
Analysis of ground-based detector data
with a focus on matched filtering

Tito Dal Canton

GdR ondes gravitationnelles
Rencontre du groupe de travail “méthodes d’analyse des données”

2024-10-16



Modeling the data of a ground-based GW detector
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Detector noise that is 
easy to predict or model. 
Usually fundamental, and 
determines the sensitivity 

of the detector.

Detector/environment noise 
that is hard or impossible to 

predict or model. Usually 
technical, and determines 

the quality of the data.

Superposition of all gravitational-wave 
signals, each with its own vector of 

parameters describing the source and 
possibly larger structures, or even the 

whole Universe.

Continuous time series of spacetime strain measurement, sampled at ~10 kHz, contaminated with noise:



Modeling the data of a ground-based GW detector
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Taxonomy of ground-based data analysis methods
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Waveform
duration

Waveform complexity

Continuous-wave
analyses

Stochastic
analyses“Burst”

(weakly-modeled)
analyses

Compact binary 
coalescence

analyses

Transient
signals

Persistent
signals



Common assumptions for ground-based transient searches

1. Separable signals:
the duration of a signal is much shorter than the time between signals
(on average).
→ Separate the analysis problem into
detection (search) and parameter estimation

2. Fixed detector geometry:
the rotation of the Earth is negligible during the duration of a signal.
→ Detector response is just a constant scaling factor in the waveform model.

3. (In the case of CBC searches) simplified waveform model:
neglect precession, higher-order modes, eccentricity & tidal effects.
Signal can be expressed as                                     or 
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Maximum likelihood formalism
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For the first identification of an unknown GW transient, we use a maximum likelihood approach:

Maximum
likelihood
ratio

Maximum
likelihood
parameter
estimate

Covariance
matrix

Solving the ML problem gives only an approximate answer to the original problem.
In many cases not a very good one.

A: noise + signal hypothesis
B: noise only (null) hypothesis



Data model                          with stationary Gaussian noise

The signal + Gaussian noise likelihood function
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Assume known noise PSD → The only free parameters are signal parameters

ML ratio becomes simpler in log:

Whittle likelihood

with the noise-weighted inner product
between discrete-time signals a and b

(Note that I am not being very
careful with constant factors
in these expressions)



Matched filtering and signal-to-noise ratio
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Want to maximize                                                       . Re-express the signal as

Then maximizing over a
has a closed-form solution:

with the (amplitude-maximized)
signal-to-noise ratio (SNR)

Maximizing over an overall
phase shift is also possible if we 
use instead two templates that 
differ by a 90 deg phase rotation:

Template
waveform

Matched filter

← This is what people
usually mean with
“SNR” in LVK analyses



Matched filtering and signal-to-noise ratio
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Signal-processing interpretation(s)

● Linear filter optimized to estimate the amplitude of a signal with known shape
(hence matched filter) 

● Correlation between the whitened data and the whitened template

Geometric interpretation

● N-dimensional inner product with a unit vector

Data

Noise model

Signal model



Interpreting the signal-to-noise ratio
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Remember that ultimately we are computing the LLR between “Gaussian noise + signal h”
and “Gaussian noise only”. 

How does the SNR behave if there is no signal?

Each <s|h> term is a unit-norm linear filter applied to Gaussian whitened data
→ Normal random variate

→ 𝜌2 distributed as a central χ2 random variate → 𝜌 is on average ~1 far from the signals

Maximize the SNR ↔ Maximize the LLR for Gaussian noise

→ As SNR grows above some SNRmin (typically 4-8) the null hypothesis for Gaussian noise becomes 
less and less likely.

Assuming that the signals are well separated, finding the local maxima of the SNR over the remaining 
parameters will point out the (strongest) signals.
This generally requires a numerical search.



Mismatched filtering: the template bank
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Mismatched filtering: the template bank
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105-106 templates for CBC searches with LIGO/Virgo/KAGRA



Projection of the SNR profile over two search parameters
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Local maxima due
to Gaussian noise
(SNR ~ 1)

Local maximum
due to a signal
(SNR ~ 10)



From the SNR to candidate events
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Livingston trigger
Hanford trigger



Dealing with “hard” noise post-facto
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SNR “proportional to the data”
→ Local fluctuations of the noise will reflect in the SNR
→ Large SNR no longer implies a trigger is astrophysical

Solution: signal-based discrimination statistics
● Time-frequency χ2: check distribution of SNR over frequency
● Autocorrelation χ2: check shape of SNR peak over merger time
● Bank χ2: check shape of SNR peak over template parameters

Common statistical property:
● Distributed like a central χ2 under Gaussian noise

or Gaussian noise + matched signal
● Distributed like a noncentral χ2 under Gaussian noise + mismatched signal



Combining data from different detectors
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Incoherent methods

Solve the ML problem separately for each 
detector.

Identify triggers separately in each detector.

Time coincidence between detectors with a 
coincidence window accounting for the light 
travel time between detectors.

Rank each coincident candidate with an 
incoherent SNR-like quantity

Fully coherent methods

Solve the full ML problem simultaneously for all 
detectors with a common signal.

Requires exploring a larger search space
(e.g. sky location).

Beneficial for many detectors
(more constrained likelihood).

Semicoherent methods

Identify triggers separately in each detector.

Express the network likelihood in terms of the 
single-detector triggers.



Statistical significance of candidate events
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How often does instrumental noise
produce a candidate event ranked
higher than what I got?
→ False-alarm rate (FAR)

Generate a “null” distribution of ranking 
statistic from a large sample of unphysical 
events:

● By time-sliding data from different GW 
detectors

● By extrapolating the bulk of the ranking 
statistic.

Obtain a map to “look up” the FAR associated 
with a given ranking statistic. E.g. FAR ≲ 1/100 yr

→ Candidate is unlikely to come from noise



Statistical significance of candidate events
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How probable is a candidate event to be of 
astrophysical origin?
→ P(astro) or p_astro

Construct a model for the rate density of 
signal f(𝛌) and background b(𝛌) candidates 
over the space of candidate parameters 𝛌

0: candidate is certainly of terrestrial origin
0.5: ambiguous origin
1: candidate is certainly astrophysical



Modern implementations of matched-filter searches for CBCs
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“Pipelines” developed by different teams

GstLAL

Time-domain matched filter using a singular 
value decomposition of the templates.

MBTA

Frequency-domain matched filter using a 
two-band decomposition of the templates.

PyCBC

Direct frequency-domain matched filter.

SPIIR

Time-domain fully coherent matched filter

Online (low latency)

Results available ~10 s after data acquisition.

Used to produce rapid alerts for electromagnetic 
followup observations.

Offline (archival)

Results available hours to weeks after data 
acquisition.

Used for “more careful” analyses, to compile 
ultimate event catalogs like GWTC.

See https://emfollow.docs.ligo.org/userguide/ for 
more info.

https://emfollow.docs.ligo.org/userguide/


Links to papers
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General introduction to ground-based data analysis
A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals
https://iopscience.iop.org/article/10.1088/1361-6382/ab685e

Technical implementation of discrete-time FD matched filtering
FINDCHIRP: An Algorithm for detection of gravitational waves from inspiraling compact binaries
https://arxiv.org/abs/gr-qc/0509116

Description of a complete CBC search pipeline based on matched filtering
The PyCBC search for gravitational waves from compact binary coalescence
https://arxiv.org/abs/1508.02357

Latest LVK catalog
GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run
https://doi.org/10.1103/PhysRevX.13.041039

https://iopscience.iop.org/article/10.1088/1361-6382/ab685e
https://arxiv.org/abs/gr-qc/0509116
https://arxiv.org/abs/1508.02357
https://doi.org/10.1103/PhysRevX.13.041039


Links to tutorials
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https://github.com/gwastro/PyCBC-Tutorials

Tutorial 1: Accessing Gravitational-wave data

Tutorial 2: Data visualization and basic signal processing

Tutorial 3: Matched filtering to identify signals

Tutorial 4: Signal consistency and basic significance testing

https://github.com/gwastro/PyCBC-Tutorials


Thank you!
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