GDR Deep Underground Physics,⁴ 9-11 oct. 2024, Lyon, France

DAMIC-M electronics system, status and first results.

Lounes IDDIR on behalf of the DAMIC-M Collaboration LPNHE (Paris), CNRS-IN2P3.

DARK MATTER IN CCDs The experiment

What is DAMIC?

Aims to detect nuclear and electron recoils in Silicon CCDs to search for light dark matter candidates (eV to GeV).

DARK MATTER IN CCDs The experiment

Detector second generation :

```
DAMIC at Modane, based in France.

52 modules of 4 CCDs 6K x 1.5K.

~1kg target mass.

Multiple non-destructive charge measurement

(Skipper CCD).
```


DARK MATTER IN CCDs CCD module

DAMIC-M CCD stack

~200 SKIPPER CCDs 6000 pix x 1500 pix

• The 4 CCDs are glued on a silicon pitch adapter.

DARK MATTER IN CCDs Detection principle and CCD readout

ELECTRONICS CHAIN Frontend and backend boards

CCD biases.

- Pre-amplifier polarisation.
- Subsrate polarisation.

Clocks generation.

• Timing and voltage control.

FPGA.

- Communication.
- Sequencer execution.
- Data preprocessing

Signal oversampling.

• 4 fast-ADC channels 15 MSPS.

FE board:

- Clock RC shapping
- Bias filtering
- Signal amplification

BE board Acquisition and Control Module (ACM)

READOUT NOISE An important parameter

System complexity

 μV signal amplitudes

Noise must be minimized to achieve the single-electron resolution.

READOUT NOISE Strategies to reduce electronic noise

READOUT NOISE Strategies to reduce electronic noise

Signal oversampling - 15MSPS ADCs

Figures source: J. Tiffenberg. "Counting electrons with the skipper-ccd," Fermi National Laboratory.

READOUT NOISE Strategies to reduce electronic noise

Signal oversampling - 15MSPS ADCs

NDCM: number of Non-Destructive Charge Measurments

What might be the other noise sources ?

1. Electronic components intrinsic noise (Biases, Clocks generation)

2.Clock Transfert Inefficiency (CTI), Clock Induced Charge (CIC)

3.Dark current

4.Crosstalk noise

READOUT NOISE Electronic components intrinsic noise - Biases

Figure description: Schematic illustration of a Skipper-CCD readout stage.

Figure source: SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD. 10.48550/arXiv.2106.08347. .

READOUT NOISE Electronic components intrinsic noise - Biases

Figure description: Schematic illustration of a Skipper-CCD readout stage.

Figure source: SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD. 10.48550/arXiv.2106.08347. .

READOUT NOISE Electronic components intrinsic noise - Biases

TPS7A33 -36-V, 1-A, Ultralow-Noise Negative Voltage Regulator, 16µVRMS (10 Hz to 100 kHz)

Figure description: Typical Application Schematic of a bias generator.

Figure source: TPS7A33 datasheet.

READOUT NOISE Electronic components intrinsic noise - Clocks

Figure description: Schematic illustration of a Skipper-CCD readout stage.

Figure source: SENSEI: Characterization of Single-Electron Events Using a Skipper-CCD. 10.48550/arXiv.2106.08347. .

READOUT NOISE Electronic components intrinsic noise - Clocks

40-Channel, 14-Bit DAC, 250 nV/VHz @ 10KHz

Figure description: Typical Application Schematic of a clock generator.

Figure source: AD5371 & ADG5234 datasheets.

READOUT NOISE Clock Transfert Inefficiency (CTI) & Clock Induced Charge (CIC)

What are CTI and CIC?

CTI describses the quality of the pixel transfer.

CIC are charges that are released from trappes due to the clocks.

Figure description: Diagram of consecutive transfer of charge in a CCD. The diagram shows the charge transfer at different stages in time and space.

Figure source: Modeling of Charge Transfer Inefficiency in a CCD with High-Speed Column Parallel Readout. arXiv:0811.2503v1

READOUT NOISE Clock Transfert Inefficiency (CTI) & Clock Induced Charge (CIC)

How do we reduce CTI & CIC?

Increase the clock timings and/or the amplitudes.

Increase the rising and falling times.

Figure description: Diagram of consecutive transfer of charge in a CCD. The diagram shows the charge transfer at different stages in time and space.

Figure source: Modeling of Charge Transfer Inefficiency in a CCD with High-Speed Column Parallel Readout. arXiv:0811.2503v1

What is Dark Current?

Thermally generated charge, which is not due to incident particles. DC is **linearly** dependent on time.

How do we reduce Dark Current?

1. Lower operating temperature.

CCDs are **cooled** to a temperature of **130Kelvin**.

2.Reduce readout time.

ELECTRONICS CHAIN Crosstalk noise

DAMIC-M PROTOTYPE Noise readout results

Bottom module Top module

Electronics noise improved:

Old electronics (ARC Astronomical Research Cameras CCD Controller)

> 5 boards for 1 module 7e

New electronics

pixels ż

1 board for 1 module < 3e-

DAMIC at MODANE Conclusion and perspectives

Achieved :

- 1.Low noise electronics
- 2.A functional prototype of the detector

Planned :

- 1.CCD modules commissiong.
- 2.Final cryostat and shielding commission.
- 3.Half-detector installation during 2025.

BACKUP

SOFTWARE DAQ

ACMDAQ (Olivier Deligny, IJCLAB):

• C++ communication protocols.

LDAQ (Romain Gaior, LPNHE):

• Python user interface.

CDAQ (Xavier Bertou, LPNHE/IJCLAB):
 LDAQ/ODAQ broker.

DAMIC-M PROTOTYPE Low Background Chamber

Main goals:

- Validate the operation of detector subsystems (Cryogenics, electronics, slow control..)
- Evaluate the performances of skipper CCDs.

DAMIC-M PROTOTYPE Noise spectra, example of noise improvement (grounding)

BLUE: psd_ch0_103_20240904_125539_2.csv RED: psd_ch0_103_20240904_130644_14.csv

DAMIC-M CCD MODULE Example of CCD image

