GdR Ondes Gravitationnelles

Rencontre du groupe de travail - "Méthodes d'analyse des données"

Pulsar Timing Array Data Analysis

Hippolyte QUELQUEJAY - PhD Student (3rd year)

Table of contents

- 1. Context
- 2. Single pulsar noise analysis
- 3. The search for Gravitational Wave Background (GWB)
 - a. Characterization of the signal
 - b. Evaluation of its significance

Principle of PTA

[arXiv:2309.00693]

Main expected sources of GW for PTA

SGWB

Population of SMBHBs

Continuous wave

Individual SMBHB

Inspiraling phase Circular or Eccentric

Cosmological origin

(Phase transition, Cosmic strings, Inflation...)

Main expected sources of GW for PTA

SGWB

Population of SMBHBs

Cosmological origin

(Phase transition, Cosmic strings, Inflation...)

Continuous wave

Individual SMBHB

Inspiraling phase Circular or Eccentric

The PTA data

→ Radio telescopes measure time of arrival (ToA) of radio pulses from most stable MSP (~twice/month) → Unevenly sampled data

 \rightarrow Each ToA is associated with a radio frequency of observation (mostly in L-band: 1 < v < 2 GHz)

Credits: CNRS

 \rightarrow Observations span over years

The PTA data

The data used in PTA are **residuals**
$$\delta t^i_{\alpha} = t^i_{\rm obs} - t^i_{\rm TM}$$
 ToA index
Pulsar index

Where the Timing Model (TM) is a complex deterministic function

This function is parameterised by tens of parameters determined by a least-squares fit

Spin period and derivative(s), sky position, mass of the MSP, dispersion measure...

[arXiv:astro-ph/0607664]

The PTA data

Single pulsar noise analysis

What are those residuals made of? And how to model it?

$$\delta t^i_{lpha} = t^i_{
m obs} - t^i_{
m TM}$$
 ToA index
Pulsar index

Bayesian framework

Assumptions: noise is Gaussian and stationary

Both deterministic and stochastic signals are parameterised by several parameters, whose posterior distributions are computed using MCMC

White Noise

Origin

 \rightarrow Radiometer noise ToA uncertainty \rightarrow Pulse jitter $N_{ij} = \langle n_{i,\mu}^{WN} n_{j,\nu}^{WN} \rangle = \left(F_{\mu}^2 \sigma_i^2 + Q_{\mu}^2 \right) \delta_{ij} \delta_{\mu\nu}$ ToA index Instrument system index White noise is parameterised by two parameters per instrument system (receiver + backend)

Modeling of stochastic processes (and more) Marginalization over Gaussian Process realisations

The idea is to decompose the noise residuals over a basis of functions (usually Fourier basis)

$$\delta t = \mathbf{F} \cdot \mathbf{c}$$

where **C** follow a multivariate Gaussian distribution For the stochastic processes we use a Fourier basis $\delta t_i^{(\alpha)} \propto \sum_{n=1}^{N_f^{(\alpha)}} [a_n \cos(2\pi f_n t_i) + b_n \sin(2\pi f_n t_i)]$ Such that $B_{kl}^{(\alpha)} = \langle c_k^{(\alpha)} c_l^{(\alpha)} \rangle = \frac{1}{T} S^{(\alpha)} (f_k; \theta^{(\alpha)}) \delta_{kl}$

 \rightarrow The idea is that we do not sample over the **C** coefficients but over the hyper parameters $\theta^{(\alpha)}$ that parameterise the statistical properties of the noise

Marginalization over Gaussian Process realisations

$$p(\delta t \mid \theta) = \int p(\delta t \mid c) p(c \mid \theta) dc$$

= $\int \frac{1}{\sqrt{|2\pi N|}} e^{-\frac{1}{2}(\delta t - Fc)^{\top} N^{-1}(\delta t - Fc)} \times \frac{e^{-\frac{1}{2}c^{\top} B^{-1}(\theta)c}}{\sqrt{|2\pi B|}} dc$
= $\frac{e^{-\frac{1}{2}\delta t^{\top} N^{-1}\delta t}}{\sqrt{|2\pi N||2\pi B|}} \int e^{-\frac{1}{2}c^{\top} (F^{\top} N^{-1} F + B^{-1})c + \delta t^{\top} N^{-1} Fc} dc$
= $\frac{1}{\sqrt{|2\pi N||B||\Sigma|}} e^{-\frac{1}{2}\delta t^{\top} (N^{-1} - N^{-1} F\Sigma^{-1} F^{\top} N^{-1})\delta t}$

where $\Sigma = B^{-1} + F^{\top} N^{-1} F$

Advantages of the method

 \to Huge reduction of computational cost as the computational bottleneck matrix inversion is now in frequency domain ($N_f \ll N_{\rm ToA}$)

 \rightarrow Can also be useful for deterministic signals (see next slide)

 \rightarrow Addition of several processes is easy (concatenation of the F and c)

Timing model errors

$$\delta t^i_{\alpha} = t^i_{\rm obs} - t^i_{\rm TM}$$

Before conducting a noise analysis, an initial timing model solution β_0 is obtained using a least-squares fitting method. Errors on this timing solution can then be modeled as

$$\delta t^{\mathrm{TM}} = \nabla_{\vec{\beta}} f_{\mathrm{TM}}(\vec{\beta}_0) \cdot (\vec{\beta} - \vec{\beta}_0)$$
$$= M \cdot \epsilon$$

 \rightarrow We can marginalize over the TM errors for each pulsar using infinitely wide Gaussian prior

Origin

 \rightarrow Long-term variability of pulsar spin rate

Characteristics

 \rightarrow Power law expected [Shannon & Cordes, 2010]

Modeling

 \rightarrow Fourier basis up to $N_f^{(RN)}$ components (free parameter) with a power law PSD Parameters (per pulsar)

Time (yr)

Dispersion measure variations

Origin

 $\rightarrow\,$ Stochastic variations of the DM along the pulsar line of sight: delay is chromatic

Characteristics

→ If originate from turbulent Kolmogorov spectrum: Power law PSD [Keith et al, 2012] Modeling

 \rightarrow Fourier basis up to $N_f^{(DM)}$ components scaled with observing radio frequency $\left(\frac{\nu_{\text{ref}}}{\nu_i}\right)^2$

 $A_{
m vr}, \gamma$

 \rightarrow Power law PSD

Parameters (per pulsar)

$$\delta t_i^{(\alpha)} \propto \sum_{n=1}^{N_f^{(\alpha)}} \left[a_n \cos\left(2\pi f_n t_i\right) + b_n \sin\left(2\pi f_n t_i\right) \right]$$

Building custom noise models for individual pulsars

- \rightarrow Not every pulsar will exhibit each noise component
- \rightarrow Bayesian model comparison is used to select the most preferred model

WN only, WN + RN, WN + DMv, WN + RN + DMv, ...

 \to Once the model is picked we can also select the preferred number of Fourier components to model each noise component $N_f^{(\alpha)}$

 \rightarrow The resulting single pulsar noise models are then used in the GW search

The search for GW background(s)

The isotropic and stationary GWB model

For a Gaussian, isotropic and stationary background $\langle \delta t_{\mu}(f) \delta t_{\nu}(f') \rangle = \frac{1}{2} \Gamma_{\mu\nu} S_{\text{GWB}}(f) \delta_{ff'}$

 $\Gamma_{\mu
u}$ is the overlap reduction function, quantifying the expected average correlation

 $S_{
m GWB}\,$ is the Power Spectral Density of the GWB

Hellings-Downs (HD) correlation pattern

[Hellings & Downs, 1983] ²⁰

GWB modeling

$$f_k = k/T_{\rm PTA}$$

 \rightarrow As for individual pulsar noise, we use Gaussian process to model the GWB

$$\delta t^{\mu}_{\rm GWB} = F^{\mu} \cdot c^{\mu}_{\rm GWB}$$

 \rightarrow But here, coefficients are correlated amongst pulsars

$$\langle c^{\mu}_{\mathrm{GWB},k} c^{\nu}_{\mathrm{GWB},l} \rangle = \Gamma^{\mu\nu} \frac{1}{T_{\mathrm{PTA}}} S_{\mathrm{GWB}}(f_k) \delta_{kl}$$

 \rightarrow Computationally very heavy as cannot be inverted block by block as in the case of uncorrelated red noise (some fast methods have been developed: resampling, ...)

 \rightarrow The PSD model can either be a power law or a free spectrum

The covariance matrix (mainly) contains

- TM error marginalization of each pulsar
- Achromatic red noise (2 parameters for each pulsar that show aRN)
- DM variation noise (2 parameters for each pulsar that show DMv)
- GWB noise (2 parameters) \rightarrow correlations given by the HD curve
- \rightarrow In total: hundreds of parameters to sample

[EPTA Paper IV - 2023]

Inferring the properties of the GWB

Power law PSD model

Free Spectrum PSD model

Evaluation of the significance of the correlations

1. Model comparison via Bayes Factor (BF) evaluation of

Common Uncorrelated RN $\Gamma_{\mu\nu} = \delta_{\mu\nu}$

$$\Gamma_{\mu\nu} = \Gamma^{\rm HD}_{\mu\nu}$$

CWD

VS

 Bayesian inference of the ORF (assuming it depends only on the pulsar pair angular separation)

Evaluation of the significance of the correlations

- 3. Frequentist approach (F-statistic)
 - $\rightarrow \text{Maximization of likelihood ratio (GWB/CURN)} \iff \chi^2 = \sum_{ab,a < b} \left(\frac{\rho_{ab} A^2 \Gamma_{ab}}{\sigma_{ab}} \right)^2$

[Sardesai et al, 2023]

[Taylor et al, 2017]

- 1. Conservation of noise properties
- 2. Destruction of the pulsar cross-correlations \rightarrow construction of the statistics null distribution

[EPTA Paper III - 2023]

Evaluation of p-values - Sky scrambles

 \rightarrow We construct the null distribution for our statistic

 $BF_{
m CURN}^{
m HD}$ (in this case)

using thousands of sky scrambles realisations

 \rightarrow We estimate a p-value looking at the fraction of scrambles that give a BF higher than our measurement

Recent developments

• Non-stationarity modeling [Falxa - arXiv:2405.03295]

• Use of hierarchical models [van Haasteren - arXiv:2406.05081]

- Including Low Frequency data from other telescopes (LOFAR, CHIME...)
 - Help disentangling achromatic and chromatic noise

Packages

Computation of the likelihood

enterprise

[github.com/nanograv/enterprise/]

enterprise_extensions

[github.com/nanograv/enterprise_extensions/]

Sampler

РТМСМС

[github.com/nanograv/PTMCMCSampler]

Tutorials of NANOGrav

[github.com/nanograv/15yr_stochastic_analysis]

Useful references

The Nanohertz Gravitational Wave Astronomer

S. Taylor - arXiv.2105.13270

The NANOGrav 15-year Gravitational-Wave Background Analysis Pipeline

Johnson et al. - arXiv:2306.16223

New advances in the Gaussian-process approach to pulsar-timing data analysis

M. Vallisneri, R. van Haasteren - arXiv:1407.1838

Backup slides

Allen, Romano (2023)