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Introduction and theory



The system

Binary black holes (BBHs) within general relativity (GR).

In inspiral state, at 2nd post-Newtonian (2PN) order; v2

c2
≪ 1.

Arbitrary spins and eccentricity.
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Phase space of spinning PN BBHs
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Fast and slow variables
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In the PN limit, we have

fast variables: R⃗, P⃗.

slow variables: S⃗1, S⃗2, L⃗ ≡ R⃗ × P⃗.
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The “orbit-averaged” system
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Fast variables (R⃗, P⃗): drop them.

Slow variables (S⃗1, S⃗2, L⃗ ≡ R⃗ × P⃗): average small perturbations over
one orbit.

Phase space variables: S⃗1, S⃗2, L⃗. Total number = 6 since
Ṡ1 = Ṡ2 = L̇ = 0.
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2PN orbit-averaged system

The equations of motion with M1,M2,M, µ, d , λ being constants. [Racine

(2008)]
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Separatrix

Informally, a boundary separating qualitatively, two very different kinds of
trajectories.

Sun-earth system
H = 0.

Pendulum
H = 2mgl .
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Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q, p} = 1, q̇ = ∂H/∂p, ṗ = −∂H/∂q
=⇒ Ġ (q, p) = {G ,H} .

Integrable system: canonical transformation (p⃗, q⃗) ↔ (J⃗ , θ⃗) exists
such that J̇i = 0; θ̇i = ωi = ∂H/∂Ji (constant), plus other details.

Ji = action ∼ p; θi = angle ∼ q [Goldstein]
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Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion (i.e. {Ci ,Cj} = 0) =⇒ integrability. [V. I. Arnold]

6 phase-space variables =⇒ 3 commuting constants for integrability
→ 3 actions & 3 angles (3+3=6).

Line of approach: (1) prove integrability (2) find action-angles

Sashwat Tanay (LUTH, Paris) Revisiting 2PN mechanics of binary black holes 12 / 21



Integrable Hamiltonian systems and action-angle variables

Hamiltonian system: With {q, p} = 1, q̇ = ∂H/∂p, ṗ = −∂H/∂q
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Integrable systems are nice (and rare) systems!

Integrability =⇒ no chaos. Chaos =⇒ analytical and numerical
solutions numerical become elusive.

Action-angles → solution and frequencies.

Action-angles → resonances (ωi/ωj = n1/n2) and separatrices via

det
(

∂C⃗
∂J⃗

)
= 0.

Canonical perturbation theory & Lie transformation:
(J⃗old, θ⃗old, ω⃗old) → (J⃗new, θ⃗new, ω⃗new). [Goldstein]

It’s nice to have integrable systems (they occur rarely), and extra nice to
have action-angle variables.
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Results



Results: Hamiltonian system

This is a Hamiltonian system with the Hamiltonian

H =
1

4d3m1m2L2

{
−3

(
m2L⃗ · S⃗1 + (1 ↔ 2)

)2

+2L2
(
m2(4m1 + 3m2)L⃗ · S⃗1 +

1

2
m1m2S⃗1 · S⃗2 + (1 ↔ 2)

)}
(1)
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Results: integrability and action-angle variables

3 constants of motion already known =⇒ integrability.

We construct all 3 actions & angle variables.

We construct
(
S⃗1, S⃗2, L⃗

)
as functions of (J⃗ , θ⃗), thereby constructing

the solution (S⃗1(t), S⃗2(t), L⃗(t)).

Matches with the numerical and the already-existing non-AA-based
analytical solutions [Kesden & others - 2014]
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Results: action expressions

σ1 ≡ (1 +m2/m1) , σ2 ≡ (1 +m1/m2) ,
L⃗ ≡ R⃗ × P⃗, S⃗eff ≡ σ1S⃗1 + σ2S⃗2,
J⃗ = L⃗+ S⃗1 + S⃗2, C1 = J2 − L2 − S2

1 − S2
2

C2 =
[
1− 4(C1σ1−2Seff ·L)(C1σ2−2Seff ·L)

(C1(σ1+σ2)−4Seff ·L)2−4L2(σ1−σ2)
2(S12+S22)

]1/2
− 1

J1 = J, J2 = Jz .

Third action
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Results: resonances and separatrices

Rediscover the already-found resonances by ω1/ω2 = n1/n2, where
ωi = ∂H/∂Ji , plus potentially more.

Separatrix criterion det
(

∂C⃗
∂J⃗

)
= 0 gives only the already-known

elliptic ↔ hyperbolic separatrix. Hence no new separatrix from the
spin DOFs.
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Summary



Summary

2PN orbit-averaged, eccentric and spinning BBH

We show it is Hamiltonian by discovering its Hamiltonian.

Integrability follows from the already-known constants of motion

Action-angle variables and solution constructed.

Action-angle variables → frequencies → already-known resonances
recovered.

The spin degrees don’t give rise to any new separatrix. Only elliptic
↔ hyperbolic separatrix known so far.

Ongoing: Construct solutions for full (w/o orbit-averaging) 2PN spinning,
eccentric systems.
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eccentric systems.
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