Assessing the impact of gaps in LISA data

Ollie Burke (L2IT, Toulouse)

Rencontres du groupe Analyse des Données du GdR OG - Luminy, Marseille

- Sylvain Marsat (L2IT, Toulouse)
- Jonathan Gair (AEI, Potsdam, DE)

- Introducing gaps for the LISA data
- Theory: stochastic noise process, covariance and mismodeling error
- Analysis settings: LISA TDI data, short MBHB signals
- Results: mismodelling errors
- Conclusion

- Gaps are missing data periods; can be planned and unplanned
- The stochastic noise process could be coherent (masked data) or incoherent (instrument reset)
- Masking out data is also a crude way of addressing glitches

Gap type

Antenna repointing

PAAM angle adjust

TM stray pot. est.

TTL coupling est.

Unplanned: platform

Unplanned: payload

Unplanned: micro-meteo

	Frequency	Duration	Total loss (hr/yr)
	every 2 weeks	3.3h	1%
	3 per day	100s	0.3%
	2/yr	1 day	0.56%
	4/yr	2 days	2.22%
L	3/yr	2.5 days	2%
	4/yr	2.75 days	3%
rites	30/yr	1 day	8%

[A. Petiteau, FMT]

Gaps in LISA data: different approaches

• Windowing the data around gaps, having wellbehaved Fourier-domain signals

[Dey&al arXiv:2104.12646]

Data augmentation (or imputation): the data inside the gaps is inferred in a Gibbs sampling between GW params and missing data

[Baghi&al arXiv:1907.04747]

Modelling of the full covariance: direct marginalization over missing data, useful as a test bed for our assumptions — limited by the size of the $N \times N$ covariance matrix — **This work**

The basics: Stationary Gaussian process

• Assumption: noise as **Gaussian process** described by its covariance

$$C(t,t') = \langle n(t)n(t') \rangle$$

Assumption: underlying noise (before introducing gaps)
 Stationary, with autocorrelation depending on lag only

$$C(t,t') = C(0,t'-t) \equiv C(t'-t)$$

• In the Fourier domain, this leads to independence:

$$\langle \tilde{n}(f)\tilde{n}^*(f')\rangle = \frac{1}{2}S_n(f)\delta(f-f')$$

• Usually represented with I-sided PSD $S_n(f)$

• Noise-weighted inner product over positive frequencies:

$$(a|b) = 4 \operatorname{Re} \int \frac{df}{S_n(f)} \tilde{a}^*(f) \tilde{b}(f)$$

• Likelihood:

$$\ln \mathcal{L}(\theta) = -\frac{1}{2}(h(\theta) - d|h(\theta) - d)$$

Whittle likelihood

The Fourier-domain covariance matrix is diagonal: from $N \times N$ to N !

Time domain covariance matrix

 $\langle NN^T \rangle = \Sigma$

Sationarity imposes a Toeplitz structure

 $C(t,t') \equiv C(t-t')$ $A = egin{bmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots & a_{-(n-1)} \ a_1 & a_0 & a_{-1} & \ddots & \ddots & \vdots \ a_2 & a_1 & \ddots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \ \vdots & & \ddots & a_1 & a_0 & a_{-1} \ a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0 \end{bmatrix}$

Diagonality after DFT requires in fact **Circulant** structure (periodicity)

$$C = egin{bmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \ c_1 & c_0 & c_{n-1} & & c_2 \ dots & c_1 & c_0 & \ddots & dots \ c_{n-2} & c_1 & c_0 & \ddots & dots \ c_{n-2} & \cdots & c_1 & c_0 \ \end{pmatrix}$$

Discrete Fourier transform

$$\begin{split} \tilde{F}(f) &= \int dt \, e^{-2i\pi f t} F(t) \\ \tilde{F}(f_j) &= \Delta t \sum_{i=0}^{N-1} \omega^{-ij} F(t_i) \qquad \omega = e^{\frac{2i\pi}{N}} \\ \langle \tilde{N}\tilde{N}^{\dagger} \rangle &= \tilde{\Sigma} \qquad \text{with } \tilde{\Sigma} \text{ diagonal} \end{split}$$

Marginalizing out the missing data: Time Domain

Truncation of the Gaussian covariance:

$$\begin{split} X &= H(\theta) - D = -N \qquad X = (X_1, X_2) \\ \Sigma &= \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{pmatrix} \qquad \qquad \text{Equiv} \\ \mathcal{L}_{\text{gap}} &= p(N_1) = \int dN_2 \, p(N_1, N_2) \\ \ln \mathcal{L}_{\text{gap}} &= -\frac{1}{2} X_1^T \Sigma_{11}^{-1} X_1 \end{split}$$

Gap seen as a gated process:

For an invertible modulation W:

 $X \to WX$ $X^T \Sigma^{-1} X = (WX)^T (W\Sigma W)^{-1} (WX)$ For an gating function *W*, non-invertible: $W = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Moore-Penrose **pseudo-inverse** (uniquely defined):

 $A^{+}AA^{+} = A^{+}$ $AA^{+}A = A$ $(AA^{+})^{\dagger} = AA^{+}$ $(W\Sigma W)^{+} = \begin{pmatrix} \Sigma_{11}^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ $(A^{+}A)^{\dagger} = A^{+}A$

valence with the marginalized likelihood:

$$X^{T} (W\Sigma W)^{+} X = X_{1}^{T} \Sigma_{11}^{-1} X_{1}$$

e that windowing the data becomes facultative !

$$(WX)^T (W\Sigma W)^+ (WX) = X^T (W\Sigma W)^+ X$$

Marginalizing out the missing data: Fourier Domain

DFT in linear algebra:

Translation from time to Fourier domain:

$$\tilde{F}(f) = \int dt \, e^{-2i\pi ft} F(t)$$
$$\tilde{F}(f_j) = \Delta t \sum_{i=0}^{N-1} \omega^{-ij} F(t_i) \quad \omega = e^{\frac{2i\pi}{N}}$$

Using the DFT matrix *P*:

$$\tilde{F} = \Delta t \sqrt{NPF}$$
$$P_{ij} = \frac{1}{\sqrt{N}} \omega^{-ij}$$
$$PP^{\dagger} = \mathbb{1}$$

FD covariance and FD window:

$$\tilde{\Sigma} = N\Delta t^2 P \Sigma P^{\dagger}$$
$$\tilde{W} = P W P^{\dagger}$$

This allows for a direct translation:

 $\ln \mathcal{L}_{\rm gap} =$

Windowing the data is facultative, in FD also:

 $\ln \mathcal{L}_{
m gap} =$ -

In practice, computing the FD gated covariance matrix is a convolution:

$$\left(\tilde{W}\tilde{\Sigma}\tilde{W}\right)_{ij} = \frac{\Delta f}{2}\sum_{k}S_{n}^{k}\tilde{w}_{i-k}\tilde{w}_{j-k}^{*}$$

 $\tilde{\Sigma}_w(f, f') =$

The pseudo-inverse is transparent to the unitary matrix P:

$$P\left(W\Sigma W\right)^{+}P^{\dagger} = \left(PW\Sigma WP^{\dagger}\right)^{+}$$

$$-\frac{1}{2}(WX)^T (W\Sigma W)^+ (WX) = -\frac{1}{2} \left(\widetilde{WX}\right)^\dagger \left(\widetilde{W}\widetilde{\Sigma}\widetilde{W}\right)^+ \left(\widetilde{WX}\right)$$

$$-\frac{1}{2}\left(\widetilde{WD}-\widetilde{H}\right)^{\dagger}\left(\widetilde{W}\widetilde{\Sigma}\widetilde{W}\right)^{+}\left(\widetilde{WD}-\widetilde{H}\right)$$

cost scales as
$$\mathcal{O}(N^2 \log N)$$

$$\frac{1}{2} \int_{-\infty}^{+\infty} dv \, S_n(v) \tilde{w}(f-v) \tilde{w}^*(f'-v)$$

- The Moore-Penrose pseudo-inverse is uniquely defined
- Most straightfoward algorithm: use the **singular** value decomposition (SVD)

 $M = U\Sigma V^{\dagger}$

$$\Sigma = (\sigma_1^2, \dots, \sigma_p^2, 0, \dots, 0)$$

And use the pseudo-inverse of singular values:

$$\Sigma^+ = (1/\sigma_1^2, \dots, 1/\sigma_p^2, 0, \dots, 0)$$

• The procedure also allows for regularizing the covariance (for instance when dealing with smooth windows)

Effect of noise on posterior and Cutler-Vallisneri biases

Cutler-Vallisneri bias due to noise realization: Linearized signal approximation:

$$H(\theta) \simeq H(\theta_0) + \Delta \theta^i \partial_i H \qquad \qquad D =$$

 $(A|B)_{\Sigma} = A^T \Sigma^{-1} B$ $\ln \mathcal{L} \simeq$ Likelihood:

$$\ln \mathcal{L} = -\frac{1}{2}(H - D|H - D)_{\Sigma}$$
CV bia

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Gamma_{ij} \Delta \theta^i \Delta \theta^j \qquad \qquad \Delta \theta^i_{\rm bf} = \Gamma^{-1}_{ij} (\partial_j H | N)_{\Sigma} \qquad \langle \Delta \theta^i_{\rm bf} \rangle = 0$$

Fisher information matrix:

 $\Gamma_{ij} = (\partial_i H | \partial_j H)_{\Sigma}$

Fisher covariance matrix between parameters:

$$\Gamma_{ij}^{-1}$$

 $= H(\theta_0) + N$

$$-\frac{1}{2}\Delta\theta^i \Delta\theta^j (\partial_i H|\partial_j H)_{\Sigma} + \Delta\theta^i (\partial_i H|N)_{\Sigma}$$

- ias and variance:
- CV bias variance:

Fisher covariance

Mismodelling of the gated noise process

- Wrong covariance Σ' assuming stationarity, gating the signals
- Could also be used to introduce a misestimation of the PSD

$$(A|B)_{\Sigma'} = A^T {\Sigma'}^{-1} B$$

We use the wrong likelihood:

$$\ln \mathcal{L} = -\frac{1}{2} (W(H-D)|W(H-D))_{\Sigma'}$$

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Delta \theta^{i} \Delta \theta^{j} (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} + \Delta \theta^{i} (W \partial_{i} H | W N)_{\Sigma'}$$

$$\Delta \theta^{i}_{bf'} = \Gamma'^{-1}_{ij} (W \partial_{j} H | W N)_{\Sigma'} \quad \langle \Delta \theta^{i}_{bf'} \rangle = 0 \quad \text{bias still zero-mean !}$$

$$\Gamma'_{ij} = (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} \quad \text{true covariance}$$

$$\langle \Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} \langle N N^{T} \rangle W \Sigma'^{-1} W \partial_{l} H$$

$$\langle \Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} W \Sigma W \Sigma'^{-1} W \partial_{l} H$$
[Edy&al arXiv:2101.0
Inconsistent 'scatter'
measure of inconsistency:
$$\Upsilon_{i} = \frac{\sqrt{\langle \Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle}{\sqrt{\Gamma^{-1}_{ii}}}$$
Nould be 1 for the correct covariance
feasures the inconsistency of the posterior 'scatter'

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Delta \theta^{i} \Delta \theta^{j} (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} + \Delta \theta^{i} (W \partial_{i} H | W N)_{\Sigma'}$$

$$\Delta \theta^{i}_{bf'} = \Gamma'^{-1}_{ij} (W \partial_{j} H | W N)_{\Sigma'} \qquad \langle \Delta \theta^{i}_{bf'} \rangle = 0 \quad \text{bias still zero-mean !}$$

$$\Gamma'_{ij} = (W \partial_{i} H | W \partial_{j} H)_{\Sigma'}$$

$$\Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} \langle N N^{T} \rangle W \Sigma'^{-1} W \partial_{l} H$$

$$\Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} W \Sigma W \Sigma'^{-1} W \partial_{l} H$$
Inconsistent 'scatter'
neasure of inconsistency:
$$\Upsilon_{i} = \frac{\sqrt{\langle \Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle}}{\sqrt{\Gamma^{-1}_{ii}}}$$
Found be 1 for the correct covariance assures the inconsistency of the posterior 'scatter'

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Delta \theta^{i} \Delta \theta^{j} (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} + \Delta \theta^{i} (W \partial_{i} H | W N)_{\Sigma'}$$

$$\Delta \theta^{i}_{\mathrm{bf'}} = \Gamma'_{ij}^{-1} (W \partial_{j} H | W N)_{\Sigma'} \quad \langle \Delta \theta^{i}_{\mathrm{bf'}} \rangle = 0 \quad \text{bias still zero-mean !}$$

$$\Gamma'_{ij} = (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} \quad \text{true covariance}$$

$$\langle \Delta \theta^{i}_{\mathrm{bf'}} \Delta \theta^{j}_{\mathrm{bf'}} \rangle = \Gamma'_{ik}^{-1} \Gamma'_{jl}^{-1} \partial_{k} H^{T} W \Sigma'^{-1} \langle N N^{T} \rangle W \Sigma'^{-1} W \partial_{l} H$$

$$\langle \Delta \theta^{i}_{\mathrm{bf'}} \Delta \theta^{j}_{\mathrm{bf'}} \rangle = \Gamma'_{ik}^{-1} \Gamma'_{jl}^{-1} \partial_{k} H^{T} W \Sigma'^{-1} W \Sigma W \Sigma'^{-1} W \partial_{l} H$$
[Edy&al arXiv:2101.0
Inconsistent 'scatter'
Measure of inconsistency:
$$\Gamma_{i} = \frac{\sqrt{\langle \Delta \theta^{i}_{\mathrm{bf'}} \Delta \theta^{j}_{\mathrm{bf'}} \rangle}{\sqrt{\Gamma_{ii}^{-1}}}$$
Would be 1 for the correct covariance
Measures the inconsistency of the posterior 'scatter'

A

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Delta \theta^{i} \Delta \theta^{j} (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} + \Delta \theta^{i} (W \partial_{i} H | W N)_{\Sigma'}$$

$$\Delta \theta^{i}_{bf'} = \Gamma'^{-1}_{ij} (W \partial_{j} H | W N)_{\Sigma'} \qquad \langle \Delta \theta^{i}_{bf'} \rangle = 0 \quad \text{bias still zero-mean !}$$

$$\Gamma'_{ij} = (W \partial_{i} H | W \partial_{j} H)_{\Sigma'} \qquad \text{true covariance}$$

$$\Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} \langle N N^{T} \rangle W \Sigma'^{-1} W \partial_{l} H$$

$$\Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle = \Gamma'^{-1}_{ik} \Gamma'^{-1}_{jl} \partial_{k} H^{T} W \Sigma'^{-1} W \Sigma W \Sigma'^{-1} W \partial_{l} H$$
[Edy&al arXiv:2101.0
Inconsistent 'scatter'
measure of inconsistency:
$$\Upsilon_{i} = \frac{\sqrt{\langle \Delta \theta^{i}_{bf'} \Delta \theta^{j}_{bf'} \rangle}{\sqrt{\Gamma^{-1}_{ii}}}$$
Yould be 1 for the correct covariance
easures the inconsistency of the posterior 'scatter'

- SNR-independent

• The bias is still 0-mean here

Windowing for data gaps

Different logics:

- Windowing only the data/signal: loss of information
- Windowing the data/signal and the covariance: no loss of information
- Windowing the noise: keep diagonal-dominated structure of the FD covariance

Effects of windowing:

- Windowing: the gap edge: alleviate the statistical offense by avoiding a jump to 0
- Windowing the signal: avoids Gibbs oscillation in the Fourier domain
- Windowing the noise: keep diagonal-dominated structure of the FD covariance, but delicate (pseudo)inversion of the matrix

Work in progress

LISA data and TDI generations

Doppler delay from orbit, change in orientation

Analogous to 2 LIGO in motion at low frequencies only

$$y_{slr} \sim h(t) - h(t - L) \qquad \tilde{y}_{slr} \sim \sin(\pi f L(1 - k \cdot n))\tilde{h}$$

$$X \sim y_{slr}(t) - y_{slr}(t - 2L) \qquad \tilde{X} \sim \sin(\pi f L(1 - k \cdot n))\sin(2\pi f L)\tilde{h}$$

$$X_2 \sim X(t) - X(t - 4L) \qquad \tilde{X}_2 \sim \sin(\pi f L(1 - k \cdot n))\sin(2\pi f L)\sin(4\pi h)$$

 $y = \Delta \nu / \nu$ One-link observables: from spacecraft s to spacecraft r through link s: $y_{slr} = \frac{1}{2} \frac{1}{1 - \hat{k} \cdot n_l} n_l \cdot (h(t_s) - h(t_r)) \cdot n_l$

Response time and frequency-dependent:

$$\frac{fL}{2}\operatorname{sinc}\left[\pi fL\left(1-k\cdot n_{l}\right)\right]\exp\left[i\pi f\left(L+k\cdot \left(p_{r}+p_{s}\right)\right)\right]n_{l}\cdot P\cdot n_{l}$$

+ Time-delay interferometry (TDI), 1st and 2nd generations:

$$\underbrace{\left[(y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}}) + (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}})_{,22} - (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}}) - (y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}})_{,33}\right]}_{X^{\text{GW}}(t)} - \underbrace{\left[(y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}}) + (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}})_{,22} - (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}}) - (y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}})_{,33}\right]_{,2233}}_{X^{\text{GW}}(t-2L_2-2L_3) \simeq X^{\text{GW}}(t-4L)}.$$

TDI variables amount to taking (discretized) time derivatives of the GW:

Noise PSDs for LISA

- Dependency on the sampling rate: a smaller Δt gives access to higher frequencies
- Dependency on the total duration: a smaller Δf gives access to lower frequencies

Covariance matrices in Time Domain

Covariance matrices in Fourier Domain

Note: need to consider both positive and negative frequencies 16

MBHBs: signals and gap configurations

Results: example PE, comparing with CV bias

Results: comparing CV mismodeling prediction to PE

- Cutler-Vallisneri bias: calculated with the wrong covariance
- PE bias: from full PE runs, calculated with the wrong covariance
- Mismodelling bias variance: prediction $\langle \Delta \theta^i_{\rm bf'} \Delta \theta^j_{\rm bf'} \rangle$
- Correct bias variance: Fisher prediction with the correct covariance

Validation of the CV-inspired Υ to assess the impact of mismodelling noise

Results: biases from using the Whittle likelihood on gated data

Question: how wrong is it to mismodel the covariance using Whittle ?

• Correct modelling: pseudo-inverse of gated covariance

$$\ln \mathcal{L}_{\text{right}} = -\frac{1}{2} X^T (W \Sigma W)^+ X$$

• Incorrect modelling: Whittle for gated data and signal

$$\ln \mathcal{L}_{\text{wrong}} = -\frac{1}{2} X^T W \Sigma^{-1} W X$$

Gap at merger

TDI2 M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
7.8	10.8	9.5	10.9	11.4	9.3	11.4	11.0	9.5	10.6	9.6

TDII M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
1.0	1.1	1.1	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1

TDIrescaled M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
33.4	27.6	35.2	35.9	45.4	38.3	28.3	39.2	32.4	40.2	39.4

 θ

Υ

 θ

Υ

Results: biases from using the Whittle likelihood on gated data

Question: how wrong is it to mismodel the covariance using Whittle ?

 θ Υ

 θ

Υ

• Correct modelling: pseudo-inverse of gated covariance

$$\ln \mathcal{L}_{\text{right}} = -\frac{1}{2} X^T (W \Sigma W)^+ X$$

• Incorrect modelling: Whittle for gated data and signal

$$\ln \mathcal{L}_{\text{wrong}} = -\frac{1}{2} X^T W \Sigma^{-1} W X$$

Gap in the inspiral

TDI2 M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
1.2	1.8	2.0	1.2	1.3	1.3	1.6	1.1	1.1	1.2	1.1

TDII M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

TDIrescaled M=3e7, inj.: gap, model: nogap

M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
36.4	26.6	53.5	12.7	30.3	19.9	26.4	11.6	4.4	20.6	7.4

Results: mismodeling of low-frequency noise

Question: how wrong is it to mismodel the PSD at low frequencies ?

For a stationary process (no gap), the effect should be weak by frequency independence.

For a non-stationary process (gap), can the mismodeling error at low frequencies affect different frequencies where the signal is ?

TDI2 M=3e7, inj.: nogap, TDI2deg model: nogap, TDI2

θ	M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
Υ	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

TDI2 M=3e7, inj.: gap, TDI2deg model: gap, TDI2

θ	$\mid M$	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
Υ	2.4	2.7	1.7	2.1	2.0	2.3	1.5	2.3	1.9	2.7	2.3

TDI2 M=3e7, inj.: gap, TDI2deg model: nogap, TDI2

θ	M	q	χ_1	χ_2	Δt	D	l	ϕ	λ	β	ψ
Υ	8.5	11.5	9.9	11.9	11.7	10.3	11.4	11.8	10.2	11.8	10.6

Results: assumptions about segment independence

Question: how wrong is it to mismodel data segments as correlated/independent ? Only assuming correlatio when the segments are independent gives $\Upsilon \neq 1$

TDI2 M=3e7, inj.: independent model: correlated

)	n	S	

θ	$\mid M$	q	χ_1	χ_2	Δt	D	ι	ϕ	λ	eta
Υ	1.5	2.0	1.0	1.2	1.1	1.1	1.4	1.1	1.0	1.2

TDIrescaled M=3e7, inj.: independent model: correlated

θ	M	q	χ_1	χ_2	Δt	D	L	ϕ	λ	β
Υ	47.5	66.6	18.0	25.8	13.1	21.5	37.2	18.7	14.2	26.2

Results

- short segments only

- imputation

Outlook

- Longer signals ? Low-mass MBHBs, EMRIs ?
- Extension to other sources of non-stationarity
- More exploration to be done...

[Preliminary]

• Derived a framework handling missing data in time or frequency domain — **caveat**: for

• Derived a measure of inconsistency for the scatter of best-fit parameters

• Application to the LISA case: exploration of different mismodelling settings

• This framework is a test-bed: allows to test assumptions, possibility to compare to e.g.