- Atmospheric ⁴⁰Ar is cosmogenically activated by cosmic rays → ~1 Bq/kg in AAr
- ⁴⁰Ar present in underground wells (1400x depleted in ³⁹Ar) of CO₂ in Colorado → used for DS50 and DS20k

> UAr extraction should start Q1 2025

LAr ionization response to ER / NR

Measurement of ionization yield at low E central for low mass WIMP search

ER ionization yield measured down to 180 eV_{er} and extrapolated to a few ionization electrons → NR ionization yield measured down to ~500 eV_{nr}, the lowest ever achieved in liquid argon

PRD 104

(2021) 082005

Other signal models

Quenching fluctuations in NR

Sensitivity vs ³⁹argon activity

Prospective experiments

