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Individual events parameter 
estimation (PE)

❖ The parameters of a single event,   , are obtained through Bayes’ theorem:

❖ : single event likelihood

❖ : individual event prior

❖ : evidence



Hierarchical Models: intuitive 
approach

❖ Consider a prior not only for a single data set, but also for a population of events, 
e.g., compact binary coalescences.

❖ The parameters of that prior encode the details of the population and are also of 
interest. This leads to the notion of a hierarchical model.

❖ In a hierarchical model, the parameters of the prior (termed hyperparameters) are 
regarded as random variables, on which a hyperprior is defined. 

❖ Assumes events are statistically independent 



Hierarchical Models: intuitive 
approach

❖ No instrument is arbitrarily sensitive and therefore some types of source are easier 
to see than others. This is important to remember in hierarchical models for 
populations when we are combining only detected events.

❖ We can correct for this by acknowledging that we only include “detected” events in 
the analysis and then write down a likelihood for detected events. This must 
integrate to 1 over all “detected” or “above threshold” data sets.

❖ This framework assumes a priori that the number of detected events contains no 
information about the parameters of interest.

❖ Obs: selection effects do not impact the parameter estimation of single events.
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More general approach
❖ We write down the joint likelihood for all data/parameter pairs using an 

infinitesimal inhomogeneous Poisson process, including both detected events 
(indexed by i) and undetected events (indexed by j)

❖ Marginalising over the unobserved data we obtain

❖ Marginalising over the unknown number of unobserved events then gives



More general approach
❖ Writing

❖ introducing a scale-invariant prior on the overall rate

❖ and noting

❖ After marginalising over        , we recover the result with the “intuitive approach”.



Hierarchical Bayesian analysis

❖ Including rates:

❖ Marginalising over the rate:

❖ We often note                    the population prior

Assumes events are statistically independent 



Practical implementation

❖ Evidences:

❖ Selection:



Population inference

❖ Assume a form for

❖ Can be:
 astrophysical
 parametric
 non-parametric

❖ Obtain                    accounting for selection effects and measurement uncertainty 
performing a hierarchical Bayesian analysis 



Astrophysical model

❖                     .

❖ Results on GWTC-2 from Wong et al., PRD 2021                          .

❖ See Zevin et al., APJ 2021 for more formation channels et  Mould et al., PRD 2022 for results on 
GWTC-3 ❖ Cons:

 Huge uncertainty on astro models. We might not include all 
channels (see Cheng et al., 2307.03129, Raikman et al.,  
2310.10736)

 Requires some way to evaluate pdf from samples and to 
interpolate (see Toubiana et al., PRD 2021 for systematic errors)       
               .

❖ Pros:
 Gives direct information on 

astrophysical processes



Parametric model

❖ GWTC-3 shows evidence for a peak at                  , a 
bit low for the pair-instability gap

❖ Some evidence for for rate evolution, with the rate 
higher in the past. 

LVK, PRX 2021



Parametric model

❖ Moderate spins are favoured

❖ Small preference for aligned spins 

LVK, PRX 2021



❖ Probe correlations between parameters by fitting joint distributions, or allowing model parameters to 
depend on other parameters. In the analysis of GWTC-3, the LVK explored the variation of the spin 
distribution with mass ratio.

Parametric model, multi-
dimensional

❖ Also hints of correlation between effetctive spin and redshift (Biscoveanu et al., APJL 2022), mass and 
redshift (Fishbach et al., APJ 2021), mass and spins (Hoy et al., APJ 2022, non-parametric: Godfrey et 
al., 2304.01288, Rinaldi et al., 2310.03074)

❖ Probe correlations between parameters by fitting joint distributions, or allowing model parameters to 
depend on other parameters. In the analysis of GWTC-3, the LVK explored the variation of the spin 
distribution with mass ratio.

❖ Pros:
 Analytic pdfs, easy to evaluate
 Some astrophysical meaning 

❖ Cons:
 Little flexibility
 Not so much astrophysical meaning                     .



Non-parametric model

❖ BGP: Binned Gaussian process

❖ FM: Flexible mixture, total pdf is the sum of elementary functions, here Gaussian for 
the primary mass, the spins and power-laws for mass ratio 

❖ PS: power-law spline, pdf is power-law times a spline which value at fixed knots is 
inferred, presence of peak is not imposed 

LVK, PRX 2021



Non-parametric model

❖ Model the pdf as a piece-wise power-law, vary the position and the number of knots 
using Reversible Jump MCMC.  

❖ Performing (simplified) mock injections we find a 5% probability of peak at                 
to be spurious.    

Toubiana et al., MNRAS 2023



Non-parametric model

Callister et al.,  2302.07289

Ruhe et al., 2211.09008v3 Ruhe et al., 2211.09008v3 

❖ Note: here selection effects are not included
❖ Pros:

 Very flexible
 Requires less a prior knowledge

❖ Cons:
 Parameters have no astrophysical meaning
 Complexity is a priori arbitrary (might be alleviated using 

RJMCMC)



Cosmological inference

❖ Cosmological parameters enter through the source-frame to detector-frame conversion: 

❖ Spectral-sirens: Measure detector-frame masses while assuming a population model for 
source-frame ones to obtain cosmological parameters

LVK, APJ 2023

❖ Can also be used to constrain

  modified propagation in beyond GR theories (Mancarella, Genoud-Prachex, Maggiore 2024 
PRD 2022, Leyde, Mastrogiovanni, Steer, Chassande-Mottin, Karathanasis JCAP 2022) 

 dark energy EoS ( Mangiagli, Caprini, Marsat, Speri, Caldwell, Tamanini 2023)



“Converting fits”
❖ Fit one “flexible”model dealing with measurement errors and selection effects and 

map it a posteriori to any sort of distribution

❖ Example: first fit a histogram and map it to any population model through a 
Dirichlet process:

❖  

❖ The concentration parameter     measures the quality of the “conversion”

❖ If data generated from                       ,                  when              

❖ Ongoing work with S. Rinaldi and J. Gair, also different approach from C. Fabri and D. Gerosa



“Converting fits”

❖  

❖  

❖ Use reversible-jump MCMC to get “optimised” binning scheme

❖ Compare to standard hierarchical analysis:

❖ Ongoing work



Machine learning methods 

❖  

❖ Use normalising flow to interpolate                     from astro simulations 

❖ Use normalising flow to “learn” the posterior on     (Leyde, Green, Toubiana, Gair 
PRD 2024) :

  For                    , draw events        , generate data        , draw samples  

 From a set of samples from the observed events obtain 



Machine learning methods 

❖ Future work:

 Improve fit 

 Allow for arbitrary number of events

 Learn directly the strain

❖  

Leyde, Green, Toubiana, Gair PRD 2024



Future challenges
❖ Computational cost scales (naively) with the number of events:

❖ Selection function computation might become inaccurate (see Essick et al.,  
2204.00461)

❖ Modelling of multi-dimensional distributions

❖ “Systematics” in the population model might significantly bias the results (posterior 
predictive checking!)



LISA challenges

❖ Events are not independent: “Global Fit”:

 Need inverse mapping from foreground to population

 Selection?

❖ Toubiana, Gair (on going): create mock “Global fit” to investigate general formalism for 
population studies with LISA  

❖  



Predictive checking
❖ It is natural to want to test if the assumed model is a good fit to the data. In a 

Bayesian context this is achieved through predictive checking.

❖ The prior predictive distribution is defined by

❖ This is the distribution of observed data sets within the model assumed in the prior. 
If the observed data is not very consistent with this distribution, the prior 
parameters might need to be adjusted.

❖ The posterior predictive distribution is defined similarly 

❖ This is the distribution of new datasets based on the model fitted to the data. The 
observed data should lie within the body of this distribution if the model is good.



Example: gaussian fit
❖ The predictive distribution can be used to compute the distribution of summary 

quantities. The value of those summary quantities in the observed data can then be 
compared to these distributions.

❖ It is better to choose quantities that are somewhat “orthogonal” to what is adjusted 
to fit the data.

❖ Example: we try to fit a Gaussian to the following distribution:

❖ We assume a Gaussian measurement error of 2 



Example: gaussian fit

❖  



Example: gaussian fit

❖  



Predictive checking

❖ Posterior predictive checks are “good practice”. 

❖ Can help build intuition how to improve models.

❖ But are often computationally expensive...



MCMC

❖ Starting from a point     propose a point     with the proposal function    

❖ Accept  with probability 

❖ In any case, record the point



Reversible jump MCMC
❖ Vary the dimensionality of parameter space

❖ E.g. global fit for LISA

❖ Propose to add component through proposal function

❖ Accept  with probability 

❖ In any case, record the point

❖ Also do jumps in fixed dimension
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