NEWS FROM THE DARK, OM VS. DM, MARSEILLE, FRANCE - 15/11/2024

Deciphering the dynamics of the Milky Way bar and spiral arms with Gaia

PhD candidate: Supervisor:

Yassin Rany Khalil Benoit Famaey

Université ||||

de Strasbourg

 (Unistra, ObAS) (CNRS, ObAS)

Observatoire **astronomique**

de Strasbourg | ObAS

Gaia mission sample: Velocity fields

Local Velocity Field

Extended Velocity Field

4

Axisymmetric model

Bar model

- Model from Thomas et al., 2023
- 3 superposed modes m = 2,4,6

• Angle: 28°

- Length $\approx 5kpc$
- Visible perturbations and resonances
 - $l\kappa + m(\Omega_{bar} \Omega) = 0$
- Co-rotation and Hat are very constraining

ð - 10¹

- 10⁰

- 17.6 - 13.2 - 8.8 - 4.4 - 0.0

-4.4

- -8.8

- -13.2

-17.6

V_R [kms⁻¹]

22.0

Bar model

- Don't reproduce data fully
- Good at inner regions when $40 \gtrsim \Omega \gtrsim 35$
- Too strong features at $\Omega > 40$
- Can be fixed when exploring the spiral arms (as it affect mostly the inner parts)

6

· 2

-6

-10

· -14

- -18

Bar model

Bar model

10

Yassin Rany Khalil, Observatory of Strasbourg, <u>yassin.khalil@unistra.fr</u>

11

Bar model

Bar model

Probing the parameter space

- Differential evolution (DE) to search parameters candidates for axisymmetric+bar+spiral arms models
- Constraints on velocity sign for some points
 - Constrained DE (J. Lampinen 2002 in Scipy)
- Constraints on Sirius at Solar Neighbourhood
- Constraints on V_R for 16 points on the disk
- Constraint on DF possible
- Pitch angle: $6^{\circ} < i < 30^{\circ}$
- Phase: $0^{\circ} < \phi_0 < 360^{\circ}$
- Density contrast: $0\% < \delta < 35\%$
- Pattern speed $10 < \Omega < 37 \ (kms^{-1}kpc^{-1})$

- Best candidate
 - Mode m=2
 - Start growing 60 Myr after the Bar
 - Contrast of density of about 25%

- Mode m=3
 - Start growing 160 Myr after the Bar
 - Contrast of density of about 10%

Bar only model

4 3 2 [kpc] 0 \succ -1-2 -3 -4 10 8 12 4 6 6 *x* [kpc]

Extended velocity field

Gaia DR3

Bar + 2 spiral arms modes

Local velocity field

Bar only model

300 ___ 250⁻ s 200 200 $^{\diamond}$ 150 100 -100-5050 100 -100-500 V_{R} [kms⁻¹]

Gaia DR3

Bar + 2 spiral arms modes

Local velocity field

Bar only model

300 ___ 250⁻ s 200 200 $^{\diamond}$ 150 100 -100-100-5050 100 -500 V_{R} [kms⁻¹] Hercules

Gaia DR3

Bar + 2 spiral arms modes

Local velocity field

Gaia DR3

2500 2000 2500 1500 1000 2000 J_{φ} [kms⁻¹kpc] J_{φ} [kms⁻¹kpc]

Bar + 2 spiral arms modes

Milky Way disk: Median radial velocity

20

Position of the spiral arms

Implications on the Solar orbit

Implications on the Solar orbit

Implications on Young Associations

Yassin Rany Khalil, Observatory of Strasbourg, <u>yassin.khalil@unistra.fr</u>

24

Conclusion & Perspectives

- Possibly the most realistic non-axisymmetric dynamical model for the Milky Way disk
- It can be extended to 3 dimensions

- young associations

• It is possible to improve the approach to constrain at once the non-axisymmetric and axisymmetric structures

• Other configurations can be explored as evolving pattern speed for the bar and/or for the spiral arms

• The established model can be used to improve direct measurements of spiral arms pattern speed with

yassin.khalil@unistra.fr

Yassin Rany Khalil, Observatory of Strasbourg

Non-axisymmetric minus background

Distribution functions

- **Stellar systems:** systems of stars bounded by gravitational long-range force.
 - We assume a system of N stars of same mass m.
 - Each star has a position $\mathbf{x} = (x, y, z)$ and velocity $\mathbf{v} = (v_x, v_y, v_z)$
- Distribution function
 - $\rho(\mathbf{x},t) = \int f(\mathbf{x},\mathbf{v},t) d^3 \mathbf{v}$
 - Gives the probability $f(\mathbf{x}, \mathbf{v}, t)d^3\mathbf{x}d^3\mathbf{v}$ to find a star in the volume $d^3\mathbf{x}d^3\mathbf{v}$ centred on (\mathbf{x}, \mathbf{v}) at time t • Density at position x:
 - $N\rho(\mathbf{x}, t)$, with N the number of stars • Number density at x:
 - Average velocity at position x: $\overline{\mathbf{V}} =$

$$= \rho^{-1}(\mathbf{x}, t) \int \mathbf{v} f(\mathbf{x}, \mathbf{v}, t) d^3 \mathbf{v}$$

Vlasov-Poisson Equation

 $\frac{\partial f}{\partial t}$ +

Vlasov-Poisson Equation

- **BBGKY hierarchy** formulation of the **Liouville equation**
- Collision-less dynamics

$$\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
$$\nabla^2 \Phi = 4\pi G \int d^3 \mathbf{v} f$$

• Asymptotic limit of an infinite particle stellar system for the first equation (with negligible interaction term) of

Relaxation time τ_{relax} : time to a star's velocity change by its order thorough stellar encounters

• Typically $\tau_{relax} > \tau_{Hubble}$. Increases with number of stars and crossing time $\left(\frac{R}{v}\right)$.

Vlasov-Poisson Equation

- Key results encoded in the Vlasov equation:
 - The distribution function in an infinitesimal Lagrangian volume is conserved.
 - The distribution function is conserved along the orbits
- Open the possibility to the backwards integration method (Vauterin & Dejonghe 1997; Dehnen 1999)
 - Why this is important ?
 - It is very hard to compute distribution functions for the galaxy with both the bar and spiral arms Multiple pattern speed are concerned
 - - Resonant effects and overlap of resonances can be very hard to characterise
 - Usually made with perturbation theory for one structure alone

 $\frac{df}{dt} = 0$

Actions-Angles variables

- Jeans theorems help us solve for the Vlasov equation for equilibrium:
 - If integrable system: $f = f(I_1, I_2, I_3)$ and if in axisymmetry and equilibrium: $f = f(E, L_z, I_3)$.
- But, how to choose the integrals *I*? Actions **J** and Angles heta
 - Canonical variables: $H = H(\mathbf{J})$ and $\mathbf{J} = const$ as well as $\dot{\boldsymbol{\theta}} = const$
 - Natural phase-space coordinates for regular orbits in (quasi)-integrable systems.
 - Transforming (\mathbf{x}, \mathbf{v}) to $(\mathbf{J}, \boldsymbol{\theta})$ is volume-conserving (appropriate for DFs).

Angle-Action variables as polar coordinates. Binney & Tremaine 2008. 34

Actions-Angles variables

- How we compute it ?
 - Transformations of (x, v) to (J, θ) is exactly know for some separable potentials like the Stäckel potential
 - In the Stäckel Fudge we use the real potential locally as if it were a Stäckel potential:

$$\Delta_{2} = z^{2} - R^{2} + 3 \left[3z \frac{\partial \Phi}{\partial R} - 3R \frac{\partial \Phi}{\partial z} + Rz \left(\frac{\partial^{2} \Phi}{\partial R^{2}} - \frac{\partial^{2} \Phi}{\partial z^{2}} \right) \right] \left(\frac{\partial^{2} \Phi}{\partial R \partial z} \right)^{-1} \text{(Sanders 2012)}$$

• In practice, accurate and efficient computations it with AGAMA (Vasiliev 2019) library

Axisymmetric model

36

Khalil et al., in preparation.

Backwards Integrations (Vauterin & Dejonghe 1997; Dehnen 1999)

- 1. Integrate orbits starting from different « local » positions in the configuration space
- 2. Integrate back in time to a time where bar and spiral arms were not present.
- 3. Compute the orbits actions at this time.
- 4. Compute the axisymmetric DF at this original time :
 - By conservation we have the DF at *t* = *now* for joint bar and spiral arms

Liouville equation

- Idealised stellar system of N identical stars of mass μ .
- Position $\mathbf{x} = (x_0, \dots, x_N)$ and velocities $\mathbf{v} = (v_0, \dots, v_N)$.
- Phase-space probability distribution function $P_N(\mathbf{x}, \mathbf{v})$.
- Temporal evolution of $P_N(\mathbf{x}, \mathbf{v})$
 - Liouville equation :

$$\frac{\partial P_N}{\partial t} + \sum_{i=1}^{N} \left[\mathbf{v_i} \cdot \frac{\partial P_N}{\partial \mathbf{x_i}} + \mu \mathcal{F}_i^{tot} \cdot \frac{\partial P_N}{\partial \mathbf{v_i}} \right] = 0$$

 v_0, \ldots, v_N).

BBGKY Hierarchy

• So that the BBGKY hierarchy is given by:

$$\frac{\partial f_n}{\partial t} + \sum_{i=1}^n \mathbf{v_i} \cdot \frac{\partial f_n}{\partial \mathbf{x_i}} + \sum_{i=1}^n \sum_{k=1, k \neq i}^n \mu \mathcal{F}_{ik} \cdot \frac{\partial f_n}{\partial \mathbf{v_i}} + \sum_{i=1}^n \int d\Gamma_{n+1} \mathcal{F}_{i,n+1} \cdot \frac{\partial f_{n+1}}{\partial \mathbf{v_i}} = 0.$$

*With
$$P_n(\Gamma_1, \dots, \Gamma_n, t) \equiv \int d\Gamma_{n+1}$$

• The reduced distribution functions are defined as*: $f_n(\Gamma_1, \dots, \Gamma_n, t) \equiv \mu^n \frac{N!}{(N-n)!} P_n(\Gamma_1, \dots, \Gamma_n, t)$

 $1 \dots d\Gamma_N P_N(\Gamma_1, \dots, \Gamma_N, t)$ with $\Gamma_m = (\mathbf{x}_m, \mathbf{v}_m)$.

BBGKY Hierarchy for n = 1

- $f_1(\Gamma_1, t)$ is the one-particle phase-space density in terms of mass.
- For the two-particle reduced distribution function, let's define $g_2(\Gamma_1, \Gamma_2)$ such that:

• The BBGKY hierarchy for n = 1:

$$\frac{\partial f_1}{\partial t} + \mathbf{v_1} \cdot \frac{\partial f_1}{\partial \mathbf{x_1}} + \left[\int d\Gamma_2 f_1(\Gamma_2, t) \mathcal{F}_{12} \right] \cdot \frac{\partial f_1}{\partial \mathbf{v_1}} + \int d\Gamma_2 \mathcal{F}_{12} \cdot \frac{\partial g_2(\Gamma_1, \Gamma_2)}{\partial \mathbf{v_1}} = 0$$

• In the limit
$$n \to N$$
, $\int d\Gamma_2 \mathcal{F}_{12} \cdot \frac{\partial g_2(\Gamma_1, \Gamma_2)}{\partial \mathbf{v}_1} \to \frac{\partial v_1}{\partial \mathbf{v}_1}$

 $f_{2}(\Gamma_{1}, \Gamma_{2}, t) = f_{1}(\Gamma_{1}, t)f_{1}(\Gamma_{2}, t) + g_{2}(\Gamma_{1}, \Gamma_{2}).$

Collionsless Boltzmann Equation (= Vlasov Equation)

• BBGKY hierarchy for n = 1 in the limit $n \to N$

• Notice that:
$$-\nabla \Phi = \int d\Gamma_2 f_1(\Gamma_2, t) \mathcal{F}_{12}$$
.

$$\frac{\partial f_1}{\partial t} + \mathbf{v_1} \cdot \frac{\partial f_1}{\partial \mathbf{x_1}} - \nabla \Phi \cdot \frac{\partial f_1}{\partial \mathbf{v_1}} = 0 \Longleftrightarrow \frac{df_1}{dt} = 0.$$

V:
$$\frac{\partial f_1}{\partial t} + \mathbf{v_1} \cdot \frac{\partial f_1}{\partial \mathbf{x_1}} + \left[\int d\Gamma_2 f_1(\Gamma_2, t) \mathcal{F}_{12} \right] \cdot \frac{\partial f_1}{\partial \mathbf{v_1}} = 0.$$

THE PHASE-SPACE DENSITY OF STARS IN AN INFINITESIMAL LAGRANGIAN VOLUME IS CONSERVED.

Background potential

- 2 disk density profiles: Stellar thin disk and Interstellar medium thick disk $\rho = \Sigma_0 \exp[-(R/R_d)^{1/n} - R_0/R + \epsilon \cos(R/R_d)]$ 3 parameters each
- 2 spheroidal density profiles: Dark Matter and Bulge. $\rho = \rho_0 (r/r_0)^{-\gamma} (1 + (r/r_0)^{\alpha})^{(\gamma - \beta)/\alpha} \exp[-(r/r_{cut})^{\xi}]$ 5 parameters each
- So the background model has $2 \cdot (3 + 5) = 16$ parameters
- Sun's velocity and position counts for more 6 parameters

Bar potential

• Bar potential:

•
$$\overline{r} = \frac{r}{R_{max}}$$
. Cutoff at $R_{max} = 12kpc$.

- Bar angle ϕ_h
- Bar pattern speed Ω_{bar}
- Amplitude A
- Radial profile parameters *a*, *b*
- 3 superposed modes m = 2,4,6
 - Each mode has 3 free parameters: A, a, b
- So the Bar model has $2 + 3 \cdot 2 = 11$ parameters

$\Phi_1(r, \phi, z, m, R_{max}, A, a, b, \phi_b, \Omega_{bar}, t) = A\bar{r}^{a-1}(1-\bar{r})^{b-1}cos(m(\phi - \phi_b - \Omega_{bar}t))$

Spiral arms potential

• Spiral Arms potential:

$$\Phi_2 = Acos\left(m\left((\phi - \phi)\right)\right)$$

- Amplitude A
- Pit angle *i*
- Spiral arms pattern speed Ω_s
- Phase ϕ_0
- Arms number *m*
- So the Spiral Arms model has 5 parameters

 $\phi_0) - \Omega_s t + \ln\left(\frac{R}{R_0}\right) tan(i)^{-1}\right)$

