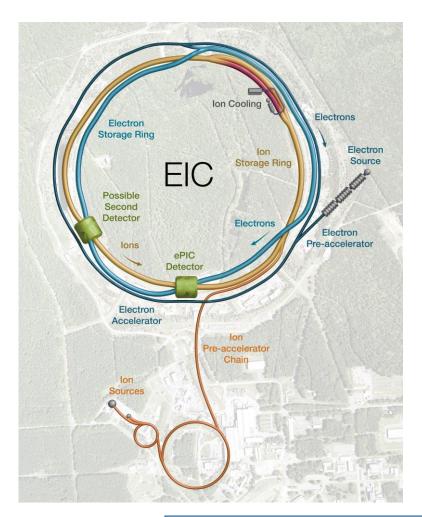


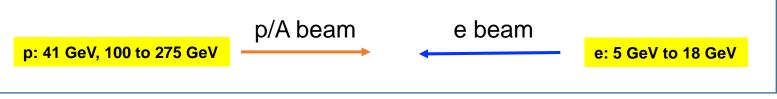
The EIC project and the ePIC detector

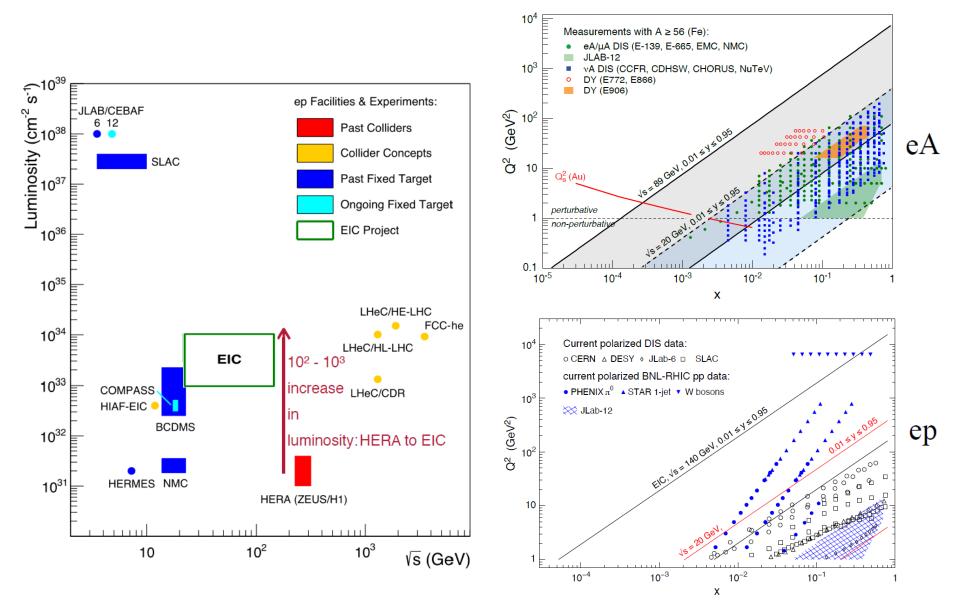

Carlos Muñoz Camacho IJCLab

Conseil Scientifique IN2P3 21 octobre, 2024

Outline

- The Electron-Ion Collider (EIC) facility
- The ePIC Collaboration and the EIC project detector (ePIC)
- EIC project and schedule
- IN2P3 physics and detector interests
- National perspective and summary


The EIC facility

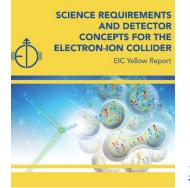


Project Design Goals

- High Luminosity: L= $10^{33} 10^{34}$ cm⁻²sec⁻¹, 10 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- Large Center of Mass Energy Range: $E_{cm} = 29 140 \text{ GeV}$
- Large Ion Species Range: protons Uranium
- Large Detector Acceptance and Good Background Conditions
- Accommodate a Second Interaction Region (IR)

Luminosity and kinematic coverage

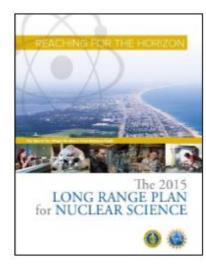
EIC development: some critical steps


- INT workshop series (2010) and white paper (2012, updated in 2014 for LRP)
- 2015: US Long-range plan (LRP)

<u>Recommendation 3</u>: construct a high-luminosity polarized electron-ion collider (EIC) as the **highest priority for new construction** following the completion of FRIB

> 2018: Review of the EIC science case by the National Academy of Sciences

"The committee finds that the science that can be addressed by an EIC is **compelling, fundamental and timely**."


- > 2020: DoE announcement of CD-0 ("mission need") and site selection (Brookhaven National Lab)
- > 2020: Yellow report initiative

Goal: advance the state and detail of the documented physics studies (White Paper, INT program proceedings) and detector concepts in preparation for the realization of the EIC.

Strong involvement of the French community (both theorists and experimentalists)

2103.05419 (3/2021), Nucl. Phys. A 1026 (2022) 122447

The EIC Users Group

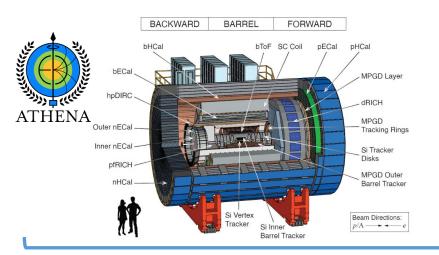
Formed in 2016, currently:

- 1546 members and growing
- 40 countries,
- 298 institutions

SOUTH AMERICA 3% AFRICA 3% OCEANIA 1% ASIA 27% NORTH AMERICA 38% EUROPE 29%

Annual EICUG meeting:

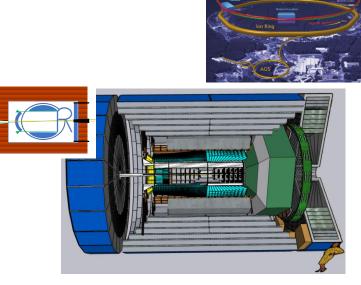
- 2016 UC Berkeley, CA
- 2016 Argonne, IL
- 2017 Trieste, Italy
- 2018 CUA, Washington, DC
- 2019 Paris, France
- 2020 Miami, FL
- 2021 VUU, VA & UCR, CA
- 2022 Stony Brook U, NY
- 2023 Warsaw, Poland
- 2024 Lehigh U, PA


EICUG membership @ time of EICUG Meetings

International participation growing

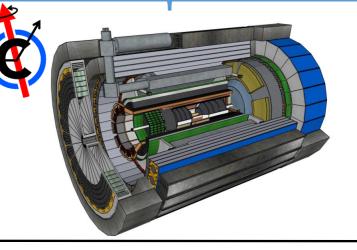
EICUG membership

Recent activity (2021-2022)


- EIC Conceptual Design Report (CDR)
- Call for detector proposals (2021)

Three proposals submitted:

TH


Electron-Ion Collider at Brookhaven National Laboratory

Conceptual Design Report

2021

2021

- ePIC Collaboration formed in 2022
- Community merged (primarily from ATHENA and ECCE)
- Detector concept based in ECCE with additions/replacements from ATHENA

 2023: NSAC Long-range plan Recommendation 3:
 expeditious completion of the EIC

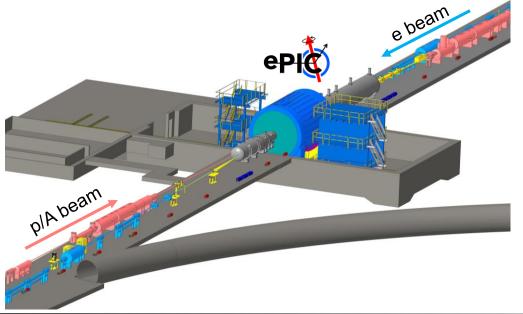
2024: NuPECC Long-range plan EIC/ePIC recommended in 'Infrastructures' and 'Hadron Physics' chapters

Warsaw, July 2023

- More than 850 collaborators
- 177 Institutions
- 26 Countries

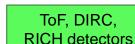
The EIC project detector: ePIC

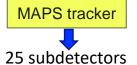
Tracking:


- New 1.7T solenoid
- Si MAPS Tracker
- MPGDs (µRWELL/µMegas)

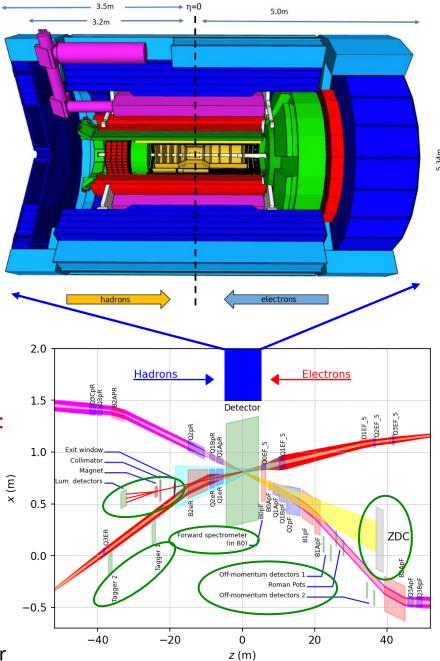
PID:

- Backward pfRICH
- Barrel hpDIRC
- Forward dRICH
- Barrel & Forward TOF (AC-LGAD)


- Backward HCal (Steel+scint)
- PbWO₄ EMCal in backward direction
- Sampling & Imaging Barrel EMCal
- Outer HCal (sPHENIX re-use)
 - Finely segmented EMCal +HCal in forward direction


٠

hadronic calorimeters Solenoidal Magnet


incl. polarimeters

Far-Backward Detectors:

- Luminosity monitor.
- Low-Q² Tagger

Far-Forward Detectors:

- B0 Tracking and Photon Detection
- Roman Pots and Off-Momentum Detectors.
- Zero-Degree Calorimeter

ePIC ASICs

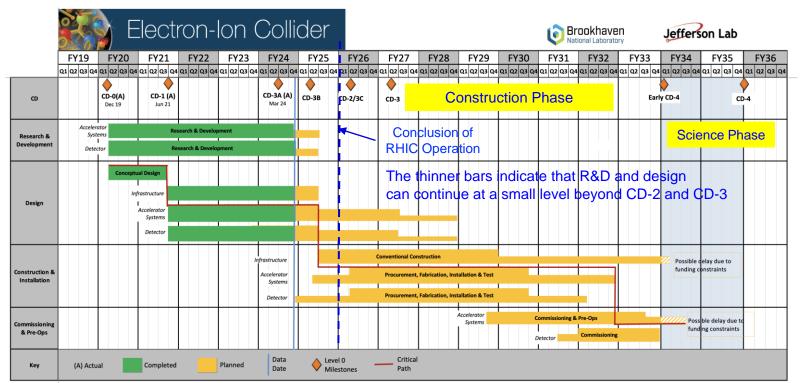
Goal: minimize number of ASICs & exploit commonalities among the different detectors

- > EICROC by OMEGA is the only ASIC considered for pixelated AC-LGADs detectors in ePIC
- ➤ HGCROC3/CALOROC by OMEGA is the only ASIC considered for SiPM calorimeters in ePIC
- > There currently 8 calorimeters in ePIC planning/considering to use CALOROC for their readout
- > There are currently 4 pixelated AC-LGAD detectors + 1 HRPPD (pfRICH) are planning to use EICROC for their readout

Detector	Channels								
Group	MAPS	AC/DC-LGAD	SiPM/PMT	MPGD					
Tracking	32 B			100k					
Calorimeters	50M		67k						
Far Forward	300M	2.3M	500						
Far Backward		1.8M	700						
PID		3M-50M	600k						
TOTAL	32 B	7.1M-54M	670k	100k					
ASIC	ITS-3	EICROC FCFD HPsOC ASROC FAST	Discrete/COTS HGCROC3 ALCOR-EIC	SALSA					

EIC schedule

CD-3A:


Approve start of long-lead procurements CD-3A items passed final design review All interfaces related to them are frozen Authorization received March 28, 2024.

CD-2:

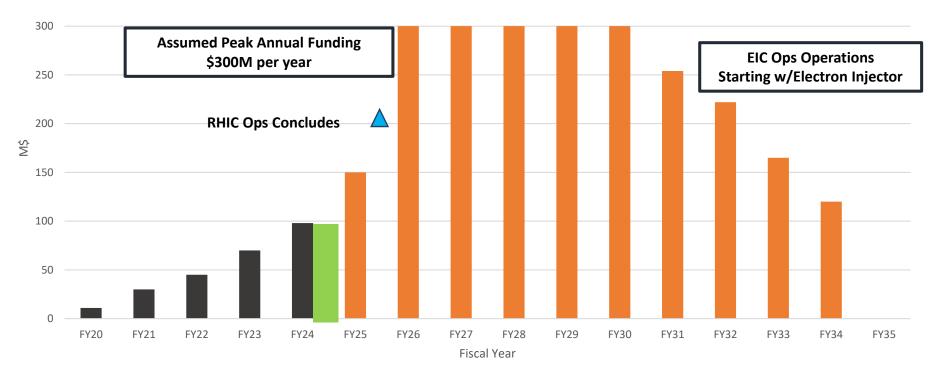
Approve prelim. design for all subdetectors Design Maturity: >60% Need "pre-"TDR (or draft TDR) Baseline project in scope, cost, schedule

CD-3:

Approve final design for all subdetectors Design Maturity: ~90% Need full TDR

EIC project timeline

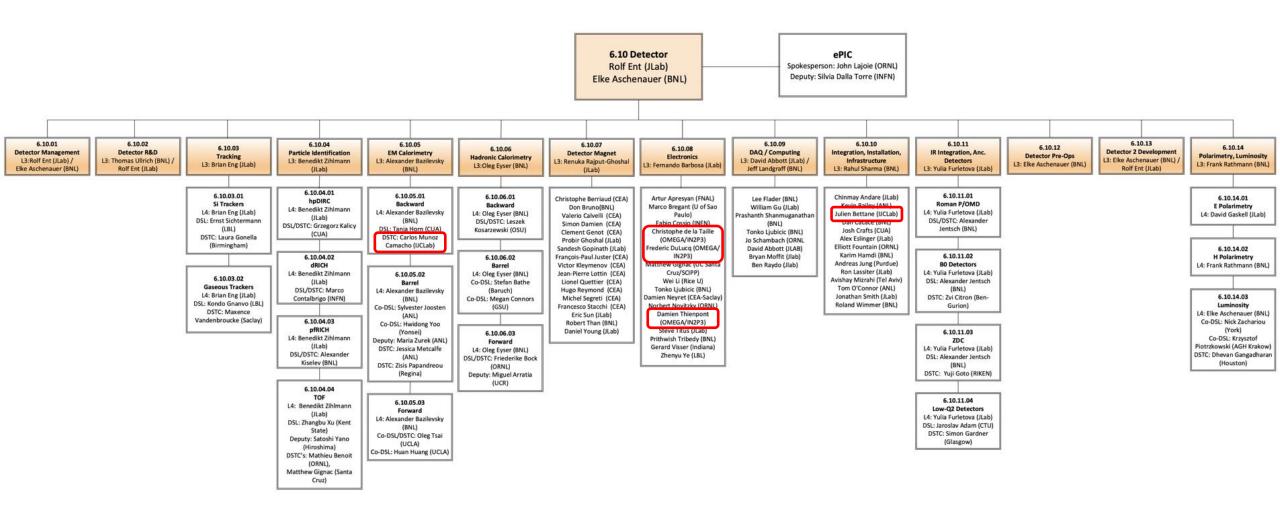
- > Dec 2021 (CD-1): Start of detector design (through CD-3)
- Dec 2025: R&D completed (expected CD-2)
- 2027: Start of construction (expected CD-3),
- 2034: Start of early physics program (expected CD-4A)
- > 2036: Project completion (expected CD4) and start of operations


As presented by the EIC project on Oct 9, 2024

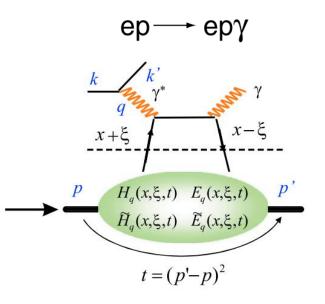
Updated EIC Critical Decision Plan								
CD-0/Site Selection	December 2019 √							
CD-1	June 2021 √							
CD-3A	March 2024 √							
CD-3B Review	January 7-9 2025							
CD-2/3C Review	End of 2025?							
CD-3 Review	End of 2026?							
early CD-4	December 2034?							
CD-4	December 2036?							

EIC project cost: budget profile & in-kind contribution

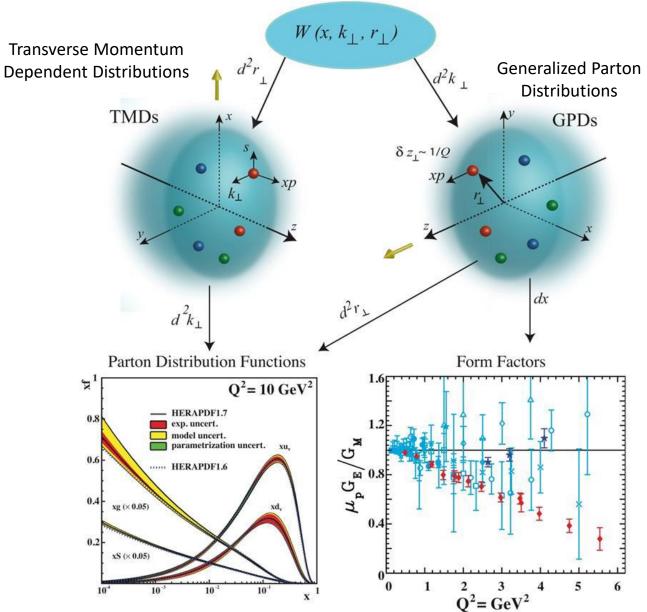
Total cost: \$2.8B


- EIC detector: \$300M (\$200M DoE; \$100M in-kind)
- EIC accelerator: \$1.3B (\$1.25B DoE; \$50M in-kind)
- Other: management (\$200M), infrastructure (\$250M), pre-ops (\$50M), contingency...

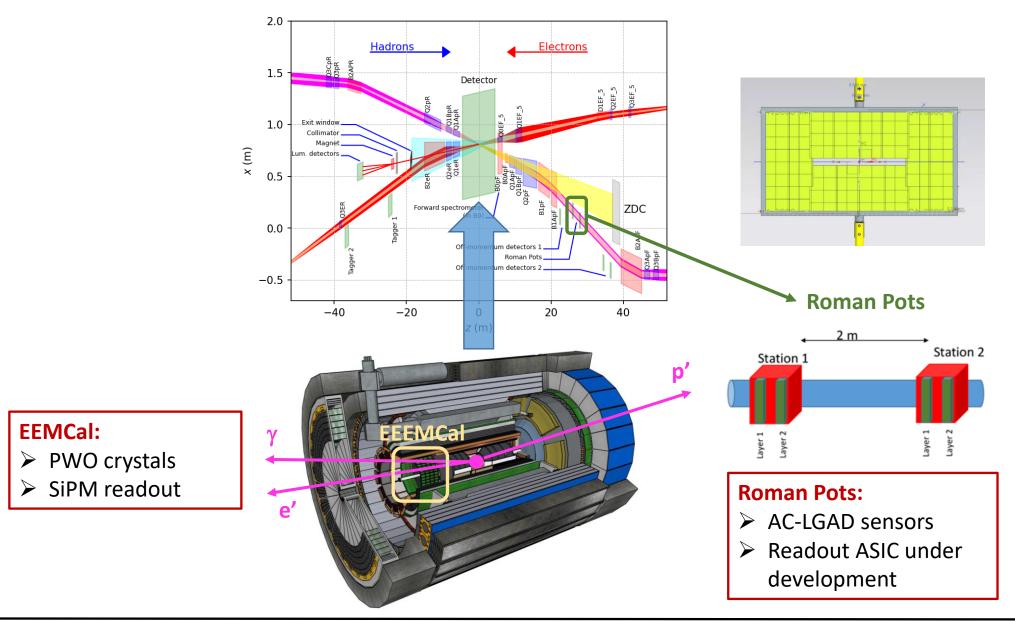
■ DOE Actual ■ DOE IRA ■ EIC Request ■ New York State


EIC Detector Work Organization

Integration of **epito** Collaboration in EIC Project WBS:


Physics interests of IN2P3 groups

3D imaging of the nucleon and nuclei through Generalized Parton Distributions (GPDs)



Experimentally accessible with exclusive reactions:

- Deeply Virtual Compton Scattering (DVCS)
- Deeply Virtual Meson Production (DVMP)

Detector interests of IN2P3 groups

Electron-going endcap ECAL

Electromagnetic (EM) calorimetry is key to any EIC detector concept

- Almost every channel needs to measured the scattered electron - EM e-endcap calorimeter : $-3.5 < \eta < -1$

 $\frac{10^{4}}{10^{3}} - \frac{d^{2}N}{dxdQ^{2}} / 10 \text{fb}^{-1} \text{ (N.C. Inclusive Simulation)} + \frac{10^{13}}{10^{10}} + \frac{10^{13}}{10^{10}$

Region of physics enabled by the EEEMCal

High resolution in the forward region (endcap) can only be achieved with homogeneous materials, such as crystals and glass

R&D in 2015 with funds from the generic R&D program by the US DoE:

- Building on previous experience with EM calorimeters
 (JLab Hall A PbF₂, JLab Hall-B PWO IC, JLab Hall-B HPS PWO, PANDA PWO...)
- In synergy with ongoing IJCLab projects for JLab (NPS lead tungsten calorimeter)

UNIVERS OF AMERICA

INTERNATIONAL

UNIVERSITY

Laboratoire

International consortium of 14 institutions:

University of

CHARLES

UNIVERSITY

Microelectronics

entuckv

Institute of

Technology

ABILENE

CHRISTIAN

WILLIAM

& MARY

HARTERED 1693

ALIKHANYAN

EIC Roman Pots

- > Key detector for exclusive reactions and diffractive processes
- > DVCS protons will mostly be detected by the Roman Pots

> Detector requirements:

- Good timing (~30 ps) to reduce momentum smearing due to crabbing
- Good position (0.5×0.5 mm²) resolution for a p_T resolution <10 MeV/c
- Be positioned as close as possible to the beam ("edgeless" detectors)

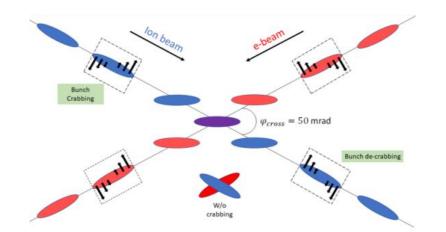
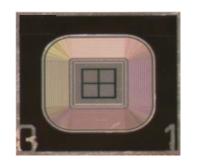
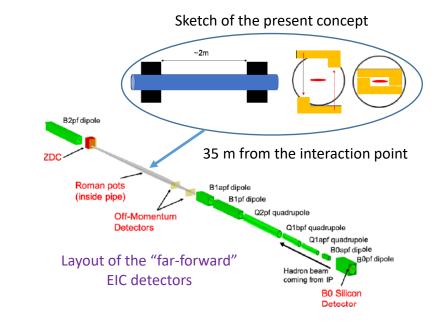
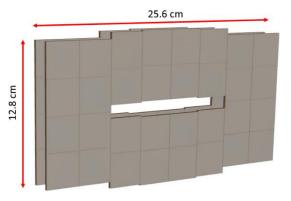
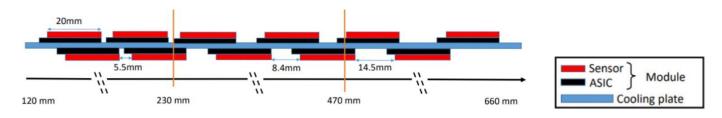
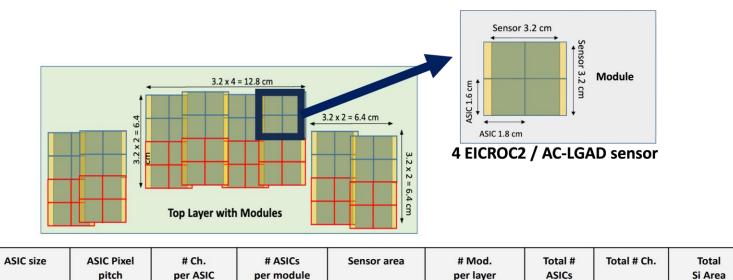





Illustration of crab crossing at EIC


Proposed detector technology: AC-coupled Low Gain Avalanche Diodes (LGADs)

Roman Pots: mechanical contribution


Cooling system:

Module arrangement in Roman Pots station planes:

4

3.2x3.2 cm²

32

Preliminary design:

- 4 ASICs per sensor
- 128 ASICs per layer (top & bottom)
- 2 layers per station (512 ASICs)
- 2 stations of RP: 1024 ASICs

1.6x1.8 cm²

500 µm

32x32

524,288

1,311 cm²

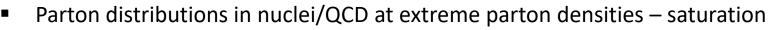
512

National perspective

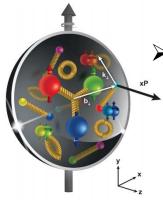
- Strong experimental interest from IJCLab, LLR and IRFU/CEA
- Large theory interest from many groups: IN2P3+INP (CNRS) & IPhT (CEA)
- Featured in several funded projects: STRONG 2020 (EU), Gluodynamics (P2IO)
- Discussed within the 'Exercise de prospective nationale' (GT03)
 - EIC contribution submitted:
 - ➢ 26 permanent staff

(9 theory, 13 experiment, 4 IT & Accelerator)

- > 8 different labs (3 theory, 5 experiment)
- EIC appears among the recommendationsof the report



Strong synergy with theory activity in France


- > Our physics interests have a large overlap with theory activities at France (IN2P3, INP, CEA)
- > Field of GPDs has had strong contributions by French theorists from the start
- > Theory interests include:
 - Saturation physics
 - GPDs (through DVCS, DVMP and other processes)
 - > TMDs (gluon TMDs in particular)
 - Nuclear PDFs
 - Quarkonia

Summary

The EIC facility will address fundamental questions on the structure and dynamics of nucleons and nuclei in terms of quarks and gluons, using precision measurements including:

- Spin and flavor structure of the nucleon and nuclei
- Tomography (p/A) Transverse Momentum Distributions and Spatial Imaging
- We propose to continue and significantly increase our involvement and detector contributions towards the realization of ePIC:
 - Mechanical design and front-end electronics for the backward EM
 - Readout electronics and mechanical integration for the Roman Pots

ASIC developments for these detectors will benefit many other subsystems in ePIC and will increase our visibility and contribution to the overall detector.

Back-up

Avis des CS précédents (1/2)

Conseil scientifique IPNO, July 2017

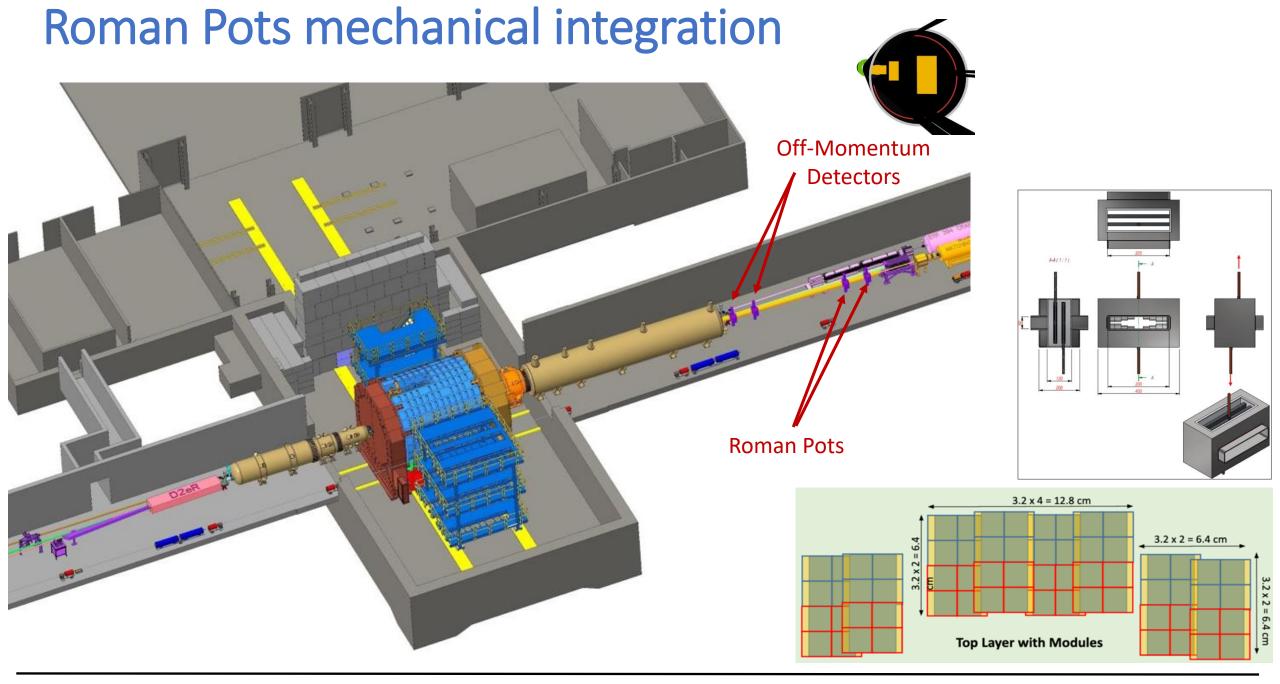
- Le CS félicite le groupe de s'impliquer dès maintenant dans une activité à long terme sur EIC, projet de machine au niveau mondial pour la physique hadronique.
- Le groupe de l'IPNO a tous les atouts pour jouer un rôle leader en France.

Conseil scientifique IN2P3, Feb. 2018

- Le groupe de l'IPNO affiche d'ores et déjà son intérêt et participe activement au développement de ce projet.
 Le conseil note que l'IRFU est aujourd'hui plus clairement engagé dans l'EIC que l'IN2P3.
- Un engagement dans l'un des deux au moins, l'EIC et/ou FAIR, est indispensable à l'avenir de la physique hadronique en France, en complément de ce qui se fera auprès du LHC.

Conseil scientifique IJCLab, Nov. 2020

- A joint PhD thesis (typically, hardware in EIC and data analysis in JLab) is a good idea today.
- The calorimeter project has relatively moderate risk: there is a strong need of a calorimeter in the backward. This will thus ensure a visible contribution of the EIC-IJCLab group in one important sub-detector.
- The Roman pots part is riskier since there is no guarantee that a viable ASIC can be developed for this solution.
 If it works, it will also be a very visible contribution.


Avis des CS précédents (2/2)

> Conseil scientifique IN2P3, Octobre 2022

- Il est donc judicieux pour les équipes de l'IJCLab de se positionner maintenant et d'ouvrir les discussions à un plus haut niveau entre l'IN2P3 et la DOE.
- les deux engagements techniques [...] ne sont pas en adéquation avec le petit nombre de physiciens permanents de l'institut (2.4 FTE) engagés sur le projet actuellement. [...] Il encourage l'équipe concernée à rechercher d'autres partenaires ou à se recentrer sur un nombre plus réduit de contributions.

Conseil scientifique LLR, Janvier 2024

 Le CS souligne en effet la pertinence de la contribution technique proposée, laquelle s'inscrit dans l'expertise historique du laboratoire sur la calorimétrie, renforce les liens avec OMEGA et valorise l'expérience acquise avec CALICE, CMS-HGCAL et HyperKamiokande sur la caractérisation d'ASICs.

Schedule – what do the CD milestones mean?

- **CD-0 Approve mission need**: this documents that a scientific goal or a new capability, requiring material investment exists.
- **CD-1 Approve Alternative Selection and Cost Range**: serves as a determination that the selected alternative and approach is optimized to meet the mission need defined at CD-0. What is perhaps most relevant is that CD-1 allows for release of Project Engineering and Design (PED) funds, which means the next phases of design of accelerator and detector can begin.
- **CD-2 Approve Performance Baseline**: CD-2 is an approval of the preliminary design of the project and the baseline scope, cost, and schedule. What is most relevant is that CD-2 means there is now a definitive plan that the project will be measured against in cost, schedule and technical performance.
- CD-3 Approve Start of Construction: CD-3 is an approval of the project's final design and authorizes release of funds for construction. What is most relevant is that projects can now proceed with construction related procurements and activities. CD-3 is sometimes split in CD-3A in a tailored approach to approve start construction for long-lead procurements.
- **CD-4 Approve Start of Operations or Project Completion**: CD-4 provides recognition that the project's objectives have been met. CD-4 is sometimes split in CD-4A that allows, after agreed-upon criteria for technical success have been met, for transition into operations, and CD-4B that provides the formal closeout of the project.

Outlook to CD-2 – Detector In-Kind Contributions (IKC)

- The IKC target for the EIC detector is about 30% of the total scope approx. \$100M.
- The INFN/detector iCRADA is the most advanced.

PPDs preparations are ongoing.

The preparation of iCRADAs – Second Phase – is starting.

Agency	Milestone	Target Date	STATUS:	
Italy-INFN	JLab iCRADA (for dRICH, Si/ITS3, GEM-muRwell) drafted*	✓ Apr 2024	Two iterations, complete after final check \$ amoun	
UK	JLab iCRADA (for Si/LAS, Low-Q2, Lumi) drafted**	✓ Apr 2024	Comments? Need to add	
UK	BNL iCRADA (for Si/LAS) drafted	(minor) fixes as for INF		
Italy-INFN	JLab iCRADA (for solenoid) drafted	Resume in August, need		
France-CEA	JLab iCRADA (for solenoid) drafted	minor fixes		
France-IN2P3	JLab iCRADA (for EEEmCAL, RPs, ASICs) drafted**	✓ May 2024	Comments?	
France-CEA	JLab iCRADA (for MicroMegas, SALSA) drafted	✓ June 2024 → July	Sent in July (week ago)	
	PPDs preparation could start at the end of drafting the iCRADA and completed in 2025	Mar 2025 Ready to be signed	Prep work started on PPI with Italy/detector and U	
	CD-2 Director's Review / All ICRADA and PPDs signed	Sep or Oct 2025		
	DOE CD-2 and Status OPA Review	Late 2025		
	b iCRADA draft to start process, Si scope moves to BNL iCR o iCRADA draft to start process, then may move to BNL iCRA			
	cond Phase of draft iCRADAs once scope is cle of foreign agencies, e.g., Korea, Canada, Japa		Request to start on Korea to be aligned with funding proposal process. Plan to also start on Japan.	

Status: folding in

- Reuse of components enabled by explicit design (e.g., barrel HCal, cradle, DIRC bars,)
- In-kind contributions to PED
- Likely IKC
 - UK detector (UKRI/STFC)
 - Italy/INFN detector
 - Italy/INFN magnet
 - CEA/IN2P3 detector
- Possible IKC
 - Japan detector
 - Korea detector
 - Canada detector
 - Taiwan detector
 - NSF/MSRI

we would surpass this \$100M goal.

This is coded in P6 in anticipation of further proposal confirmations and the signed formal agreements.

Electron-Ion Collider EIC France 2024

EEEMCal cost

Total cost: \$9.1M

- \$7.1M Materials:
 - \$5.5M project + \$1.6M in-kind
- \$2.0M Labor (36249 h):

\$0.3M project + \$1.7M in-kind

	Cost per hour for	Cost of		
Labor Skill Set	each skill set	1FTE/year		
Scientist	\$157	\$276,408		
PostDoc	\$71	\$124,942		
PhD Student	\$20	\$35,200		
Undergrad	\$20	\$35,200		
Mechanical Engineer	\$153	\$269,579		
Mechanical Designer	\$116	\$204,336		
Mechanical Tech	\$101	\$177,778		
Electrical Engineer	\$153	\$269,579		
Electrical Designer	\$116	\$204,336		
Electrical Tech	\$101	\$177,778		
Software Expert	\$178	\$313,702		
Other	\$0	\$0		

Funding Source (Pull Down)
In-Kind
Project/In-Kind
Project/In-Kind
In-Kind
In-Kind
Project
Repurpose
In-Kind
Project
Project
Project
Project
In-Kind
Project
In-Kind
Project/In-Kind

The EIC project and the ePIC detector

Roman Pots cost

Total cost: \$0.96M

\$0.30M Materials:

\$0.300M project + \$0.002M in-kind

\$0.66M Labor (6500 h):

\$0.59M project + \$0.07M in-kind

Roman Pots (RP)													
Prototype design AC-LGAD sensors	Prototype design AC-LGAD sen	sors		Expert Opinion	80	Electrical Engineer	Project	100	0	\$0	\$12,254	\$12,254	\$0
Prototype design AC-LGAD sensors	Prototype design AC-LGAD s	2	\$1,000.00	Expert Opinion		Other	Project	100	0	\$2,000	\$0	\$2,000	\$0
Read out ASIC design	Read out ASIC design			Expert Opinion	80	Electrical Engineer	Project	100	0	\$0	\$12,254	\$12,254	\$0
Read out ASIC design	Read out ASIC design	1	\$1,000.00	Expert Opinion		Other	Project	100	0	\$1,000	\$0	\$1,000	\$0
Mechanical frame design	Mechanical frame design			Expert Opinion	600	Mechanical Designer	Project/In-Kind	10	90	\$0	\$69,660	\$6,966	\$62,694
Mechanical frame design	Preliminary Design	1	\$500.00	Expert Opinion		Other	Project	100	0	\$500	\$0	\$500	\$0
Prototype assembly	In House Fabrication			Expert Opinion	100	Mechanical Tech	Project	100	0	\$0	\$10,101	\$10,101	\$0
Prototype assembly	In House Fabrication	1	\$500.00	Expert Opinion		Other	Project	100	0	\$500	\$0	\$500	\$0
Pot Vacumm and mechanics	Preliminary Design			Expert Opinion	600	Mechanical Engineer	Project	100	0	\$0	\$91,902	\$91,902	\$0
pot prototype assembly	Preliminary Design			Expert Opinion	200	Mechanical Tech	Project	100	0	\$0	\$20,202	\$20,202	\$0
pot prototype assembly	Preliminary Design	1	\$3,000.00	Expert Opinion		Other	Project	100	0	\$3,000	\$0	\$3,000	\$0
Pot Vacumm and mechanics	Final Design			Expert Opinion	200	Electrical Designer	Project	100	0	\$0	\$23,220	\$23,220	\$0
Pot construction	In House Assembly			Expert Opinion	200	Mechanical Tech	Project	100	0	\$0	\$20,202	\$20,202	\$0
Pot construction	In House Assembly	4	\$3,000.00	Expert Opinion		Other	Project	100	0	\$12,000	\$0	\$12,000	\$0
Cooling system design	Preliminary Design			Expert Opinion	50	Mechanical Designer	Project/In-Kind	50	50	\$0	\$5,805	\$2,903	\$2,903
Cooling system design	Preliminary Design	1	\$2,000.00	Expert Opinion		Other	Project/In-Kind	50	50	\$2,000	\$0	\$1,000	\$1,000
Cooling prototype production	Procurement of Material			Expert Opinion	0	Other	Project	100	0	\$0	\$0	\$0	\$0
Cooling prototype production	Procurement of Material	1	\$1,000.00	Expert Opinion		Other	Project	100	0	\$1,000	\$0	\$1,000	\$0
Cooling prototype testing	In House Assembly			Expert Opinion	80	PhD Student	Project	100	0	\$0	\$1,600	\$1,600	\$0
Cooling prototype testing	In House Assembly	1	\$500.00	Expert Opinion		Other	Project	100	0	\$500	\$0	\$500	\$0
cooling Final design	Final Design			Expert Opinion	50	Mechanical Designer	Project/In-Kind	50	50	\$0	\$5,805	\$2,903	\$2,903
Cooling Final design	Final Design	1	\$2,000.00	Expert Opinion		Other	Project/In-Kind	50	50	\$2,000	\$0	\$1,000	\$1,000
Roman Pots Procurement of Materials (Silicon & Ascics)	Procurement of Material	150	\$290.00	Expert Opinion		Other	Project	100	0	\$43,500	\$0	\$43,500	\$0
Roman Pots Procurement of Materials (Silicon & Ascics)	Procurement of Material	600	\$300.00	Expert Opinion		Other	Project	100	0	\$180,000	\$0	\$180,000	\$0
Assembly of PRs planes	In House Assembly			Expert Opinion	80	PostDoc	Project	100	0	\$0	\$5,679	\$5,679	\$0
Silicon and ASICS testing	In House Assembly			Expert Opinion	880	Electrical Tech	Project	100	0	\$0	\$88,889	\$88,889	\$0
Assembly of Sensors and ASICS	In House Assembly			Expert Opinion	880	Electrical Tech	Project	100	0	\$0	\$88,889	\$88,889	\$0
Assembly of PRs planes	In House Assembly			Expert Opinion	40	Electrical Tech	Project	100	0	\$0	\$4,040	\$4,040	\$0
Assembly of PRs planes	In House Assembly			Expert Opinion	160	PhD Student	Project	100	0	\$0	\$3,200	\$3,200	\$0
Assembly of RPs planes	In House Assembly			Expert Opinion	160	Undergrad	Project	100	0	\$0	\$3,200	\$3,200	\$0
Peripheral electroncs boards	Procurement of Material	1	20000	Expert Opinion		Other	Project	100	0	\$20,000	\$0	\$20,000	
Cables, electronical connectors, LV/HV cables	Procurement of Material	1	30000	Expert Opinion	160	Undergrad	Project	100	0	\$30,000	\$3,200	\$33,200	\$0
Cooling Temperature Sensors	Procurement of Material			Expert Opinion	0	Other	Project	100	0	\$0	\$0	\$0	\$0
Cooling Temperature Sensors	Procurement of Material	40	\$50.00	Expert Opinion		Other	Project	100	0	\$2,000	\$0	\$2,000	\$0
Cooling Compressed air pipes	Procurement of Material			Expert Opinion	0	Other	Project	100	0	\$0	\$0	\$0	\$0
Cooling Compressed air pipes	Procurement of Material	8	\$50.00	Expert Opinion		Other	Project	100	0	\$400	\$0	\$400	\$0
Cables	Procurement of Material			Expert Opinion	0	Other	Project	100	0	\$0	\$0	\$0	\$0
Cables	Procurement of Material	40	\$25.00	Expert Opinion		Other	Project	100	0	\$1,000	\$0	\$1,000	\$0
Mechanical support	Procurement of Material			Expert Opinion	0	Other	Project	100	0	\$0	\$0	\$0	\$0
Mechanical support	Procurement of Material	4	\$500.00	Expert Opinion		Other	Project	100	0	\$2,000	\$0	\$2,000	\$0
Assembly of cooling frames	In House Assembly			Expert Opinion	100	Mechanical Tech	Project	100	0	\$0	\$10,101	\$10,101	\$0
Full RP system assembly	In House Assembly			Expert Opinion	880	Mechanical Tech	Project	100	0	\$0	\$88,889	\$88,889	\$0
Full RP system assembly	In House Assembly			Expert Opinion	880	Electrical Tech	Project	100	0	\$0	\$88,889	\$88,889	\$0
Assembly of cooling frames	In House Assembly	2	\$100.00	Expert Opinion		Other	Project	100	0	\$200	\$0	\$200	\$0
Assembly of cooling frames	In House Assembly			Expert Opinion	40	PhD Student	Project	100	0	\$0	\$800	\$800	\$0
POT/mechanical assembly and moving stages	Procurement of Material	2	\$100,000.00	Expert Opinion		Other	Project	100	0	\$200,000	\$0	\$200,000	\$0
					6500					\$303,600	\$658,780		\$70,499

21/10/2024

The EIC project and the ePIC detector