

GDR, Mi2b

Le 09.10.2024

Simulation of X-ray Photon Counting Spectral Detector

Mélissa LEROY

- 1. Context of the thesis
- 2. Project's progress
- 3. Conclusion and prospects

- CIFRE thesis in partnership with the company Detection Technology (DT)
- Development of X-ray detection solutions
- Applications :

Medical X-ray imaging Computed tomography Dental imaging Surgical imaging

Security X-ray imaging Baggage and parcel scan Cargo and vehicle scan People scan

- Industrial X-ray imaging Food industry Recycling and sorting
- Mining industry
- 470 employees in the world
- **104 M€ net sales** in 2023

• Global strategy of the company:

- \rightarrow Develop Photon Counting Detectors and associated technology solutions
- \rightarrow Build an X-ray chain simulator as an internal research and development tool for the company

Stakes:

- \rightarrow Simulate new detectors
- \rightarrow Evaluate the interest of a detector compare to another for a specific application
- \rightarrow Create a database for Machine Learning applications

• Thesis:

 \rightarrow Focus on the simulation of X-ray Photon Counting Spectral Detector

- 1. Context of the thesis
- Reproducing technologies...

Detectors	Amptek : XR-100T-CdTe	DT: X-Card ME3	DT : Prototype	CPPM : XPAD3-Si
	PXS DIGITAL PULSE PROCESSOR MIN DI MIN DI SE PROCESSOR MIN DI MIN DI M	A Carlo Carl		
Characteristics	 Mono-pixel detector 3 mm pitch Cadmium Telluride 1 mm thickness 	 Linear detector of 128 pixels 800 µm pitch Cadmium Telluride 2 mm thickness Up to 128 bins 	 2D Matrix 2x 24x36 pixels 350 - 400 µm pitch Cadmium Zinc Telluride 2 mm thickness Up to 8 bins 	 2D Matrix 130 µm pitch Silicon 500 µm thickness

• ... and validate simulator's results with experimental results !

From fundamental research to industrial application

Indirect conversion VS direct conversion

- Cheap for customer

• Detection with semi-conductor

 \rightarrow X-rays (low energy photons < 250 keV) interact with semiconductor of high atomic number (Z_{Cd} = 48 et Z_{Te} = 52) through photoelectric and Compton effect.

• Detection with semi-conductor

 \rightarrow X-rays (low energy photons < 250 keV) interact with semiconductor of high atomic number (Z_{Cd} = 48 et Z_{Te} = 52) through photoelectric and Compton effect.

 \rightarrow The energy deposited in the semiconductor creates electron – holes pairs which numbers depends on the crystal.

• Detection with semi-conductor

 \rightarrow X-rays (low energy photons < 250 keV) interact with semiconductor of high atomic number (Z_{Cd} = 48 et Z_{Te} = 52) through photoelectric and Compton effect.

 \rightarrow The energy deposited in the semiconductor creates electron – holes pairs which numbers depends on the crystal.

 \rightarrow Charges are separated by an electric field and collected by the electrodes

 \rightarrow The movement of charges induced a signal on the electrodes

 \rightarrow This signal is proportional to the energy of incident photons

Simulation pipeline

Simulation pipeline

- 2. Project's progress
- Simulation pipeline

• Spectrum of an Americium 241 source with Amptek detector

Mono-pixel detector

VX-RAY DETECTOR

- CdTe
- 3 mm pitch
- 1 mm thickness

• Spectrum of an Americium 241 source with Amptek detector

• Spectrum of an Americium 241 source with Amptek detector

 \rightarrow Simulation reproduces the Americium 241 source spectra

→ Apparition of new peaks due to escaped **fluorescence photons** after interactions with Cadmium Telluride

Incident X-ravs

Cathode

Anode

CPPN

Energy deposition

• Simulation pipeline

Project's progress 2.

• Compute the number of charges created in the sensor

Material	E _{e/h}	
Cadmium Telluride	CdTe	4.43 eV
Cadmium-Zinc Telluride	CdZnTe	4.64 eV
Silicon	Si	3.64 eV
Germanium	Ge	2.97 eV
Gallium Arsenide	GaAs	4.2 eV

Electrons 80 creation + Holes

For a 60 keV in CdTe : $E_{deposited} = 60 \text{ keV}$ $E_{e/h. CdTe} = 4.43 \text{ eV}$

N_{charges} = 13 544 charges

• Compute the number of charges created in the sensor

E_{e/⊁}

 $N_{charges} = E_{deposited}$

N_{charges}: Number of electron-hole pairs created

• Fluctuations in the number of charge carriers

E_{deposited}: Energy deposited in the sensor

E_{e/h}: Electron-hole pair creation energy

- \rightarrow The process of the electron-hole pair generation could be modeled as a Poisson process.
- \rightarrow **Fano factor** introduce as an adjustment factor to relate the observed variance to the Poisson predicted variance.

F = Observed variance in N_{charges}

Poisson predicted variance

N_{charges} = ±13 544 charges

Simulation pipeline

+

Diffusion: movement due to charge concentration gradient in the semiconductor Charges transport I Holes I Hole

Anode

- Continuity equation for electric charges
- \rightarrow The dynamics of the electrons is described by the continuity equation:

Q(r,t): Total charge in a sphere of radius r at time t μ: Mobility of charge carriers E(r,t): Electric field of charge carriers D: Diffusion constant

- J. Durst, Ph.D. Thesis, Erlangen University, 2008.
- E. Gatti, A. Longoni, P. Rehak, M. Sampietro, Dynamics of electrons in drift detectors, Nucl. Instrum. Methods Phys. Res. A 253 (3) (1987) 393–399.

- Continuity equation for electric charges
- \rightarrow The dynamics of the electrons is described by the continuity equation:

$$\frac{\partial Q\left(r,t\right)}{\partial t} + \underbrace{\mu.E\left(r,t\right)\nabla Q\left(r,t\right)}_{\text{Electrostatic repulsion}} - \underbrace{D.\Delta Q\left(r,t\right)}_{\text{Diffusion}} = 0$$

Q(r,t): Total charge in a sphere of radius r at time t μ: Mobility of charge carriers E(r,t): Electric field of charge carriers D: Diffusion constant

 \rightarrow Repulsion-only solution:

$$r_0(t_d) = \sqrt{q rac{S_{LOSS}}{E_{eh}} rac{\mu t_d}{\pi \epsilon}}$$

- r₀: Cylinder radius (µm) q: Electronic charge (C)
- S_{LOSS}: Stopping power (MeV.cm².g⁻¹)
- E_{eh} : Electron-hole pair creation energy (keV)
- μ : Mobility of charge carriers (cm².V-¹.s-¹) t_d : Drift time (s)

ε: Dielectric permittivity (F.m⁻¹)

\rightarrow Diffusion-only solution:

Diffusion follows Gaussian distribution

$$\sigma\left(t_{d}
ight)=\sqrt{2Dt_{d}}$$

$$D = rac{\mu.k_B.T}{q}$$

- $\boldsymbol{\sigma}$: standard deviation of Gaussian distribution
- D: Diffusion constant (cm².s⁻¹)
- t_d : Drift time (s)
- k_{B} : Boltzmann constant (J.K $^{-1}$)
- T: Temperature (K)
- q: Electronic charge (C)

- J. Durst, Ph.D. Thesis, Erlangen University, 2008.
- E. Gatti, A. Longoni, P. Rehak, M. Sampietro, Dynamics of electrons in drift detectors, Nucl. Instrum. Methods Phys. Res. A 253 (3) (1987) 393–399.

Simulation pipeline

• ESRF measurement campaign's

- → Beamline ID17, 2015
- \rightarrow 2 modules of 128 pixels, CdTe (X-Card ME3)

Charge sharing correction study

- \rightarrow Scan of 100 µm step
- → Monochromatic beam of 60 keV
- \rightarrow Narrow pencil beam (20 µm x 50 µm)
- \rightarrow 9 positions on two pixels

Datas

 \rightarrow 9 Matrices of 256 pixels x 256 channels

Cathode

→ A low threshold results in double-counting in the interpixel area, a high threshold loss of signal. A threshold of 20 keV guarantees a uniform response of the pixels

time t

time t

Simulation pipeline Position and number Location of charge Location and number of Position in detector, carriers in the detector charges per pixels of charges created Quantity of energy deposited **Output information** Initial information Energy Charges Charges **Pixelization** Digitizer deposition creation transport Energy spectrum from the Detector geometry simulated detector X-ray Source properties Counts in each of several predefined energy bins Cathode 688 Next component to be developed: Semiconductor Holes Signal per pixel _ Electronic noise _ Electrons Pile-up effect 88 _ ++++Anode Digitizer

3. Conclusion and prospects

Conclusion

- \rightarrow Simulation pipeline in construction
- \rightarrow Simulation of physical interactions with Geant4
- \rightarrow Study of charges dynamics in Silicon with continuity equation
- \rightarrow Analysis of ESRF measurements of charge sharing study X-Card ME3

Prospects

- \rightarrow Charges dynamics to study in CdTe
- \rightarrow Experiment new simulation framework (Allpix squared) to reproduce semiconductor behavior
- \rightarrow New DT prototype characterization in ESRF

Thank you

a. Photoelectric effect

Photoelectric effect

 \rightarrow An incident photon interact with an electron of the inner shell. It deposits the energy required to eject this electron (binding energy) and gives the rest of its energy to the photoelectron emitted.

 \rightarrow The photoelectron ejected has an energy equal to the energy of the incident photon minus the binding energy of the electron.

 \rightarrow This interaction leaves a vacancy in the electron cloud. A relaxation phase ensures that the atom remains stable.

Fluorescence

 \rightarrow An electron from a higher energy subshell will fill the vacancy. This deexcitation will produces characteristics X-ray photons.

Auger cascade

 \rightarrow The atom will perform a succession of several electronic transitions. It will end in the emission of electrons with low energies (eV).

- b. Compton effect
- Qualified as "inelastic scattering"
- The incident photon collides with an electron weekly bounded to the atom. It gives its energy to an electron and is then scattered from its original direction of travel.
- In reality, it is not the same incident photon, it has been absorbed and a new photon, with a lower energy is scattered. The Compton electron is ejected according to a certain angle according to the original photon direction of travel.

c. Pile-up

- This phenomenon occurs when two photons interact on the same pixel in a very short time. The induced charges can then overlap and cause the convolution of the corresponding signals, which is called a pile-up phenomenon.
- Two events are then treated as one by the processing electronics, which induces an error in the discrimination of their energy.
- The solution to avoid this problem can be to increase the value of the electric field or to reduce the pitch of the anode (and therefore reduce the number of events per pixel).
- The correct separation of events by electronics is dependent on the minimum processing time, called dead time.
- This phenomenon is not modeled by the detector response function because it is not linear.

d. XCard ME

Length 220 mm

> Width 103.5 mm

Petection

N/

Key characteristics

Parameter	X-CARD ME	X-CARD ME3 XC	
Product code	3000027267	3000029815	
Sensor type	CdTe semiconductor crystals		
Number of pixels	128		
Intrinsic pixel pitch	0.8 mm		
Crystal thickness	2 mm		
Counting period	0.5 ms to 100 ms / line (step 10 µs)		
Detector binning	1x1 (0.8 mm pitch) or 2x1 (1.6 mm pitch)		
Energy range	20-160 keV		
Number of energy bins	Up to 128		
Linearity	≥ 86% @ 2·106 counts/s/pix		
Saturation	5.0.106 counts/s/pix	> 7.0•106 counts/s/pix	
Energy resolution	7.7 KeV @ 60 keV (105 counts/pix/s)		
Adjacent defective pixels	0		
Non adjacent defective pixels	3 (2.3 %)		
Overall uniformity	> -10% < 5%		
Detector element length	128 pixels / 102.3 mm		
Mechanical dimensions	34 mm x 220 mm x 103.5 mm		
Weight	0.70 kg		
Operational voltage and power	48 VDC		
Power consumption per module	28 W	35 W	
X-ray tube voltage Vp range	Up to 160 kVp		
EMC compliance	EN 61326-1, EN 61000-4-2, EN 61000-4-3		
RoHS compliance	Yes		
Operational temperature and humidity	0°C to +40°C, 5-95% RH non-condensing		
Storage temperature	-20°C to +60°C		

Height 34 mm

e. Decay chain Americium 241

