Tidal contributions to the gravitational waveform amplitude to the 2.5 post-Newtonian order

Laura Bernard, Eve Dones, Quentin Henry

API "Gravitational waves and compact objects" Workshop @ Observatoire de Paris, Meudon October 10, 2024

Introduction

Systems

Non-spinning compact binary systems (BNS or BH-NS)

Project : continuation of previous work

Quentin Henry, Guillaume Faye, Luc Blanchet Tidal effects in the equations of motion of compact binary systems to next-to-next-to-leading post-Newtonian order, Phys. Rev. D.101, 064047, 2020

Tidal effects in the gravitational-wave phase evolution of compact binary systems to next-to-next-to-leading post-Newtonian order, Phys. Rev. D.102, 044033, 2020

Aims at furnishing the complete waveform amplitude including tidal effects at 2.5PN order consistently with the precision of the orbital phase

Analytical w Two-body pr Tidal effects PN-expande

- Analytical waveform modeling for inspiraling binaries
- Two-body problem in GR
- Tidal effects and their impact on the GW amplitude
- **PN-expanded and EOB-factorized modes**
- **Detectability of tidal effects**

Approaches to computing the waveform

Post-Newtonian formalism

Slow motion and weak field regimes

PN power series in the small parameter

$$\varepsilon = \frac{v_{12}^2}{c^2} \sim \frac{Gm}{r_{12}c^2} \ll 1$$

• PN orders : nPN = $\mathcal{O}(\epsilon^n)$

4

Solving the Relativistic Two-Body Problem

Dynamical sector

• Effective action $S = S_{EH} + S_m$

• Solving iteratively the EFEs :

$$\Box_{\eta} h^{\mu\nu} = \frac{16\pi G}{c^4} \tau^{\mu\nu} = \frac{16\pi G}{c^4} |g| T^{\mu\nu} + \Lambda^{\mu\nu}(h, \partial h, \partial^2 h)$$

• Fokker Lagrangian $L_{fokker} = L[y_A, v_A, a_A^k]$

 (a_1^i, a_2^i) : conservative EOM E : conserved energy

dt

Radiative sector

• Gravitational wave generation formalism [Blanchet Living Review]

- mPM expansion of the field outside the source
- **PN** expansion of the field in the near zone
- Matching of MPM and PN expansions in exterior near zone where both expansions are valid

 \mathcal{F} : radiated energy flux parametrized by a set of radiative multipole moments (U_L, V_L)

Orbital phase

$$\phi = \int \omega dt = -\int \frac{\omega dE}{\mathcal{F}}$$

Adiabatic tidal effects

Motivations

- Main influence of NS matter on the GW signals in the inspiral due to adiabatic tidal effects \rightarrow very promising way to probe the internal structure of NS
- A way to **distinguish signals** coming from BBH, BH-NS, BNS or systems involving more exotic objects such as bosons stars
- Affects both the dynamics and the GW emission of compact binaries \rightarrow results in a change in the orbital phase and waveform amplitude, which are directly observable
- Becomes more important in the late inspiral and for extended NS \rightarrow could be measurable, in particular with 3G detectors (ET, CE ...)

Effective action at 2PN

Go beyond the point-particule approximation :

$$\begin{split} S_m &= -\sum_{A=1,2} \int d\tau_A \left\{ m_A c^2 + \frac{\mu_A^{(2)}}{4} G_{\mu\nu}^A G_A^{\mu\nu} G_A^{\mu\nu} + \frac{\sigma_A^{(2)}}{6c^2} H_{\mu\nu}^A H_A^{\mu\nu} + \frac{\mu_A^{(3)}}{12} G_{\mu\nu\rho}^A G_A^{\mu\nu\rho} \right\} \\ G_{\mu\nu} &\equiv -c^2 R_{\mu\alpha\nu\beta} u^\alpha u^\beta \qquad : \text{tidal mass-type quadrupole moment} \\ H_{\mu\nu} &\equiv 2c^3 R^*_{\mu(\alpha\underline{\nu}\beta)} u^\alpha u^\beta \qquad : \text{tidal current-type quadrupole moment} \\ G_{\lambda\mu\nu} &\equiv -c^2 \nabla_{(\lambda}^{\perp} R_{\mu\underline{\alpha}\nu)\beta} u^\alpha u^\beta \qquad : \text{tidal mass-type octupole moment} \end{split}$$

Tidal deformability of the NS characterized by a set of deformation parameters $(\mu_A^{(l)}, \sigma_A^{(l)})$ \rightarrow linked to the **Tidal Love Numbers** $(k_A^{(l)}, j_A^{(l)})$

$$G\mu_{A}^{(l)} = \frac{2}{(2l-1)!!} k_{A}^{(l)} R_{A}^{2l+1} + \begin{pmatrix} \text{Compactness} \\ & & \\$$

$\nabla^{\perp}_{\mu} = \perp^{\nu}_{\mu} \nabla_{\nu} = (\delta^{\nu}_{\mu} + u_{\mu}u^{\nu}) \nabla_{\nu}$

Waveform amplitude

<u>Radiative coordinate system :</u> $X^{\mu} = (cT, \mathbf{X})$

The TT projection of the metric uniquely decomposed, at LO in 1/R, in terms of the STF radiative multipole moments (U_L, V_L)

$$h_{ij}^{\rm TT} = \frac{4G}{c^2 R} \,\mathcal{P}_{ijkl}(N) \sum_{\ell=2}^{+\infty} \frac{1}{c^\ell \ell!} \left\{ N_{L-2} \,\mathcal{U}_{klL-2}(T_R) - \frac{2\ell}{c(\ell+1)} \,N_{aL-2} \,\varepsilon_{ab(k} \,\mathcal{V}_{l)bL-2}(T_R) \right\} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

with :

- R : distance between the source and the observer
- **N** : direction of propagation of the GW
- $T_R = T R/c$: retarded time
- $P_{ijkl} = P_{i(k}P_{l)j} \frac{1}{2}P_{ij}P_{kl}$: TT projection operator

•
$$P_{ij} = \delta_{ij} - N_i N_j$$

Waveform amplitude

The 2 GW propagation modes expressed in the orthonormal triad (**P**, **Q**, **N**) :

$$h_{+} = \frac{1}{2} \left(P_i P_j - Q_i Q_j \right) h_{ij}^{\mathrm{TT}}$$
$$h_{\times} = \frac{1}{2} \left(P_i Q_j + Q_i P_j \right) h_{ij}^{\mathrm{TT}}$$

 $h_{+} - ih_{\times}$ decomposed in a spin-weighted spherical harmonics basis of weight -2 :

$$h \equiv h_{+} - \mathrm{i}h_{\times} = \sum_{l=0}^{\infty} \sum_{m=-\ell}^{\ell} h_{\ell m} Y_{-2}^{\ell m}(\Theta, \Phi)$$

Amplitude modes h^{lm} computed directly from radiative moments :

$$h_{\ell m} = -\frac{2G}{Rc^{\ell+2}\ell!} \sqrt{\frac{(\ell+1)(\ell+2)}{\ell(\ell-1)}} \,\alpha_L^{\ell m} \left(U_L + \frac{2\ell}{\ell+1}\frac{\mathrm{i}}{c}V_L\right)$$

 \rightarrow To get the full waveform amplitude at 2.5PN, we need to compute all the h^{lm} for $l \leq 7$ and $|m| \leq l$ at 2.5PN

Radiative moments

Precision of the radiative moments needed to get the full GW amplitude to 2.5PN :

Moments	U_{ij}	$V_{ij} \& U_{ijk}$	$V_{ijk} \& U_{ijkl}$	$V_{ijkl} \& U_{ijklm}$	$V_{ijklm} \& U_{ijklmp}$	$V_{ijklmp} \& U_{ijklmpq}$
Order	2.5PN	$2\mathrm{PN}$	$1.5 \mathrm{PN}$	1PN	0.5PN	0PN

In comparison, for the computation of the flux (and orbital phase) to 2.5PN :

$$\mathcal{F} = \frac{G}{c^5} \left\{ \frac{1}{5} U_{ij}^{(1)} U_{ij}^{(1)} + \frac{1}{c^2} \left[\frac{1}{189} U_{ijk}^{(1)} U_{ijk}^{(1)} + \frac{16}{45} V_{ij}^{(1)} V_{ij}^{(1)} \right] + \frac{1}{c^4} \left[\frac{1}{9072} U_{ijkm}^{(1)} U_{ijkm}^{(1)} + \frac{1}{84} V_{ijk}^{(1)} V_{ijk}^{(1)} \right] + \mathcal{O}\left(\frac{1}{c^6}\right) \right\}$$

Moments	U_{ij}	$V_{ij} \ \& \ U_{ijk}$	$V_{ijk} \& U_{ijkl}$
Order	2.5PN	1.5PN	0.5PN

 \rightarrow More PN information is needed to derive the modes at a given PN order than to derive the energy flux at that same order

Stress-energy tensor and potentials

Start from the matter action :

$$S_m = -\sum_{A=1,2} \int d\tau_A \left\{ m_A c^2 + \frac{\mu_A^{(2)}}{4} G^A_{\mu\nu} G^{\mu\nu}_A + \frac{\sigma_A^{(2)}}{6c^2} \right\}$$

In [Henry+20], they derived the stress-energy tensor :

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S_m}{\delta g_{\mu\nu}}$$

We define the matter source densities $: \sigma \equiv \frac{T^{00} + T^{ii}}{c^2}$, $\sigma_i \equiv \frac{T^{0i}}{c}$ and $\sigma_{ij} \equiv T^{ij}$

The metric parametrized by PN potentiels $g_{\mu\nu} = g_{\mu\nu}[V, V_i, W_{ij}, R_i, X]$ satisfying wave equations sourced by $(\sigma, \sigma_i, \sigma_{ij})$:

$$\Box V = -4\pi G\sigma,$$

$$\Box V_i = -4\pi G\sigma_i,$$

$$\Box \hat{W}_{ij} = -4\pi G (\sigma_{ij} - \delta_{ij}\sigma_{kk}) - \partial_i V \partial_j V,$$

$$\Box \hat{R}_i = -4\pi G (V\sigma_i - V_i\sigma) - 2\partial_k V \partial_i V_k - \frac{3}{2} \partial_t V \partial_i V,$$

$$\Box \hat{X} = -4\pi G\sigma_{kk} + 2V_i \partial_t \partial_i V + V \partial_t^2 V + \frac{3}{2} (\partial_t V)^2 - \frac{3}{2} (\partial_t V)^2$$

 $\left\{ \frac{\mu_{A}^{(2)}}{2} H^{A}_{\mu\nu} H^{\mu\nu}_{A} + \frac{\mu_{A}^{(3)}}{12} G^{A}_{\mu\nu\rho} G^{\mu\nu\rho}_{A} \right\}$

 $2\partial_i V_j \partial_j V_i + \hat{W}_{ij} \partial_{ij}^2 V$

11

Matter source densities

OPN tidal effect

[Henry+20]

(σ at 2PN , σ_i at 1PN , σ_{ij} at 0PN)

In this work, we need : $(\sigma \text{ at } 2\text{PN}, \sigma_i \text{ at } 2\text{PN}, \sigma_{ij} \text{ at } 1\text{PN})$

$$\begin{split} \sigma_{\text{tidal}} &= -\frac{1}{\sqrt{-g}} \partial_{ab} \left\{ \delta_1 \left(\mu_1^{(2)} \left[-\frac{1}{2} \hat{G}_{1ab} + \frac{1}{c^2} \left(-\frac{3}{4} \hat{G}_{1ab} v_1^2 + \frac{3}{2} \hat{G}_{1ai} v_1^b v_1^i + \frac{1}{2} \hat{G}_{1ab} V \right) \right] \text{IPN tidal effect} \\ &+ \frac{1}{c^4} \left(-\frac{7}{16} \hat{G}_{1ab} v_1^4 - \frac{1}{8} (\hat{G}_{1ij} v_1^i v_1^j) v_1^a v_1^b + \frac{7}{8} \hat{G}_{1ai} v_1^b v_1^b + \frac{1}{4} \hat{G}_{1ab} v_1^2 V + \frac{1}{2} \hat{G}_{1ai} V v_1^b v_1^i - \frac{1}{4} \hat{G}_{1ab} V^2 \right) \\ &+ 2 \hat{G}_{1ab} (v_1^i V_i) - 2 \hat{G}_{1ai} v_1^i V_b - 2 \hat{G}_{1ai} v_1^b V_i + \hat{G}_{1bi} \hat{W}_{ai} + \hat{G}_{1ai} \hat{W}_{bi} \right) \right] \\ &+ \sigma_1^{(2)} \left(-\frac{4\varepsilon_{aij} \hat{H}_{1bj} v_1^i}{3c^2} + \frac{1}{c^4} \left(-\frac{2}{3} \varepsilon_{aij} \hat{H}_{1bj} v_1^2 v_1^i + \frac{2}{3} \varepsilon_{ajk} \hat{H}_{1ik} v_1^b v_1^i + \frac{4}{3} \varepsilon_{aij} \hat{H}_{1bj} V v_1^i + \frac{8}{3} \varepsilon_{aij} \hat{H}_{1bj} V_i \right) \right) \right\} \\ &- \frac{1}{\sqrt{-g}} \left(\partial_t \partial_a \left\{ \mu_1^{(2)} \delta_1 \left[\frac{\hat{G}_{1ab} v_1^b}{c^2} + \frac{1}{c^4} \left(\frac{1}{2} (\hat{G}_{1ij} v_1^i v_1^j) v_1^a - \hat{G}_{1ab} V v_1^b \right) \right) \right\} \right) \\ &- \frac{1}{\sqrt{-g}} \left(\partial_t \partial_a \left\{ u_1^{(2)} \left[- \frac{\hat{G}_{1ab} \partial_b V}{c^2} + \frac{1}{c^4} \left(\hat{G}_{1ab} v_1^b \partial_t V + \frac{7}{2} (\hat{G}_{1ij} v_1^i \partial_j V) v_1^a + \frac{7}{2} \hat{G}_{1ab} (v_1^i \partial_t V) v_1^b \right) \right\} \\ &- \frac{1}{\sqrt{-g}} \partial_a \left\{ \delta_1 \left(\mu_1^{(2)} \left[- \frac{\hat{G}_{1ab} \partial_b V}{c^2} + \frac{1}{c^4} \left(\hat{G}_{1ab} v_1^b \partial_t V + \frac{7}{2} (\hat{G}_{1ij} v_1^i \partial_j V) v_1^a + \frac{7}{2} \hat{G}_{1ab} (v_1^i \partial_t V) v_1^b \right) \right\} \\ &- \frac{1}{\sqrt{-g}} \partial_a \left\{ \delta_1 \left(\mu_1^{(2)} \left[- \frac{\hat{G}_{1ab} \partial_b V}{c^2} + \frac{1}{c^4} \left(\hat{G}_{1ab} v_1^b \partial_t V + \frac{7}{2} (\hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1^b \partial_t V) v_1^b \right) \right\} \\ &- \frac{1}{\sqrt{-g}} \partial_a \left\{ \delta_1 \left(\mu_1^{(2)} \left[- \frac{\hat{G}_{1ab} \partial_b V}{c^2} + \frac{1}{c^4} \left(\hat{G}_{1ab} v_1^b \partial_t V + \frac{7}{2} (\hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1^b \partial_t V v_1^b \right) \right\} \\ &- \frac{1}{\sqrt{-g}} \partial_a \left\{ \delta_1 \left(\mu_1^{(2)} \left[- \frac{\hat{G}_{1ab} \partial_a V v_1 + \frac{1}{2} (\hat{G}_{1ab} V_0 v_1 + \frac{7}{2} (\hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1 + \frac{7}{2} \hat{G}_{1ab} V_0 v_1 + 2 \hat{G}_{1ab} V_$$

Source moments I_L and J_L

From the **PN-MPM formalism :**

 \rightarrow The outer field is **PM-expanded** as $h^{\mu\nu} = Gh_1^{\mu\nu} + G^2 h_1^{\mu\nu}$

→ Assuming the **harmonic coordinate condition**, the linear field satisfies :

→ The solution of this system can be written as a multiper **moments** (W_L, X_L, Y_L, Z_L)

$$h_1^{\mu\nu} \sim \sum_{l=0}^{+\infty} \partial_L \left(\frac{K^{\mu\nu} \left[I_L, J_L; W_L, X_L, Y_L, Z_L \right]}{r} \right)$$

 \rightarrow The explicit formula for I_L and J_L is obtained by matching to the inner field that is PN-expanded

$$h_2^{\mu\nu} + \dots$$

$$\Box h_1^{\mu\nu} = 0$$
$$\partial_\mu h_1^{\alpha\mu} = 0$$

 \rightarrow The solution of this system can be written as a multipolar expansion of **2 STF sources moments** (I_L, J_L) and **some gauge**

From the **PN-MPM formalism**, the STF source multipole moments I_L (mass-type) and J_L (current-type) given at any PN order by $(l \ge 2)$:

$$\begin{split} I_{L}(u) &= \mathop{\rm FP}_{B=0} \int \mathrm{d}^{3}\mathbf{x} \, \tilde{r}^{B} \int_{-1}^{1} \mathrm{d}z \Big[\delta_{\ell}(z) \hat{x}_{L} \Sigma - \frac{4(2\ell+1)}{c^{2}(\ell+1)(2\ell+3)} \delta_{\ell+1}(z) \hat{x}_{iL} \Sigma_{i}^{(1)} \\ &+ \frac{2(2\ell+1)}{c^{4}(\ell+1)(\ell+2)(2\ell+5)} \delta_{\ell+2}(z) \hat{x}_{ijL} \Sigma_{ij}^{(2)} \Big] (\mathbf{x}, u + zr/c) \,, \\ J_{L}(u) &= \mathop{\rm FP}_{B=0} \int \mathrm{d}^{3}\mathbf{x} \, \tilde{r}^{B} \int_{-1}^{1} \mathrm{d}z \, \varepsilon_{ab\langle i_{\ell}} \Big[\delta_{\ell}(z) \hat{x}_{L-1\rangle a} \Sigma_{b} - \frac{2\ell+1}{c^{2}(\ell+2)(2\ell+3)} \delta_{\ell+1}(z) \hat{x}_{L-1\rangle a} \Sigma_{bc}^{(1)} \Big] (\mathbf{x}, u + zr/c) \,, \end{split}$$

 \rightarrow The source terms Σ , Σ_i and Σ_{ij} contain the matter source densities (σ , σ_i , σ_{ij}) as well the PN potentials (V, V_i, W_{ij}, R_i, X) \rightarrow The integrations over z are transformed into infinite PN series:

$$\int_{-1}^{1} \mathrm{d}z \,\,\delta_{\ell}(z) \,\Sigma(\mathbf{x}, t + zr/c) = \sum_{k=0}^{+\infty} \,\frac{(2\ell+1)!!}{(2k)!!(2\ell+2k+1)!!} \,\left(\frac{r}{c}\right)^{2k} \Sigma^{(2k)}(\mathbf{x}, t)$$

 \rightarrow The **finite part (FP) regularization** is there to cure the IR divergences at spatial infinity

Source moments I_L and J_L

Source mass-type quadrupole at 2.5PN

- \rightarrow Function of $(y_1^i, y_2^i, v_1^i, v_2^i)$
- \rightarrow Reduce to the COM frame and to quasi circular orbits with

$$\gamma = \frac{GM}{rc^2}$$

2.5PN p.p + tidal effect

Radiative moments U_L and V_L

The MPM algorithm relates the radiative moments (U_L, V_L) to the canonical moments (M_L, S_L) In this work, $(M_L, S_L) \rightarrow (I_L, J_L)$

Taking the exemple of the mass quadrupole at 2.5PN:

$$\begin{split} U_{ij} &= \overset{(2)}{M_{ij}} + \frac{2G\mathcal{M}}{c^3} \int_0^\infty \mathrm{d}\tau \left[\ln \left(\frac{\tau}{2b_0} \right) + \frac{11}{12} \right] \mathrm{M}_L^{(4)}(t-\tau) & \text{Tails effects} \\ & -\frac{2G}{7c^5} \int_0^\infty \mathrm{d}\tau \, \mathrm{M}_{a\langle i}^{(3)}(t-\tau) \mathrm{M}_{j\rangle a}^{(3)}(t-\tau) & \text{Non-linear memory effects} \\ & + \frac{G}{7c^5} \left[\mathrm{M}_{a\langle i}^{(5)} \mathrm{M}_{j\rangle a} - 5\mathrm{M}_{a\langle i}^{(4)} \mathrm{M}_{j\rangle a}^{(1)} - 2\mathrm{M}_{a\langle i}^{(3)} \mathrm{M}_{j\rangle a}^{(2)} + \frac{7}{3}\epsilon_{ab\langle i} \mathrm{M}_{j\rangle a}^{(4)} \mathrm{S}_b \right] & + \mathcal{O}\left(\frac{1}{c^6}, \frac{\epsilon_{iidal}}{c^6} \right) & \text{Instantaneous effects} \end{split}$$

- <u>Tail effects</u>: GW are backscattered on the spacetime curvature generated by the mass monopole I
- Memory effects: GW radiated by the GW themselves
- \rightarrow The non-linear propagation effects are only **quadratic**: $M \times M_{ij}$ (tails) and $M_{ij} \times M_{ij}$ (memory effects)

Radiative moments U_L and V_L

The relations required to derive the full waveform amplitude to 2.5PN are:

 $U_{ij} = I_{ij}^{(2)} + U_{ijk} = I_{ijk}^{(3)} + U_{ijkl} = I_{ijk}^{(4)} + U_{ijkl} = I_{ijkl}^{(4)} + V_{ij} = J_{ij}^{(2)} + V_{ij}^{(2)} + V_{ij}^{(2$ $V_{ijk} = J_{ijk}^{(3)} +$

For the rest of radiative moments, we just have :

 $U_L = \stackrel{(l)}{I_I} , \ V_I$

- \rightarrow These relations already well-know
- \rightarrow We included the tidal contributions consistently with the precision required for each radiative moment

$$U_{ij}^{tail} + U_{ij}^{inst} + U_{ij}^{mem}$$

$$U_{ijk}^{tail}$$

$$U_{ijkl}^{tail} + U_{ijkl}^{inst} + U_{ijkl}^{mem}$$

$$V_{ij}^{tail}$$

$$V_{ijk}^{tail} + V_{ijk}^{inst}$$

$$V_L = J_L^{(l)}$$

Amplitude modes: PN expanded form

$$h_{\ell m} = \frac{8GM\nu x}{Rc^2} \sqrt{\frac{\pi}{5}} \left(\hat{H}_{\ell m}^{\rm pp} + x^5 \hat{H}_{\ell m}^{\rm tidal}\right) \epsilon$$

We computed the \hat{H}^{lm} for $l \leq 7$ and $|m| \leq l$ up to the **relative 2.5PN order**. The **dominant mode** is the **(2,2) mode**:

$$\hat{H}_{22}^{\text{tidal effect}} = \frac{1}{\nu} \left\{ \widetilde{\mu}_{+}^{(2)}(3+12\nu) + 3\delta \, \widetilde{\mu}_{-}^{(2)} + \left[\widetilde{\mu}_{+}^{(2)}\left(\frac{9}{2} - 20\nu + \frac{45}{7}\nu^{2}\right) + \delta \, \widetilde{\mu}_{-}^{(2)}\left(\frac{9}{2} + \frac{125}{7}\nu\right) + \frac{224}{3}\nu \, \widetilde{\sigma}_{+}^{(2)}\right] x \right] \right\}$$

$$1.5PN \text{ tidal effect} + 6\pi \left[\widetilde{\mu}_{+}^{(2)}(1+4\nu) + \delta \, \widetilde{\mu}_{-}^{(2)}\right] x^{3/2} + \left[\widetilde{\mu}_{+}^{(2)}\left(\frac{1403}{56} - \frac{9227}{168}\nu - \frac{19367}{168}\nu^{2} - \frac{274}{21}\nu^{3}\right) \right]$$

$$+ \delta \, \widetilde{\mu}_{-}^{(2)}\left(\frac{1403}{56} + \frac{887}{56}\nu + \frac{103}{24}\nu^{2}\right) + \widetilde{\sigma}_{+}^{(2)}\left(\frac{11132}{63}\nu - \frac{6536}{63}\nu^{2}\right) + \frac{8084}{63}\delta \, \nu \, \widetilde{\sigma}_{-}^{(2)} + 80\nu \, \widetilde{\mu}_{+}^{(3)}\right] x^{2} \quad \text{2PN tidal effect}$$

$$+ \left[\widetilde{\mu}_{+}^{(2)}\left(\frac{1}{5}(64 - 108\nu - 8640\nu^{2}) + \frac{\pi}{7}(63 - 301\nu + 132\nu^{2})\right) + \delta \, \widetilde{\mu}_{-}^{(2)}\left(\frac{1}{5}(64 + 20\nu) + \frac{\pi}{7}(63 + 229\nu)\right) + \frac{448}{3}\pi \, \nu \, \widetilde{\sigma}_{+}^{(2)}\right] x^{5/2} \right\},$$

2.5PN tidal effect

Amplitude modes: EOB-factorized form

In EOB waveform models, there is a freedom on the choice of resumming the waveform modes

 \rightarrow historical choice to **lower the mismatch** with Numerical Relativity

Amplitude modes: EOB-factorized form

The dominant (2,2) mode has a **remaining amplitude** :

$$f_{\ell m} = f$$

$$f_{22}^{\text{tidal}} = \frac{1}{\nu} \left\{ \widetilde{\mu}_{+}^{(2)}(3+12\nu) + 3\delta \,\widetilde{\mu}_{-}^{(2)} + \left[\widetilde{\mu}_{+}^{(2)}\left(6-23\nu+\frac{45}{7}\nu^{2}\right) + \delta \,\widetilde{\mu}_{-}^{(2)}\left(6+\frac{125}{7}\nu\right) + \frac{224}{3}\nu\widetilde{\sigma}_{+}^{(2)}\right] x + \left[\widetilde{\mu}_{+}^{(2)}\left(\frac{377}{14} - \frac{13985}{168}\nu - \frac{17615}{168}\nu^{2} - \frac{274}{21}\nu^{3}\right) + \delta \,\widetilde{\mu}_{-}^{(2)}\left(\frac{377}{14} + \frac{589}{56}\nu + \frac{103}{24}\nu^{2}\right) + \widetilde{\sigma}_{+}^{(2)}\left(\frac{7940}{63}\nu - \frac{6536}{63}\nu^{2}\right) + \frac{8084}{63}\delta\nu\,\widetilde{\sigma}_{-}^{(2)} + 80\nu\,\widetilde{\mu}_{+}^{(3)}\right] x^{2} \right\} + \mathcal{O}\left(\frac{\epsilon_{\text{tidal}}}{c^{6}}\right),$$

$$(5.8)$$

2PN tidal effect

And **residual phase** :

$$\delta_{22} = \frac{7}{3}x^{3/2} - \frac{151}{6}\nu x^{5/2} + \frac{64}{5\nu} \left[\tilde{\mu}_{+}^{(2)} \left(1 + \frac{63}{16}\nu - \frac{7095}{64}\nu^2 \right) + \delta \,\tilde{\mu}_{-}^{(2)} \left(1 + \frac{95}{16}\nu \right) \right] x^{15/2} + \mathcal{O}\left(\frac{1}{c^6}, \frac{\epsilon_{\text{tidal}}}{c^6} \right)$$

1.5PN p.p
2.5PN p.p + tidal effect

$$f^{\rm pp}_{\ell m} + x^5 f^{\rm tidal}_{\ell m}$$

P·P

20

Detectability of tidal effects

21

- of the orbital phase
- \rightarrow Results will soon available on arXiv !

- Outlook
 - o Improve the modeling of **physical effects** : mixed tidal-EM effects in GR ...
 - Study the effects of **dynamic tides** on the dynamics and the waveform

• We computed the full waveform amplitude including tidal effects up to 2.5PN consistently with the precision

