Search for Double Beta Plus Decays with NuDoubt⁺⁺

Cloé Girard-Carillo

on behalf of the NuDoubt++ Collaboration*

GDR DUPhy 2024 - 9th-11th October 2024

*Manuel Böhles, Sebastian Böser, Magdalena Eisenhuth, Cloé Girard-Carillo, Bastian Keßler, Kyra Mossel, Veronika Palušová, Stefan Schoppmann, Alfons Weber, Michael Wurm Johannes Gutenberg-Universität Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Outline

- Motivation
- Combining recent scintillator developments
- The NuDoubt⁺⁺ experiment
 - ▷ Global idea
 - Enhanced photodetection
 - Gas isotope loading
 - Design of our test cell and first measurements
 - ▷ Sensitivity to β^+ decays
 - Using NuDoubt⁺⁺ for DM measurements?

Double Beta decays

Big experimental & theoretical efforts on the study of $2\beta^-$

- Most promising mode for potential detection of 0vββ
- Theoretical investigations focusing on underlying mechanisms & nuclear structure models
- Current $\beta\beta$ experiments ~10²⁶ y limit on $0\nu 2\beta^- T_{1/2}$

Half life limits need to be improved by several orders of magnitude to reach Normal Ordering

- Larger isotope mass
- Excellent energy resolution (2νββ irreducible bkg)
- Excellent radiopurity
- Bkg suppression in the ROI

Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects, P.F. de Salas et al., 2018

Double Beta decays

What about β^+ decays?

Proton-rich isotopes:

- SM: $2v2\beta^+$, $2vEC\beta^+$ and 2v2EC allowed \rightarrow only 2v2EC has been observed
- ► BSM: $0\nu\beta^+$ EC and $0\nu2\beta^+$ → mono-energetic e⁺

But limited exploration of these transitions

- Suppressed decay probabilities
- Less favourable Q-values
- Low natural abundances of nuclei

- Challenging signatures:
 - ▷ 2EC signature: detection of cascade of X-rays & Auger e⁻ after EC
 - \rightarrow Q mostly carried away by the 2 v (undetected)
 - \rightarrow ROI upper bound typically \sim 100 keV
 - β^+ decays signatures: 1 (EC β^+) or 2 (2 β^+) positrons

So why are we interested in it?

- Studies of nuclear structure models
- Valuable constraints on theoretical models and calculations of NMEs
 → deeper understanding of underlying nuclear physics governing 2β

Requirements

- Excellent background suppression
- High amount of isotope loading

On going effort to develop new scintillators

Hybrid liquid scintillator

Separate Cherenkov and scintillation lights

Experiment to demonstrate separation of Cherenkov and scintillation signals, J. Caravaca et al., 2017

GDR DUPhy - C. Girard-Carillo

Particle ID through Č/S light separation

- More massive particles produce less Č light (they are closer to the c/n Č threshold)
- Gammas: Almost no Č light
 - Multiple Compton scatters
 - Energy transferred to e⁻ of scintillator which are close to or below Č threshold
- e⁺ vs e⁻ of same kinetic energy: Similar amount of Cherenkov light
 - e⁺ → more scintillation light: because of the two 511 keV annihilation gamma
 - ${\sim}50\%$ more scintillation light for 2 MeV e+ compared e- of same KE

Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays, M. Böhles et al., 2024

Main disadvantage: bad spatial resolution

Opaque liquid scintillator

Confining optical light around interaction point

The path of optical light in LS depends on scattering length / opacity of the medium

– Opaque "LiquidO" technology

Light confined near creation point

Simulation of e⁺ 1 MeV KE

Readout with grid of wavelength-shifting fibres & SiPMs

First implementation of opaque scintillator: adding wax to LS (NoWaSH)

Novel Opaque Scintillator for Neutrino Detection C. Buck et al., 2019

Neutrino physics with an opaque detector, LiquidO Consortium, 2021

Particle ID through Opacity

Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays, M. Böhles et al., 2024

GDR DUPhy - C. Girard-Carillo

Combining opaque and hybrid technologies

— Our shopping list:

- Hybrid
- Opaque
- High light yield
- Stable

GDR DUPhy - C. Girard-Carillo

High loading possibilities

- What we have: extended NoWaSH with minimal wax loading and various solvents

- Light yield > 10000 ph/MeV
- Scattering length tuneable between 1.3 and 1.6 mm
- Scintillation time constant tuneable between 5 and 20 ns
- Viscosity tunable between something like custard and something like yogurt

Combining hybrid & opaque PID capabilities

- Gammas: Almost no Č light
- e⁺ vs e⁻ of same kinetic energy: Similar amount of Cherenkov light

The NuDoubt++ concept

Search for double beta plus decays using a combined hybrid-slow opaque scintillator

- Isotope-loaded liquid scintillator detectors to higher loading factors with small impact on LY
 - Good energy resolution
- Enhanced discrimination capabilities
 - Hybrid scintillators: C/S light ratio
 - Opaque scintillators: cm-scale event topology
- Proposition of a tonne-scale experiment
 - Fiducial volume 1 m³ of hybrid-slow opaque scintillator densely instrumented with novel OWL fibers
 - ▷ First measurements of 2ν double weak decays ($2\nu 2\beta^+ \& 2\nu EC\beta^+$)
 - $^{\triangleright}~$ Set limits on $T_{1/2}$ for the corresponding neutrinoless (0vEC β^+ & 0v2 $\beta^+)$
 - \triangleright Isotopes: $^{78}\text{Kr},~^{124}\text{Xe}$ and ^{106}Cd

PMT SiPM OWL-fibres Target volume Loaded hybrid-opaque scintillator (10 kg) Inner detector vessel Unloaded hybrid-opaque scintillator

GDR DUPhy – C. Girard-Carillo

Let's talk about optical light collection

WOMs for IceCube Upgrade

Goal: improve signal-to-noise ratio by maximizing light capture **Idea**: decouple photosensitive area and cathode of PMT \rightarrow Transparent tube + two PMTs at each end

These re-emitted photons can propagate with different paths in the coated tube:

The Wavelength-Shifting Optical Module, B. Bastian-Querner et al., 2022

Changing the wavelength shifting point

Adaptation of WOM idea for NuDoubt++

Photons absorbed and emitted on the outer surface of the fibre have a higher chance of being captured by total internal reflection (TIR) compared to those closer to the centre of the fiber

Gain in sensitivity is mostly in the UV regime \rightarrow WOM is an ideal sensor for Cherenkov and scintillation detectors!

First prototypes of polystyrene-based OWL-fibers

OWL = Optimised Wavelength-shifting fibres PMMA fibers of ~mm diameter, coated with wavelength-shifting paint

A cell to test isotope loading & scintillator characteristics

Gas isotope loading

- Gaseous $\beta\beta$ isotope loaded in LS
- Geant4 simulations to optimize design/light collection of test cell (geometry, materials)
- Henrys law: amount of dissolved gas isotope in LS proportional to its pressure
 - ▶ We want overpressure in the NuDoubt⁺⁺ detector
- Test cell to verify amount of gas loaded in the scintillator
 - ▶ Weighing of the cell
 - \triangleright ⁸⁵Kr β decays when loaded in LS

The test cell is ready to be filled

LAB transparency measurements with the test cell

Next steps:

- \rightarrow Loading LS with $^{85}{\rm Kr}$ gas isotope
- \rightarrow Measure optical properties of

scintillator as function of pressure

Designing a test cell

Expected sensitivity of NuDoubt++

Background model Assuming Gran Sasso-like overburden

Detectable half-life, depending on the minimum rate required to exclude the background-only hypothesis, for various amounts of Kr-78 atoms per tonne of loaded scintillator mass

Longest rejected half-life, depending on the highest rate required to exclude the corresponding signal+background hypothesis.

Expected 90% C.L. exclusion sensitivity

0% Enriched

50% Enriched

90% Enriched

5bar over pressure

1023

1bar abs

 10^{2}

1025

10²³

1022

 10^{21}

1020

1022

years 10₅₄

Half-life in

 $0\nu 2\beta +$

00.0Tonne*Days

1024

Number of Kr-78 Atoms per ton LS

1025

1026

Within first year of measurement with NuDoubt++:

- First-time 5σ observation of SM $2\nu EC\beta^+/2\nu 2\beta^+$
- Improvement of limits on BSM $0\nu EC\beta^+/0\nu 2\beta^+$ limits by 3 orders of magnitude

n Sasso-like overburden Expect

GDR DUPhy – C. Girard-Carillo

Summary

- Searches for double beta plus decays (SM and BSM)
- Advanced scintillator development (opaque / hybrid-slow) \rightarrow C/S light separation + PID + High LY
- Highly isotope-loaded scintillation detector for improved sensitivity
- Improved light collection in coated light guides (OWLs)
- Design and production of our first test cell achieved
- Sensitivity towards $2\nu\beta\beta$ and potentially $0\nu\beta\beta$ with high loading factors
- Investing the possibility of using NuDoubt⁺⁺ for light DM direct detection (DarkMESA)
- Our first publication: <u>arxiv.org/abs/2407.05999</u>
- Website: <u>nudoubt.uni-mainz.de</u>
- Master's theses and talks: <u>nudoubt.uni-mainz.de/publications</u>

19/19

Some additional references

- Idea to exploit 4 or 2 annihilation gamma-rays unique signature for background suppression in search of 2ν2β⁺ or 2νΕCβ⁺
 - Study of the neutrino mass in a double β decay, Zel'dovich Ya. B., Khlopov M. Yu.
- Ideas on hybrid detection using Cherenkov + scintillation lights to discriminate double electron decays from solar B-8 neutrino background
 - Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing. Andrey Elagin et al.
 - Space-Time Discriminant to Separate Double-Beta Decay from 8B Solar Neutrinos in Liquid Scintillator, Runyu Jiang, Andrey Elagin
- Using slow scintillators to improve separation of Cherenkov and scintillation light
 - Slow-fluor scintillator for low energy solar neutrinos and neutrinoless double beta decay, Jack Dunger, Edward J. Leming, Steven D. Biller
- Idea of exploiting ratio of Cherenkov and scintillation light in hybrid detector for the search of $\beta^+\beta^+$ decays @DBD 2022
 - Neutrinoless Double-Beta Decay Sensitivity in Hybrid Detectors, talk by Michael Wurm
- First demonstrations of the hybrid detector concept through small scale prototypes
 - Cherenkov and scintillation light separation in organic liquid scintillators, J. Caravaca et al.
 - Characterization of water-based liquid scintillator for Cherenkov and scintillation separation, J. Caravaca et al.
- Idea of opaque liquid scintillators and applications in neutrino physics
 - Neutrino physics with an opaque detector
- Concept of searches for double weak decays in opaque media by the LiquidO consortium
 - R&D on 2beta with LiquidO
 - Double Beta Decay Searches with LiquidO, LiquidO consortium, to be published

Thank you!

Using the NuDoubt⁺⁺ concept for dark matter?

DarkMESA

https://magix.uni-mainz.de/mesa.php

 Phase A: 1 PbF₂ module, 0.004 m³ active volume

• Phase C (projected): Phase B setup + 1m³ negative ion TPC

https://magix.uni-mainz.de/DarkMESA.php

- Limits are calculated for $m_{\gamma'} = 3 \ m_{\chi}$ and $\alpha_D = 0.5$
- Considered decay processes:
- Dark Bremsstrahlung
- Positron Annihilation

Phase	Time	EOT
А	2.000 h	$6.74 \cdot 10^{21}$
В	6.000 h	$2.02 \cdot 10^{22}$
С	6.600 h	$2.22 \cdot 10^{22}$

GDR DUPhy - C. Girard-Carillo

2v2EC

Absorption of two atomic electrons → conversion of a pair of protons into neutrons + simultaneous emission of two neutrinos

Two-neutrino double electron capture of 124Xe in the first L UX-ZEPLIN exposure, The LUX-ZEPLIN (LZ) Collaboration

Underground labs in the world

