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Introduction and theory



-
The system

@ Binary black holes (BBHSs) within general relativity (GR).
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-
The system

@ Binary black holes (BBHSs) within general relativity (GR).
o In inspiral state, at 2"¢ post-Newtonian (2PN) order; Z—; < L

@ Arbitrary spins and eccentricity.
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Phase space of spinning PN BBHs
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Fast and slow variables
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In the PN limit, we have

o fast variables: ﬁ, P.
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Fast and slow variables

W - -

In the PN limit, we have

o fast variables: ﬁ, P.

—

o slow variables: 51,5, L =R x P.
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The “orbit-averaged” system

il




The “orbit-averaged” system
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o Fast variables (R, P): drop them.
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The “orbit-averaged” system
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o Fast variables (R, P): drop them.

o Slow variables (51, 55, L = R x P): average small perturbations over
one orbit.
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The “orbit-averaged” system
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o Fast variables (R, P): drop them.

o Slow variables (51, 55, L = R x P): average small perturbations over
one orbit.

e Phase space variables: 51, 52, L. Total number = 6 since
Si=S%=L=0.
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-
2PN orbit-averaged system

The equations of motion with My, Mo, M, i1, d, A being constants. [Racine
(2008)]

d5’1 3M2

&5 _ 4 _ 2P AL+s, s
dt 2d3{[ A 1] * 2}X '
S, 3M,

dt _2d3{[4+ M, Mz ]L+SI}XS2
dL

E*zds{“i"[l——ﬂsﬂ}

S=5+5
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Separatrix

Informally, a boundary separating qualitatively, two very different kinds of
trajectories.

Sun-earth system

H_o Pendulum

H =2mgl.

b)
Hyperbolic path

()
Parabolic path \

(a)
Eliptical path

[Image credit: pages.uoregon.edul]
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Integrable Hamiltonian systems and action-angle variables

e Hamiltonian system: With {q,p} =1, ¢ = 0H/0p, p= —0H/Jq
= G(q,p) ={G,H}.
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Integrable Hamiltonian systems and action-angle variables
e Hamiltonian system: With {q,p} =1, g =0H/0dp, p=—0H/0q

— G(q,p)={G,H}.
o Integrable system: canonical transformation (g, §) «» (7, 0)
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Integrable Hamiltonian systems and action-angle variables

e Hamiltonian system: With {q,p} =1, ¢ = 0H/0p, p= —0H/Jq
= G(q,p) ={G,H}.

o Integrable system: canonical transformation (7, §) <> (7. 0) exists
such that Z =0; 9,‘ =w; = 8H/8Z (constant), plus other details.
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@ J; = action ~ p; f; = angle ~ g [Goldstein]
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Integrable Hamiltonian systems and action-angle variables

e Hamiltonian system: With {q,p} =1, ¢ = 0H/0p, p= —0H/Jq
= G(q,p) ={G,H}.

o Integrable system: canonical transformation (7, §) <> (7. 0) exists
such that Z =0; 9,‘ =w; = 8H/8Z (constant), plus other details.

@ J; = action ~ p; f; = angle ~ g [Goldstein]
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Integrable Hamiltonian systems and action-angle variables

o Hamiltonian system: With {q,p} =1, ¢ = OH/dp, p=—0H/Jq
= G(q,p) ={G,H}.

e Integrable system: canonical transformation (p, §) <> (j 5) exists
such that j =0; 9,‘ =wj = 0H/8j, (constant), plus other details.

@ J; = action ~ p; 0; = angle ~ g [Goldstein]
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Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q,p} =1, ¢ = 0H/dp, p= —0H/dq
= G(q,p) ={G,H}.

Integrable system: canonical transformation (p, §) < (f 5) exists
such that J; =0; 0; = w; = 0H/0j, (constant), plus other details.

J; = action ~ p; 0; = angle ~ g [Goldstein]

Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion (i.e. {C;, (j} =0) = integrability. [V. I. Arnold]
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Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q,p} =1, ¢ = 0H/dp, p= —0H/dq
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such that J; =0; 0; = w; = 0H/0j, (constant), plus other details.

J; = action ~ p; 0; = angle ~ g [Goldstein]
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6 phase-space variables = 3 commuting constants for integrability
— 3 actions & 3 angles (34+3=6).
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Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q,p} =1, ¢ = 0H/dp, p= —0H/dq
= G(q,p) ={G,H}.

Integrable system: canonical transformation (p, §) < (f 5) exists
such that J; =0; 0; = w; = 0H/0j, (constant), plus other details.

J; = action ~ p; 0; = angle ~ g [Goldstein]

Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion (i.e. {C;, (j} =0) = integrability. [V. I. Arnold]

6 phase-space variables = 3 commuting constants for integrability
— 3 actions & 3 angles (34+3=6).

Line of approach: (1) prove integrability
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Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q,p} =1, ¢ = 0H/dp, p= —0H/dq
= G(q,p) ={G,H}.

Integrable system: canonical transformation (p, §) < (f 5) exists
such that J; =0; 0; = w; = 0H/0j, (constant), plus other details.

J; = action ~ p; 0; = angle ~ g [Goldstein]

Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion (i.e. {C;, (j} =0) = integrability. [V. I. Arnold]

6 phase-space variables = 3 commuting constants for integrability
— 3 actions & 3 angles (34+3=6).

Line of approach: (1) prove integrability (2) find action-angles
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Integrable systems are nice (and rare) systems!

@ Integrability = no chaos. Chaos = analytical and numerical
solutions numerical become elusive.
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Integrable systems are nice (and rare) systems!

@ Integrability = no chaos. Chaos = analytical and numerical
solutions numerical become elusive.

@ Action-angles — solution and frequencies.

@ Action-angles — resonances (wj/wj = n1/ny) and separatrices via

det (%) —0
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Integrable systems are nice (and rare) systems!

@ Integrability = no chaos. Chaos = analytical and numerical
solutions numerical become elusive.

@ Action-angles — solution and frequencies.

@ Action-angles — resonances (wj/wj = n1/ny) and separatrices via
aC\ _
det ( 8j) 0.

@ Canonical perturbation theory & Lie transformation:
(\.70|da eolda ("_jold) — (jnewa enewa (*Unew)- [Goldstein]
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Integrable systems are nice (and rare) systems!

@ Integrability = no chaos. Chaos = analytical and numerical
solutions numerical become elusive.

@ Action-angles — solution and frequencies.

@ Action-angles — resonances (wj/wj = n1/ny) and separatrices via
aC\ _
det ( 8j) 0.

@ Canonical perturbation theory & Lie transformation:
(\70|da eolda ("_jold) — (jnewa enewa (*Unew)- [Goldstein]

It's nice to have integrable systems (they occur rarely),
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Integrable systems are nice (and rare) systems!

@ Integrability = no chaos. Chaos = analytical and numerical
solutions numerical become elusive.

@ Action-angles — solution and frequencies.

@ Action-angles — resonances (wj/wj = n1/ny) and separatrices via
aC\ —
det ( 8j) 0.
@ Canonical perturbation theory & Lie transformation:
(\70|da eolda ("_jold) — (jnewa enewa Cvnew)- [Goldstein]

It's nice to have integrable systems (they occur rarely), and extra nice to
have action-angle variables.
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Results



Results: Hamiltonian system

5 _ 1 {{4 Mo 73—”)\}L+S2} % 8§

dt 2d3 M, M,

dSQ _ 1 3M1 3/.t

at 21113{{4+ M, 7M2A}L+Sl}xs2
dL 1 "

G = e S8l 4] so) < L
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-
Results: Hamiltonian system

d51 1 { |:4 3M2 3/J,

dt — 2d® M, M,

dSQ _ 1 3M1 3/J,

dt 72d3{|: -+ M2 *MZ)\:|L+31}><SQ
dL 1

% - gpls i) o

This is a Hamiltonian system with the Hamiltonian

1

H= ————
4d3m1m2L2

{—3 (m2E~ Si+(le 2))2

7—)\:|L+S2} x S

4212 (m2(4m1 +3my)L- S + %mlngl S+ (1 2))} (1)
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Results: integrability and action-angle variables

@ 3 constants of motion already known = integrability.

Sashwat Tanay (LUTH, Paris) Revisiting 2PN mechanics of binary black hol¢ 16 /21



Results: integrability and action-angle variables

@ 3 constants of motion already known = integrability.

@ We construct all 3 actions & angle variables.
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Results: integrability and action-angle variables

@ 3 constants of motion already known = integrability.

@ We construct all 3 actions & angle variables.

—

@ We construct (§1,§2, E) as functions of (7, 6),
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Results: integrability and action-angle variables

@ 3 constants of motion already known = integrability.

@ We construct all 3 actions & angle variables.

—

@ We construct (§1,§2, E) as functions of (j, ), thereby constructing
the solution (S1(t), Sa(t), L(t)).
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Results: integrability and action-angle variables

@ 3 constants of motion already known = integrability.

@ We construct all 3 actions & angle variables.

—

@ We construct (§1,§2, E) as functions of (j, ), thereby constructing
the solution (S1(t), Sa(t), L(t)).

@ Matches with the numerical and the already-existing non-AA-based
analytical solutions [Kesden & others - 2014]
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Results: action expressions

() 0_;1 E_(]. —|—_'m2/m1), O_;2£(1 —|—_'m1/m2_),
L=Rx P, Seft = 0151 + 0255,
J=[+5+5, Ci=,—12-52-52
=1 4101 -2t 1)(CLo2=2Ser L) }1/ 2 1
(C1(01+02)—4Sef -L)*—412(01—02)"(512+522)
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Results: action expressions

0_; E_(]. g /ml), O_‘;2£(1—|—_'m1/m2_),
L=Rx P, Seft = 0151 + 0255,
T=[+%+5, Ci=,—12-52-52
=1 4101 -2t 1)(CLo2=2Ser L) } 1/2
(C1(01+02)—4Sef -L)*—412(01—02)"(512+522)

o J1=J, Jo = J;.
@ Third action

1

4£ (0'1 - 0'2) (C?— 4[:2(51 +8 2})
+322 (Cg (0'2 - 0’1) + 20’2)} ( off * {16L2 (S] + 8, ) + 46202”

Ty =
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Results: resonances and separatrices

@ Rediscover the already-found resonances by wi/wy = n1/ny, where
wi = dH/0J;, plus potentially more.
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Results: resonances and separatrices

@ Rediscover the already-found resonances by wi/wy = n1/ny, where
wi = dH/0J;, plus potentially more.

@ Separatrix criterion det (%) = 0 gives only the already-known

elliptic <+ hyperbolic separatrix.
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Results: resonances and separatrices

@ Rediscover the already-found resonances by wi/wy = n1/ny, where
wi = dH/0J;, plus potentially more.
@ Separatrix criterion det (ch;) = 0 gives only the already-known

elliptic <+ hyperbolic separatrix. Hence no new separatrix from the
spin DOFs.
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Summary

2PN orbit-averaged, eccentric and spinning BBH
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o We show it is Hamiltonian by discovering its Hamiltonian.
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o We show it is Hamiltonian by discovering its Hamiltonian.
@ Integrability follows from the already-known constants of motion

@ Action-angle variables and solution constructed.
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Summary

2PN orbit-averaged, eccentric and spinning BBH
o We show it is Hamiltonian by discovering its Hamiltonian.

@ Integrability follows from the already-known constants of motion
@ Action-angle variables and solution constructed.

@ Action-angle variables — frequencies — already-known resonances
recovered.
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Summary

2PN orbit-averaged, eccentric and spinning BBH
o We show it is Hamiltonian by discovering its Hamiltonian.

Integrability follows from the already-known constants of motion

Action-angle variables and solution constructed.

Action-angle variables — frequencies — already-known resonances
recovered.

The spin degrees don't give rise to any new separatrix. Only elliptic
<> hyperbolic separatrix known so far.
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Summary

2PN orbit-averaged, eccentric and spinning BBH

o We show it is Hamiltonian by discovering its Hamiltonian.

Integrability follows from the already-known constants of motion

Action-angle variables and solution constructed.

Action-angle variables — frequencies — already-known resonances
recovered.

The spin degrees don't give rise to any new separatrix. Only elliptic
<> hyperbolic separatrix known so far.

Ongoing: Construct solutions for full (w/o orbit-averaging) 2PN spinning,
eccentric systems.

Sashwat Tanay (LUTH, Paris) Revisiting 2PN mechanics of binary black hole 20/21



