

LISA Data Analysis Status

Antoine Petiteau (CEA/IRFU/DPhP)

For the LISA DDPC

Journée Analyse de données du GdR OG Marseille - 16/10/2024

Timeline and status

- 1993: first proposal ESA/NASA
- 20/06/2017: LISA mission approved by ESA Science Program Committee (SPC) after the success of LISAPathfinder and GW detection by LIGO-Virgo.
- End 2021: success of the ESA Mission Formulation Review
- 25/01/2024: success of the Mission Adoption Review and adoption by the SPC: design is fully validated and we have the ressource to build the instrument
- (New) LISA Science Team in place
- Long building phase of DDPC + multiple MOSAs (6 flight models + test models) + spacecrafts
- Launch 2035
- 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension

Timeline and status

	MF	R Ado	ption							l	auno. L	^{:h} Comn	nissioi I	ning		
•••	Phase A	Phase B1				Pł	nase B2/C/D							Phase	E	
•••	Scope, 1 st definition	Definition		Deta	illed de	efinition, prod	uction, integ	ration, tests, v	alidation		ι	Transfer	C		Operations	•••
•••		2022	2024		2026	2028	2030	2032	2	034		2036		2038	2042	•••

- 1993: first proposal ESA/NASA
- 20/06/2017: LISA mission approved by ESA Science Program Committee (SPC) after the success of LISAPathfinder and GW detection by LIGO-Virgo.
- End 2021: success of the ESA Mission Formulation Review
- 25/01/2024: success of the Mission Adoption Review and adoption by the SPC: design is fully validated and we have the ressource to build the instrument
- (New) LISA Science Team in place
- Long building phase of DDPC + multiple MOSAs (6 flight models + test models) + spacecrafts
- Launch 2035
- 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension

Timeline and status

	MF	R Ado	ption							Laun	ch Com	imissi	oning		
•••	Phase A	Phase B1				PI	hase B2/C/D						Phase	e E	•••
•••	Scope, 1 st definition	Definition		Deta	illed de	efinition, prod	luction, integr	ation, tests, v	alidation	L	Transfe	er C		Operations	••
•••		2022	2024		2026	2028	2030	2032	2034		2036		2038	2042	

- 1993: first proposal ESA/NASA
- 20/06/2017: LISA mission approved by ESA Science Program Committee (SPC) after the success of LISAPathfinder and GW detection by LIGO-Virgo.
- End 2021: success of the ESA Mission Formulation Review
- 25/01/2024: success of the Mission Adoption Review and adoption by the SPC: design is fully validated and we have the ressource to build the instrument
- (New) LISA Science Team in place
- Long building phase of DDPC + multiple MOSAs (6 flight models + test models) + spacecrafts
- Launch 2035
- 1.5 years of transfer, 4.5 years nominal mission, 6.5 years extension

LISA collaboration

· e e sa

irfu

cea

LISA - An international mission led by ESA

physics

irfu

cea

Science Objectives

- S01: Study the formation and evolution of compact binary stars in the Milky Way Galaxy.
- SO2: Trace the origin, growth and merger history of massive black holes across cosmic ages.
- SO3: Probe the properties and immediate environments of black holes in the local Universe using EMRIs and IMRIs.
 Fundamental
- SO4: Understand the astrophysics of stellar origin black holes.
- SO5: Explore the fundamental nature of gravity and black holes.
- SO6: Probe the rate of expansion of the Universe.
- SO7: Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics.
- Solarial Search for GW bursts and unforeseen sources.

irfu

cea

GW sources in the mHz band

- Binaries: large range of masses and mass ratios:
 - SuperMassive BH Binaries
 - Extreme Mass Ratio Inspiral
 - Stellar mass BH Binaries
 - Double White Dwarfs
 - Double Neutron Stars
 - Intermediate Mass Ratio Inspiral
 - Intermediate Mass BH Binaries
- Stochastic backgrounds:
 - First order phase transitions, cosmic string networks, ...
- ► Bursts: cosmic strings, ...
- Unknown?

irfu

<u>cea</u>

Binaries observed by LISA

Sources	SNR	Duration	Event rate		
				10 ⁻¹⁴	- 1400
Galactic binaries	10 – 500	permane nt	10000 – 30000 detectables + background	10^{-15} 10^{-16} $10^{7}M_{\odot}$ $5 \times 10^{6}M_{\odot}$ 10^{-16} Galactic Binaries Verification Binaries Massive BH Binaries Multiband Sources EMRIs	- 1200 - 1000
Verification binaries	7 - 100	permane nt	20 (today)	$\stackrel{\text{T}_{\text{S}}}{\underline{\mathbb{H}}} 10^{-17} $	- 800 g
Stellar mass black hole binaries	7 - 30	1 à 10 years	1 to 20	$\begin{bmatrix} 10^{-18} \\ 10^{-19} \end{bmatrix}$	- 600 - 400
Extreme Mass Ratio Inspirals	7 - 60	1 year	1 to 2000 / year	10 ⁻²⁰ Observatory Strain Sensitivity Total Confusion Noise	- 200 - 0
Massive Black Hole binaries	10 - 3000	Hours - months	10 to 100 / year	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7

Mission design

- Laser Interferometer Space Antenna
- 3 spacecrafts on heliocentric orbits separated by 2.5 millions km
- Goal: detect strains of 10-21 by monitoring arm length changes at the few picometre level

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

- Exchange of laser beams to form several interferometers
- Phasemeter measurements on each of the 6 Optical Benches:
 - Distant OB vs local OB
 - Test-mass vs OB
 - Reference using adjacent OB
 - Transmission using sidebands
 - Distance between spacecrafts

Measurements via exchange of beams:

- Heterodyne interferometry with carrier for inter-spacecraft measurement => GWs
- Sideband for transferring amplified clock jitter => correction of additional clock jitter
- Pseudo-Random Noise => ranging (measure arm length)
- Laser locking ightarrow

Cea

Gravitational wave sources emitting between 0.02mHz and 1 Hz

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System

****** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System

****** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources

emitting between 0.02mHz

and 1 Hz

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

3 TDI channels with 2 "~independents"

Data Analysis of GWs

Catalogs of GWs sources with their waveform

irfu

Cea

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

Phasemeters (carrier, sidebands, distance)

+ DFACS* & CMD**
+ Diagnostics
+ Auxiliary channels

'Survey' type observatory

Gravitational wave sources emitting between 0.02mHz and 1 Hz

* Drag-Free Attitude Control System ** Charge Management Device

LISA Data Analysis - A. Petiteau - Journée Analyse de données GdR OGs - Marseille - 16th October 2024

L2

L3

L0

Calibrations corrections + Resynchronisation (clock) + Time-Delay Interferometry reduction of laser noise

L1 3 TDI channels with 2 "~independents"

Catalogs of GWs sources with their waveform

irfu

Cea

irfu

Cea

Ground segment

- Communication:
 - 8h per day
 - \sim 1 Bytes per day
- Availability :
 - Near-Real Time (NRT): near-real time data (segment of 5 minutes) for alerts generation with LLAP
 - L1 data daily consolidated: 2 versions depending on the used orbits (estimated or consolidated)
 - Several versions of L2 data on different time scale
- 2 pipelines designed and developed by the DDPC and integrated and operated by the SOC: L0.5-L1 pipeline and LLAP

irfu

Cea

Data Analysis

- Analysis of all signals and noises together
 => global analysis
- Flexibility: first data of this kind challenge:
 - Multiple approaches, multiple pipelines
 - Quick development from prototyping to production
- General approach with with multiple iterative (interconnection between products):

- Reduce dominant noises (Time Delay Interferometry) and partial correction on instrument artefacts => L1 data (TDI data)
- GLOBAL FITS: GW sources extraction + better understanding of noises and instrument with multiple pipelines => L2 data
- Cross-check, combination, merging of L2 data to produce catalogs + associated scientific products => L3 data
- Distributed Data Computing Center (DDPC)

L1 to L2: alerts

- Low Latency Alerts Pipeline: automatic near-real time analysis to release an alert as fast as possible
- Deep Analysis Alerts Pipeline: when an alert has been detected, analysis to:
 - Confirm the nature of the events
 - Refine the parameters

LISA Data Analysis - A. Petiteau - Journée Analyse de données GdR OGs - Marseille - 16th October 2024

LLAP Operations

Generation of alerts

- 2 components:
 - "Near-real time" (< 1h) generated by SOC
 - "Offline"
 generated by the
 DDPC
- 2 main functions:
 - Detection of the new events
 - Update events to follow

LLAP Operations

LLAP Operations

Data analysis in LLAP

Operations:

► Goals:

- Detect new events
- Update parameters

 of a known events
 (in the list of event
 to follow)
- Strategy:
 - Fast and online
 - Multiple approaches/ pipelines in parallel
 - Analysis on accumulated data

- **During visibility phase 1 (0 to about 2h)**:
 - Low latency analysis on the Near Real Time Data:
 - 1) "Fast" LO-L1
 - 2.a) Low Latency for detection
 - 2.b) Low Latency for updating parameters
 - 3.a) If detection, issue of a new candidate alerts
 - 3.b) And update of parameters
 - Low latency analysis on the High Priority Data (from the 16h without communication)
 - Idem as for Near Real Time Data
- During visibility phase 2 (about 2h to end of visibility):
 - Same as phase 1 but for Near Real Time Data only

cea

Operations

- Deep Analysis:
 - Several "global fits";
 - Daily update of a "Live best catalog(s)" (proto-L3, temporary catalogs).

Global fit (deep analysis)

- Goals: GW sources extraction + better understanding of noises and instrument with multiple pipelines
- Challenge: large number of overlapping sources:
- Input data availability:
 - Every day, 24h of new L1 data available
 - + every X days a refined version of L1 data
- Strategy: multiple global fits:
 - Large number of parameters
 - Disentangle sources
 - Several timescale for the analysis depending on sources:
 - MBHBs: in order to provide alerts for low SNR sources probably need to ingest data daily,
 - For GBs, cadence of ingestion depends on the accumulated data,
 - Current approaches in the prototypes:
 - Bayesian analysis, matched filtering;
 - Start to use some Artificial Intelligence;
 - Others approaches (sparsity, ...)
- Cost for one global fit ~ 200 millions cpu.h per year

© N. Cornish

Cea

irfu

DDPC Role

irfu

Cea

Reception from the SOC:

- Multiple data levels L0.5 and L1
- L2 data from NSGS (NASA)
- Alerts data
- Processing :
 - Generation of L2 data
 - Generation of event notices (alerts)
 - Deep analysis on event notices (alerts)
 - Re-processing for L2 and L3
 - Noise characterisation
- Provision of software (design and development):
 - Provide to the SOC a prototype of the L0.5 to L1 pipeline
 - Provision of a Low Latency Alert Pipeline (LLAP) to the SOC

- Provision of products (operations):
 - Release of L2 data products to the SOC
 - Provide to the SOC the list of sources to be monitored
- Contribute towards the generation of the L3 data (science products)
- Coordinate development and implementation of simulations
- "Services" :
 - Working storage of the internal data
 - Use a common framework
 - Support the assessment of the data quality
 - Data access and support for all DDPC contributors

irfu

cea

- Distributed Data Processing Center
 - Project Office
 - 2 transverse groups: SysTeam and SciEx
 - 6 Coordination Units

Customers MLA Steering Commi	ee LISA Science Community
	SysTeam: DDPC System Team SciEx: DDPC Science Experts Group
L01: L0-L1 L2A:	2 Alerts L2D: L2 Deep Analysis L3C: L3 Catalogue Sim: Simulation WAV: Waveforms

DDPC Work Breakdown Structure

- Commitment of 10 countries in the Multilateral Agreement signed at adoption
- Current discussions with Finland, Portugal, Ireland, Greece, Canada and New Zealand who want to join the DDPC.

LISA Data Analysis - A. Petiteau - Journée Analyse de données GdR OGs - Marseille - 16th October 2024

CONSORTIUM

irfu

Cea

DDPC timeline

- Kick-Off in June 2024
- All Coordination Units started
- ► Goal:
 - Advanced prototypes by 2028
 - Implemented prototypes by 2032
- Next common dataset defined to be ready by end 2025:

DDPC timeline

irfu

cea

- Kick-Off in June 2024
- All Coordination Units started
- ► Goal:
 - Advanced prototypes by 2028
 - Implemented prototypes by 2032
- Next common dataset defined to be ready by end 2025:
 - Populations

Source	Description of catalogue
Galactic Binaries	Interacting binaries
Extra-galactic binaries (option?)	 What is exactly ? Satellites to the MW "Extra-extra"
MBHBs	 Mixture of models Include few model outliers (ex: high mass ratio,); look at the distribution and see what to add
	Plan A: Model M1 from Babak+2017
EMRIs	• (option) Plan B (if we can): populate Milan model with EMRIs
xEMRIs	No
sBHB	 O3/O4-based empirical population Mixture of field and dynamic formed (eccentricity) (option) Full O4 if available (option?) Background like GB ? Ariana: sBHB should come from LVK O4 population Including eccentricity if possible open item
SGWB	 Mainly as a noise component Plausible models We will see based on the result of the Stochastic Challenge (LEGO type, ongoing effort) → educated guess For the components, see the ongoing activity (option) Background of EMRIs

DDPC timeline

- Kick-Off in June 2024
- All Coordination Units started
- ► Goal:
 - Advanced prototypes by 2028
 - Implemented prototypes by 2032
- Next common dataset defined to be ready by end 2025:
 - Populations
 - Waveforms

Source	Description of waveform	Waveform				
Galactic and Extra-Galactic	Circular	"Taylor expansion model"				
Binaries	Eccentric	Peters & Mathews (Keplerian orbit)				
	Description of high-second second	NR surrogates				
MBHBs	 Precession V, higher modes V, eccentricity: X > 2 models : debugging (ex: Phenom) 	PhenomXPHM				
	vs production (ex: SEOB) • CU-WAV	SEOBNRvPHM				
EMRIs	 Kerr equatorial (not all the degree of freedom) Diminish the complexity but large number of EMRIs 	SF_0PA				
sBHB	• 1.5PN inspiral eccentric	 Waveform and prescription exist (ex: A. Klein, Fourrier Domain) 				

irfu

cea

DDPC timeline

- Kick-Off in June 2024
- All Coordination Units started
- ► Goal:
 - Advanced prototypes by 2028
 - Implemented prototypes by 2032
- Next common dataset defined to be ready by end 2025:
 - Populations
 - Waveforms
 - Instrument

	Content
Real orbits	ESA provided (numerical)
Orbits reconstruction	Perfect orbit reconstruction
Frequency Plan	No and Yes
Laser frequency noise	Yes
Clock noise	No
Secondary noises	All available noises [specify => to be done by CU -SIM] All the noises at the same level on each unit ? yes and no 2 versions of the noise : • realistic armlength but same level and stationary • realistic armlength but same not the level and non-stationary, include also modulation noise, trend
Non-stationary noises	(option) Use LPF as proxy Brownian? Two dataset
TTL	No and Yes In the complex dataset, TTL correction assuming we know the coefficients, i.e. add DWS noises
Dynamics	No
Glitches	LPF+
Gaps	Model use in DA Robustness No loss of coherence across the gaps

Conclusion

- LISA is a large mission led by ESA to explore the Universe with gravitational wave in the mHz band.
- It has been adopted in January and is now in its development and building phase for a launch in 2035 for 4.5 to 10 years of operations.
- LISA will cover a large range of domains and has a huge science case for astrophysics, cosmology and fundamental physics.
- Data analysis is challenging (large number of overlapping sources, new type of data)
- Two main pipelines:
 - Low Latency Alerts Pipeline
 - Deep analysis
- DDPC started:
 - Coordination Units active on all key domains: waveforms, simulation, LO-L1, alerts, global fits, catalogs
 - Prototyping until 2030

Merci !

Cea

Mission design

- Measurement points must be shielded from fluctuating nongravitational influences:
 - the spacecraft protects test-masses (TMs) from external forces and always adjusts itself on it using micro-thrusters
 - Readout:
 - interferometric (sensitive axis)
 - capacitive sensing

ESA Redbook - OHB Itali

esa u - Journée Analyse de données GdR OGs - Marseille - 16th October 2024

MOSA: Moving **Optical Sub-Assembly**

irfu

Mission design

Several steps towards the required precision of measurement

$(TM2 \rightarrow SC2) + (SC2 \rightarrow SC3) + (SC3 \rightarrow TM3)$

LISA Consortium

- LISA Consortium submitted the L3 LISA proposal to the ESA call in 2017
- It has many very active working groups
- It was organised for the formulation phases (0, A and B1)
- With the start of the development phase, a new organisation is necessary.
 - => ongoing reorganisation:
 - Consortium Constituent Committee is working since beginning 2024 to organise the new Consortium

irfu

Cea

• Goal: Start the new Consortium in January 2025

LISA RedBook

- LISA Definition Study Report (Redbook):
 - written by the LISA Science Study Team with
 - submitted and validated at adoption
- Content:
 - Science of LISA
 - Instrument
 - Data processing
 - Organisation
- Available at :
 - <u>arXiv:2402.07571</u>
 - <u>www.cosmos.esa.int/web/lisa/lisa-redbook</u>

ESA UNCLASSIFIED - Releasable to the Public

September 2023

LISA Laser Interferometer Space Antenna

Definition Study Report

→ THE EUROPEAN SPACE AGENCY

Cea

irfu

LISAPathfinder final main results

 Successful demonstration of the ability to shield from fluctuating nor influences

M. Armano et al. PRL 120, 061101 (2018) titeau - Journée Analyse de données GdR 0Gs - Marseille - 16th October 2024

