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Systems

Project : continuation of previous work

Aims at furnishing the complete waveform amplitude including tidal effects at 2.5PN order consistently with the 
precision of the orbital phase

Non-spinning compact binary systems (BNS or BH-NS)



Overview

Analytical waveform modeling for inspiraling binaries

Two-body problem in GR

Tidal effects and their impact on the GW amplitude

Detectability of tidal effects

PN-expanded and EOB-factorized modes
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Approaches to computing the waveform
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Post-Newtonian 
theory

Numerical 
Relativity

Perturbation 
theory



Post-Newtonian formalism

4

r12

  Slow motion and weak field regimes

  PN power series in the small parameter

ε =
v122

c2
∼

Gm
r12 c2

≪ 1

  PN orders : nPN = 𝒪(ϵn)



Solving the Relativistic Two-Body Problem 
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Dynamical sector Radiative sector

Effective action S = SEH + Sm

Solving iteratively the EFEs :

□η hμν =
16πG

c4
τμν =

16πG
c4

|g|Tμν + Λμν(h, ∂h, ∂2h)

Fokker Lagrangian Lfokker = L [yA, vA, ak
A]

  : conservative EOM(ai
1, ai

2)
 E : conserved energy

Gravitational wave generation formalism [Blanchet Living Review]

• mPM expansion of the field outside the source

• PN expansion of the field in the near zone

• Matching of MPM and PN expansions in exterior near 

zone where both expansions are valid

  : radiated energy flux parametrized by a set of 

radiative multipole moments 

ℱ

(UL, VL)

Orbital phase

dE
dt

= − ℱ ⇒ ϕ = ∫ ωdt = − ∫
ωdE
ℱ

Flux balance equation :



Adiabatic tidal effects
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Motivations

  Main influence of NS matter on the GW signals in the inspiral due to adiabatic tidal effects 
 very promising way to probe the internal structure of NS→

 A way to distinguish signals coming from BBH, BH-NS, BNS or systems involving more exotic 
objects such as bosons stars 

 Affects both the dynamics and the GW emission of compact binaries 
 results in a change in the orbital phase and waveform amplitude, which are directly observable→

 Becomes more important in the late inspiral and for extended NS 
 could be measurable, in particular with 3G detectors (ET, CE …)→



Effective action at 2PN
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Go beyond the point-particule approximation : 

Sm = − ∑
A=1,2

∫ dτA {mA c2 +
μ(2)

A

4
GA

μνG
μν
A +

σ(2)
A

6c2
HA

μνHμν
A +

μ(3)
A

12
GA

μνρGμνρ
A }

Gμν ≡ − c2 Rμανβ uα uβ

Hμν ≡ 2c3 R*μ(ανβ) uα uβ

Gλμν ≡ − c2 ∇⊥
(λRμαν)β uα uβ

Tidal deformability of the NS characterized by a set of deformation parameters  

 linked to the Tidal Love Numbers 

(μ(l)
A , σ(l)

A )

→ (k(l)
A , j(l)

A )

Gμ(l)
A =

2
(2l − 1)!!

k(l)
A R2l+1

A

Gσ(l)
A =

l − 1
4(l + 2)(2l − 1)!!

j(l)
A R2l+1

A

Compactness

𝒞 ∼
Gm
Rc2

∼ 1

for compact objects

μ(2)
A ∼ σ(2)

A ∼ 𝒪 ( 1
c10 )

μ(3)
A ∼ 𝒪 ( 1

c14 )

: 5PN effect (LO/0PN)

: 7PN effect (NNLO/2PN 
relative)

⇒+

∇⊥
μ = ⊥ν

μ ∇ν = (δν
μ + uμuν)∇ν

: tidal mass-type quadrupole moment

: tidal current-type quadrupole moment

: tidal mass-type octupole moment



Waveform amplitude
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The TT projection of the metric uniquely decomposed, at LO in 1/R,  in terms of the STF 
radiative multipole moments (UL, VL)

with :

  R : distance between the source and the observer

  N : direction of propagation of the GW

   : retarded timeTR = T − R/c

   : TT projection operatorPijkl = Pi(kPl)j−
1
2 PijPkl

  Pij = δij − NiNj

Radiative coordinate system : Xμ = (cT, X)
N

eY

eZ

eX



Waveform amplitude
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The 2 GW propagation modes expressed in the orthonormal triad  :(P, Q, N)

 decomposed in a spin-weighted spherical harmonics basis of weight -2 : h+ − ih×

Amplitude modes  computed directly from radiative moments : hlm

N

eY

eZ

P = eX

 To get the full waveform amplitude at 2.5PN, we need to compute all the  for  and  at 2.5PN→ hlm l ≤ 7 |m| ≤ l



Radiative moments
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Precision of the radiative moments needed to get the full GW amplitude to 2.5PN : 

In comparison, for the computation of the flux (and orbital phase) to 2.5PN : 

1.5PN 0.5PN

 More PN information is needed to derive the modes at a given PN order than to derive the energy flux at that same order→



Stress-energy tensor and potentials
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Sm = − ∑
A=1,2

∫ dτA {mA c2 +
μ(2)

A

4
GA

μνG
μν
A +

σ(2)
A

6c2
HA

μνHμν
A +

μ(3)
A

12
GA

μνρGμνρ
A }

Start from the matter action :  

In [Henry+20], they derived the stress-energy tensor :  

Tμν =
2
−g

δSm

δgμν

We define the matter source densities  :  ,  and  σ ≡
T00 + Tii

c2
σi ≡

T0i

c
σij ≡ Tij

The metric parametrized by PN potentiels   satisfying wave equations sourced by  :gμν = gμν [V, Vi, Wij, Ri, X] (σ , σi , σij)



Matter source densities
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0PN tidal effect 

1PN tidal effect 

2PN tidal effect 
[Henry+20]
(  at 2PN ,  at 1PN ,  at 0PN)σ σi σij

(  at 2PN ,  at 2PN ,  at 1PN)σ σi σij

In this work, we need : 



Source moments  and IL JL
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From the PN-MPM formalism : 

 The outer field is PM-expanded as  → hμν = Ghμν
1 + G2hμν

2 + . . .

 The solution of this system can be written as a multipolar expansion of 2 STF sources moments   and some gauge 
moments 
→ (IL, JL)

(WL, XL, YL, ZL)

 Assuming the harmonic coordinate condition, the linear field satisfies :→

□ hμν
1 = 0

∂μhαμ
1 = 0

hμν
1 ∼

+∞

∑
l=0

∂L (
Kμν [IL, JL; WL, XL, YL, ZL]

r ) ∼
+∞

∑
l=0

∂L (
Kμν [ML, SL]

r ) ∼
+∞

∑
l=0

∂L (
Kμν [IL, JL]

r )

 The explicit formula for  and  is obtained by matching to the inner field that is PN-expanded→ IL JL

Only in this work

Canonical moments



Source moments  and IL JL
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From the PN-MPM formalism, the STF source multipole moments  (mass-type) and  (current-type) given at any 
PN order by  : 

IL JL

(l ≥ 2)

 The source terms ,  and  contain the matter source densities  as well the PN potentials → Σ Σi Σij ( σ , σi , σij ) (V, Vi, Wij, Ri, X)

 The integrations over z are transformed into infinite PN series: →

 The finite part (FP) regularization is there to cure the IR divergences at spatial infinity→



Source moments  and IL JL
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Source mass-type quadrupole at 2.5PN

 Reduce to the COM frame and to quasi circular orbits with → γ =
GM
rc2

2.5PN p.p + tidal effect

2PN p.p + tidal effect 

1PN p.p + 
tidal effect 

0PN p.p + 
tidal effect 

 Function of → (yi
1 , yi

2 , vi
1 , vi

2)



Radiative moments  and UL VL
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The MPM algorithm relates the radiative moments  to the canonical moments (UL, VL) (ML, SL)

Taking the exemple of the mass quadrupole at 2.5PN:

Uij =
(2)
Mij

+

+ (4) Tails effects 

Non-linear memory effects 

Instantaneous effects ( 1
c6

,
ϵtidal

c6 )

  Tail effects: GW are backscattered on the spacetime curvature generated by the mass monopole I

11
12

  Memory effects: GW radiated by the GW themselves

 The non-linear propagation effects are only quadratic:  (tails) and  (memory effects)→ M × Mij Mij × Mij

In this work, (ML, SL) → (IL, JL)



Radiative moments  and UL VL
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The relations required to derive the full waveform amplitude to 2.5PN are:

Uij =
(2)
Iij + Utail

ij + Uinst
ij + Umem

ij

Uijk =
(3)
Iijk + Utail

ijk

Uijkl =
(4)
Iijkl + Utail

ijkl + Uinst
ijkl + Umem

ijkl

Vij =
(2)
Jij + Vtail

ij

Vijk =
(3)
Jijk + Vtail

ijk + Vinst
ijk

For the rest of radiative moments, we just have :

  ,  UL =
(l)
IL VL =

(l)
JL

 These relations already well-know→
 We included the tidal contributions consistently with the precision required for each radiative moment→



Amplitude modes: PN expanded form
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We computed the  for  and  up to the relative 2.5PN order.  Ĥlm l ≤ 7 |m| ≤ l

The dominant mode is the (2,2) mode: 

with 

orbital phase orbital frequency

0PN tidal effect 1PN tidal effect 

2PN tidal effect 

2.5PN tidal effect 

1.5PN tidal effect 



Amplitude modes: EOB-factorized form
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In EOB waveform models, there is a freedom on the choice of resumming the waveform modes

 historical choice to lower the mismatch with Numerical Relativity→

Modes factorized in 5 blocks:

   : the leading order PN contributionhN
lm

   : the effective source term ̂Seff

  Tlm

   : the remaining amplitudeflm

   : the residual phaseδlm

  coincides with the PN-expanded modes→ hF
lm

Related to the ADM mass



Amplitude modes: EOB-factorized form
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The dominant (2,2) mode has a remaining amplitude :

And residual phase :

0PN tidal effect 1PN tidal effect 

2PN tidal effect 

1.5PN p.p 2.5PN p.p + tidal effect



Detectability of tidal effects
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ET Science case 2019



Conclusion
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  We computed the full waveform amplitude including tidal effects up to 2.5PN consistently with the precision 
of the orbital phase

 Results will soon available on arXiv !→

  Outlook

Improve the modeling of physical effects : mixed tidal-EM effects in GR …

Study the effects of dynamic tides on the dynamics and the waveform


