GDR Deep Underground Physics plenary meeting

CUPID Status and prospects

Andrea Giuliani

 $0\nu 2\beta$ is an inclusive test for the « creation of leptons »: $2n \rightarrow 2p + 2e^{-} \Rightarrow LNV$

This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁸²Se, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: **a peak** in the sum-energy spectrum of $2e^{-}$ **at** $\mathbf{Q}_{2\beta}$

Not necessarily neutrino physics

 $0\nu 2\beta$ is an inclusive test for the « creation of leptons »: $2n \rightarrow 2p + 2e^{-} \implies LNV$

This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁸²Se, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: a peak in the sum-energy spectrum of $2e^{-}$ at $Q_{2\beta}$

Not necessarily neutrino physics

 $0\nu 2\beta$ is an inclusive test for the « creation of leptons »: $2n \rightarrow 2p + 2e^{-} \Rightarrow LNV$

This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁸²Se, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: a peak in the sum-energy spectrum of $2e^{-}$ at $Q_{2\beta}$

Not necessarily neutrino physics

 $\Sigma = m_1 + m_2 + m_3 \rightarrow Cosmology$ $\mathbf{m}_{\beta\beta} = ||U_{e1}|^2 m_1 + e^{i\alpha 1} ||U_{e2}|^2 m_2 + e^{i\alpha 2} ||U_{e3}|^2 m_3 | \rightarrow 0\nu 2\beta$ 0.1 m^{gg} (eV) $1/\tau_{0\nu} \propto m_{\beta}^{s2}$ 0.08 0.07 smology 0.06 0.05 **Current** $0v2\beta$ constraints 0.04 0.03 0.02 Norn al ordering 0.01 Adapted from arxiv:1910.04688 0.05 0.1 0.15 0.2 0.25 0.3 **Σ (eV)**

 $0\nu 2\beta$ is an inclusive test for the « creation of leptons »: $2n \rightarrow 2p + 2e^{-} \implies LNV$

This test is implemented in the nuclear matter: (A,Z) \rightarrow (A,Z+2) + 2e⁻

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁸²Se, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: a peak in the sum-energy spectrum of $2e^{-}$ at $Q_{2\beta}$

Not necessarily neutrino physics

and other next-generation experiments (nEXO, LEGEND, NEXT)

(most favorable matrix elements)

Bolometric technique

CUORE in a nutshell

CUORE is an array of **TeO₂ bolometers** searching for $0\nu2\beta$ decay of the **isotope** ¹³⁰**Te** and taking data in LNGS (Italy) at ~12-15 mK

The largest bolometric experiment ever

- 988 crystals 5x5x5 cm, closely packed arranged in 19 towers of 13 floors each
- 742 kg (206 kg of ¹³⁰Te)
- Background according to expectations
- 1.49(4)×10⁻² counts/(keV·kg·y)
- Energy resolution (at 2615 keV) close to expectations: 7.78(3) keV FHWM

CUORE is not background free

 \rightarrow ~ 50 counts/y in the ROI, dominated by surface alpha background

One of the most sensitive $0\nu 2\beta$ experiments of the current generation

- Analyzed exposure: 2039.0 kg·y (567.0 kg·y ¹³⁰Te)
- Current limit (¹³⁰Te $T_{1/2}^{0v2\beta}$) : > **3.8** × **10**²⁵ y

$\mathsf{CUORE} \rightarrow \mathsf{CUPID}$

Three important messages from CUORE

- **1. A tonne-scale bolometric detector** is technically feasable
- 2. Analysis of ~1000 individual bolometers is handable
- 3. An infrastructure to host a bolometric next-generation $0v2\beta$ experiment exists and will be available at the end of the CUORE physics program (~2024)

CUPID (CUORE Upgrade with Particle ID) is a proposed $0\nu2\beta$ bolometric experiment exploiting the CUORE infrastructure and with a background 100 times lower at the ROI

CUORE background model

- Reject α background with scintillating bolometers
- Mitigate γ background by moving to ¹⁰⁰Mo
 - $Q_{2\beta}$: 2527 keV (¹³⁰Te) \rightarrow 3034 keV (¹⁰⁰Mo)
- Increase isotope mass by enrichment (natural isotopic abundance: 9.7%)

CUORE ¹³⁰Te pure thermal detector

No PID Q_{2β}= 2527 keV < **2615 keV**

Counts/5 keV

CUPID-Mo

CUPID-Mo experiment

- 20 scintillating bolometers arranged in 5 towers
- each scintillating bolometer consists of Li¹⁰⁰MoO₄ enriched crystal (~ 97% enrichment level) and Germanium light detector
- total mass of crystals is 4.16 kg corresponding to 2.26 kg of ¹⁰⁰Mo
- ~ 1.5 years of data taking
- located in the Laboratoire Souterrain de Modane (France) ~ 4800 m.w.e.

 $\begin{array}{c} 0\nu\beta\beta \mbox{ decay } T^{0\nu}_{1/2} > 1.8\cdot 10^{24} \mbox{ yr (90\% C. l.)} \\ limits & m_{\beta\beta} < (0.28-0.49) \mbox{ eV} \end{array} \right)$

Li₂¹⁰⁰MoO₄ scintillating bolometers adopted as CUPID technology

CUPID structure

CUPID pre-CDR arXiv:1907.09376

- Single crystal module: Li₂¹⁰⁰MoO₄45×45x45 mm ~ 280 g
- 57 towers of 14 floors with 2 crystals each **1596 crystals**
- ~ 240 kg of ¹⁰⁰Mo with >95% enrichment
- ~1.6×10²⁷ ¹⁰⁰Mo atoms

1710 Ge light detectors with SiO antireflective coating (each crystal has top and bottom LD)

- No reflective foil
- Exploitment of the Neganov-Trofimov-Luke effect

Muon veto and neutron shield

Status of crystal procurement

Because of the war against Ukraine the procurement of enriched crystals from Russia is impossible Possible **alternative suppliers**:

Baseline candidate: SICCAS (Shanghai, China)

- Already produced 988 TeO₂ crystals for CUORE
- It is ready to produce 1596 Li¹⁰⁰₂MoO₄ crystals with 95 % enrichment
- The first sample of isotope, measured by ICP-MS at LNGS, fully matches radiopurity requirements
- Pre-production is ongoing:
 - set of several natural crystals was tested in cryogenic facility in LNGS and in Orsay
 - we are expecting to receive 6 enriched crystals within the end of 2024 in Orsay
 - additional enriched crystals are being purchased by INFN

Investigating opportunities for production in France:

- We received a first natural Li₂MoO₄ crystal from Matias Velázquez (Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, France) and performed the first tests in Orsay cryogenic facility
- The first Li₂MoO₄ crystals from Luxium Solutions were grown, we will receive them within the end of 2024

Neganov-Trofimov-Luke light detectors

Enhancement of signal is needed to suppress the dominant background source in CUPID (random coincidences of $2\nu\beta\beta$ events)

Exploit the Neganov-Trofimov-Luke (NTL) effect for signal amplification

NTL light detectors

Total heat: $E_{tot} = E_0 \cdot G_{NTL} \propto V_{bias} = V^+ - V^-$

Typical parameters

Results from recent tests in Canfranc

- $G_{eff} \sim 10 (V_{bias} = 80 V)$
- SNR ~ 90 (V_{bias} = 80 V) @ $\beta\beta$ energy
- rise-time: 0.4 0.7 ms range
- Leakage current: 8/9 NTL LD were able to stand > 90V

Work in progress

 optimization of light detectors and electrode geometry

- optimization of gluing procedure to prevent leakage current
- (increase maximum voltage bias)
- tests of Silicon wafers
- studies on pile-ups rejection efficiency

Tests of NTL LDs

Orsay cryostat:

small experimental volume, suitable for quick tests

LSC, Canfranc, Spain

CROSS demonstrator (commissioning in early 2025)

- 42 scintillating bolometers
- High statistic test for CUPID NTL LD

Tests at LNGS, Italy -> see next slide

Neganov-Trofimov-Luke light detectors

Enhancement of signal is needed to suppress the dominant background source in CUPID (random coincidences of $2\nu\beta\beta$ events)

Exploit the Neganov-Trofimov-Luke (NTL) effect for signal amplification

Total heat: $E_{tot} = E_0 \cdot G_{NTL} \propto V_{bias} = V^+ - V^-$

Test of CUPID towers at LNGS

BDPT

(baseline design prototype tower)

- 28 LMOs
- 30 Ge light detectors **without NTL effect**
- Tested at LNGS, Italy in July-October, 2022

Results:

- Detectors successfully reached baseline temperature ~15 mK
- Baseline stable over the time
- LMO performance: median FWHM_{2615 keV} = 6.2 keV
- median light yield: 0.34 keV/MeV
- $\alpha \, vs \, \beta$, γ discrimination capability:

$$DP = \frac{|LY_{\beta,\gamma} - LY_{\alpha}|}{\sqrt{\sigma_{\beta,\gamma}^2 + \sigma_{\alpha}^2}} = 3.21$$

 some excess noise on the LD -> changes to the LD assembly structure for the next test

Example of α/β separation in a low noise channel

Next test: VSTT (Vertical Slice Test Tower)

Preparation for the new test are currently ongoing

What's new?

- Light detectors with NTL amplification
- Changes to the LD holding system to mitigate the noise

CUPID background budget

Pile-up rejection

Eur. Phys. J. C 72, 1989 (2012)

$$T_{1/2}^{2\nu\beta\beta}(^{100}Mo) = 7.1 \cdot 10^{18} \text{ years}$$

Crucial parameters for pile-up events rejection Signal-to-noise **Rise-time** ratio Can be reduced to Improved by factor ~10 **0.5 ms** by choosing using NTL properly the amplification working point

assuming time resolving capability **1 ms** BI due to random coincidence: **3**. **3** \cdot **10**⁻⁴ **counts**/(**keV kg y**) -> resolving time must be decreased to **0.17 ms** to meet CUPID background target

Work at IJCLab is ongoing to study the rejection capability of the pile-up events

BI as a function of S/N ratio for different rise-times (from simulations based on real data from 1 NTL LD)

NTL performance obtained from recent tests projected on the BI plot

On average < 0.5 ·10⁻⁴ counts/(keV kg y)

Staged deployment

The collaboration decided to move to a **staged deployment** for CUPID implementation

	2024	2025	202	26 2027	2028	2029	2030	2031	2032	2033	2034	
Previous baseline		Li ₂ ¹⁰⁰ MoO ₄ contract	L 3	Li ₂ ¹ ⁰⁰ MoO₄ produ 355 xtls/year	ction			construc commiss	tion and sioning	data		
		- -	CUORE upgrade	E cryostat e				~2x ⁻	10 ²⁶ y			`~4
Stage I 1/3 of the crystals		Li ₂ ¹⁰⁰ MoO ₄ contract	L 2	Li ₂ ¹ººMoO₄ produ 210 xtls/year	ction		data					
Store II						Li ₂ ¹⁰⁰ Mo	O₄ produ	uction			data	

CUORE cryostat upgrade

Staged deployment

Phase I

The most sensitive experiment worldwide at the beginning of the next decade

CUPID discovery sensitivity

CUPID is critical to the discovery program at LNGS.

Staged deployment enables first science data by 2030 with CUPID Stage I

Ton-scale experiment with competitive sensitivity

Summary and final considerations

- The infrastructure for CUPID already exists (CUORE cryostat, LNGS, Italy)
- Basic technology demonstrated in CUPID-Mo (EDELWEISS cryostat, Modane, France)
- The performance of the single module and of the basic tower are under test with promising results
- Crystallization and enrichement at large scale are possible (new producers)
- Data-driven background model indicates b~10⁻⁴ counts/(keV·kg·y)
- Neganov-Trofimov-Luke light detector can mitigate the most challenging background
- Fully explore the inverted ordering region

down to $m_{\beta\beta}$ = 10 meV for the most favorable nuclear model

- Staged deployment: CUPID Stage-I can take data at the end of this decade and has world leading science reach
- On a longer time scale, mass scaling and potential multi-isotope approach

Collaboration

