

i Institut de Cancérologie de l'Ouest

Bilan du projet FLASHMOD Etude pluridisciplinaire des mécanismes de la radiothérapie Flash à Arronax

Sophie Chiavassa

Assemblée Générale GdR Mi2B – 9-11 octobre 2024

Stéphane SUPIOT

Svieson

Inserm

FLASHMOD – financement PCSI (36 + 6 mois – fin juin 2024)

Main goals of the FLASHMOD project

Multidisciplinary team around the ARRONAX cyclotron

Extracted	Maximal	Range in	LET at plateau
particles	energy (MeV)	water (cm)	entrance $(keV/\mu m)$
H^+	70	4,08	1
He^{2+}	70	0, 34	11

Up to several hundred of kGy/s

ARRONAX preclinical irradiation line

Innovative dosimetry through radiation emitted by the irradiated medium

4

Sample or animal positioning and targeting

ARRONAX preclinical irradiation line

ARRONAX preclinical irradiation line

Biologie

UHDR-PT protects from apoptosis in mouse jejunum

Manip préliminaire (2s/c): premières souris à ARRONAX (nov. 2023)

Nouvelle manip souris (10 s/c) (25 sept. 2024): impact du Flash sur le système vasculaire tumoral

UHDR-PT and He2+ protect zebrafish development

Vozenin et al. Clin Oncol 2019, Montay-Gruel et al. PNAS 2019, Pawelke et al. Radiother Oncol 2021, Karsch et al. Radiother Oncol, 2022, Horst et al. Radiother Oncol 2024

UHDR protège les péricytes

acute effect on blood vessels

Vaisseaux déjà formés = radiorésistants
Pas d'effet du débit

- Blocage de l'angiogenèse
- Pas d'effet du débit

Biologie

UHDR-PT induces vascular gene expression in 28 hpf zebrafish

La VE- cadherin forme la jonction intercellulaire endothéliale

Effects of UHDR-PT on VE-cadherin in vitro

20 Gy FLASH 24h

DAPI Tunel **VE-cadherin**

Unpublished data - do not copy

Unpublished data - do not copy

preliminary data (n=1)

post-IR 1h post- 24h 24h post-IR post-IR IR

12

Effects of UHDR-PT on vascular genes are not recapitulated in vitro

Unpublished data - do not copy

21

Cellules en normoxie. Rôle O2 ?

Biologie

Chimie

> Hypothèse des recombinaisons radicalaires différentes liées au débit de dose

- Moins de H_2O_2 produit en UHDR Vs. CONV
 - Confirmation de *Montay-Gruel et al. PNAS 2019* (électrons 500Gy/s)

Chimie

> Exploration de la structure temporelle des faisceaux

Etude multifaisceaux

30Gy UHDR, 68MeV protons, <u>20s</u> entre les faisceaux: 1x30Gy, 2x15Gy, 3x10Gy ... 10x3Gy

Variation de la durée inter-faisceaux

Effet Flash retrouvé avec durée inter-faisceau faible

$\succ \text{ Lien } H_2O_2 \leftrightarrow e_{aq}^- \leftrightarrow O_2$

Mesure de l' e_{aq}^{-} en direct sous le faisceau de protons \rightarrow Thèse de Sarra Terfas (Subatech, G. Blain)

Protons 67.4 MeV Débit = 240 kGy/s Durée du pulse = 2µs Dose = 0,48Gy/pulse

Modélisation radiochimique du Flash avec GATE/Geant4-DNA

a)

Présentation de Daeun Kwon ce matin

Nouvelle approche pour la modélisation du débit dans Geant4-DNA

Figure 1: 1 MeV electron beam irradiation. Simulation volume: water cube (in blue). a): Infinite (= instantaneous) single-pulse irradiation: all incident electrons are shot simultaneously as a parallel beam onto the volume until the total absorbed dose is reached. b): « Time-structured » single-pulse irradiation. The sequence of irradiation can be changed by the user. Δt is the delay time between two successive electrons within a beam irradiation.

• Physique

Environnement permettant les études à tous les débits en protons et ions hélium Irradiations possibles dans le plateau, pic de Bragg, SOBP Maitrise de la dose délivrée, du débit, de la durée des pulses, … modélisation GATE de la ligne → dosimétrie dans les cibles complexes

• Biologie

Effet Flash obtenu sur différents modèles *in vivo* (ZF, souris) Effet vasculaire du Flash: péricytes (ZF), jonction intercellulaire endothéliale (ZF et *in vitro*) Pas d'effet Flash sur les vaisseaux déjà formés et l'angiogenèse Pas d'effet Flash sur l'activation des gènes vasculaire *in vitro*

Chimie

Baisse de H_2O_2 dans l'eau en Flash rôle de l' e_{aq} démontré Impact de la dose par faisceau et de l'intervalle entre 2 faisceaux \rightarrow Confirmation de la théorie de la recombinaison radicalaire

Modélisation

Comparaison modèle/expérimental en débit conventionnel pour différentes conditions (O2, pH)

Conclusion et perspectives

٠

Développements dosimétriques

Dosimétrie in vivo par mesure du spectre d'émission Bremsstrahlung

PMT-profiler (Nicola André, Robin Molle)

> Diamonds detectors at the exit window

Diamonni

PEPITES (C. Thiebaux)

- Etude du Flash à différents TEL (*Tinganelli et al. FRPT 2023*) Collaboration avec le Ganil (Carbone) F. Chevalier Utilisation du faisceau Hélium sur cellules en hypoxie
- Etude du remodelage vasculaire tumoral en Flash chez la souris
- Mesure d'autres espèces radiochimiques (O2°-, ...)
- Mesure indirecte de l' e-_{aq} (Collaboration avec Q. Raffy)
 - Lien entre Chimie et Biologie milieu différent de l'eau (Collaboration avec J. Seco) H2O2 dans les cellules (Collaboration avec P. Vidi) Etude multifaisceau sur cellules en hypoxie
- Poursuite de la collaboration G4-DNA (L. Maigne et H. Tran)

Développement d'un dispositif hypoxique pour étude cellulaire

Chaudhary et al. Research Square 2021

- A Monte Carlo Determination of Dose and Range Uncertainties for Preclinical Studies with a Proton Beam. Bongrand et al, Cancers 2021
- Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos. Saade et al, Adv Rad Onc 2022
- Proton Irradiations at Ultra-High Dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield. Blain G et al, Radiat Res 2022
- Technical note: Proton beam dosimetry at ultra-high dose rates (FLASH): Evaluation of GAFchromic[™] (EBT3, EBT-XD) and OrthoChromic (OC-1) film performances. Villoing D *et al*, Med Phys 2022
- Methodology for small animals targeted irradiations at conventional and ultra-high dose rates 65 MeV proton beam. Evin M et al, Phys Med 2024
- Monte Carlo simulations of microdosimetry and radiolytic species production at long time post proton irradiation using GATE and Geant4-DNA. Fois et al, Med Phys 2024
- First evidence of in vivo effect of FLASH radiotherapy with helium ions in zebrafish embryos. Ghannam et al, radiotherapy and Oncology 2023
- Validation of the proton FLASH effect in a zebrafish model: a mechanistic study. Bogaerts et al, under review

- Session recherche commune avec le GdR Mi2b
- Session dosimétristes

- Session « Ma thèse en 180 secondes »
- Session Poster-discussion
- Labélisation REEVE

FLASH Radiotherapy: Ultra-High Dose Rate (UHDR, > 40Gy/s)

□ First « official » FLASH-RT paper in 2014

SCIENCE TRANSLATIONAL MEDICINE

Volume 6 | Issue 245 July 2014 RESEARCH ARTICLE | RADIATION TOXICITY

f 🎔 in 🤠 💊 🖾

Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice

VINCENT FAVAUDON , LAURA CAPLIER, VIRGINIE MONCEAU, FRÉDÉRIC POUZOULET, MANO SAYARATH, CHARLES FOUILLADE, MARIE-FRANCE POUPON, ISABEL BRITO, PHILIPPE HUPÉ, JEAN BOURHIS, JANET HALL, JEAN-JACQUES FONTAINE, AND MARIE-CATHERINE VOZENIN **fewer** Authors Info & Affiliations

SCIENCE TRANSLATIONAL MEDICINE • 16 Jul 2014 • Vol 6, Issue 245 • p. 245ra93 • DOI: 10.1126/scitranslmed.3008973

□ FLASH effect observed on mice

- Lung protection from radiation-induced fibrosis
- No loss of anti-tumor efficiency
- 4.5 MeV electrons

Institut de
Cancérologie
de l'Ouest

FLASH Radiotherapy: Ultra-High Dose Rate (UHDR, > 40Gy/s)

□ First « official » FLASH-RT paper in 2014

SCIENCE TRANSLATIONAL MEDICINE

Volume 6 | Issue 245 July 2014 RESEARCH ARTICLE | RADIATION TOXICITY

FLASHEFFECT

f 🎔 in 🤠 💊 🖾

Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice

VINCENT FAVAUDON , LAURA CAPLIER, VIRGINIE MONCEAU, FRÉDÉRIC POUZOULET, MANO SAYARATH, CHARLES FOUILLADE, MARIE-FRANCE POUPON, ISABEL BRITO PHILIPPE HUPÉ, JEAN BOURHIS, JANET HALL, JEAN-JACQUES FONTAINE, AND MARIE-CATHERINE VOZENIN **fewer** Authors Info & Affiliations

SCIENCE TRANSLATIONAL MEDICINE · 16 Jul 2014 · Vol 6, Issue 245 · p. 245ra93 · DOI: 10.1126/scitranslmed.3008973

□ FLASH effect observed on mice

- Lung protection from radiation-induced fibrosis
- □ No loss of anti-tumor efficiency
- □ 4.5 MeV electrons

Increase in therapeutic index

Institut de
Cancérologie
de l'Ouest