Lensingin cosmology: theory A cosmologist turned strong lens modeller's review

News from the Dark, Marseille, November 2024

Natalie Hogg | Laboratoire univers et particules Montpellier

Contents

- Open questions in cosmology and why lensing is useful
- Overview of lensing theory and regimes
- Specific applications of lensing in cosmology

Cosmology and our current problems

- Why is the expansion rate of the Universe accelerating at late times?
- Why do different measurements of cosmological parameters disagree so severely?
- What is dark matter?

Gravitational lensing

Uniquely sensitive to cosmology and dark matter on a extremely wide range of scales.

Gravitational lensing

Uniquely sensitive to cosmology and dark matter on a extremely wide range of scales.

Massive objects distort local spacetime, curving the geodesics.

$$
\beta=\theta-\alpha(\theta)
$$

where β is the unlensed source position, θ is the lensed image position and α is called the deflection angle.

Gravitational lensing

Uniquely sensitive to cosmology and dark matter on a extremely wide range of scales.

Massive objects distort local spacetime, curving the geodesics.

$$
\beta=\theta-\alpha(\theta)
$$

where β is the unlensed source position, θ is the lensed image position and α is called the deflection angle.

 $\alpha(\theta) = \nabla \psi(\theta)$

where ψ is the gravitational potential of the lens.

Regimes of gravitational lensing

Regimes of gravitational lensing

Regimes of gravitational lensing

B Jeffrey et al. (2021)

Cosmology with strong lensing

For a variable source, the delay between the arrival time of separate images is given by

$$
t(\theta, \beta) = \frac{(1+z_{od})}{c} \frac{D_{od}D_{os}}{D_{ds}} \left[\frac{(\theta - \beta)^2}{2} - \frac{\psi(\theta)}{\psi(\theta)} \right].
$$

Terms in yellow are dependent on the lens model and terms in red are dependent on the cosmology .

For a variable source, the delay between the arrival time of separate images is given by

$$
t(\theta, \beta) = \frac{(1 + z_{od})}{c} \frac{D_{od}D_{os}}{D_{ds}} \left[\frac{(\theta - \beta)^2}{2} - \psi(\theta) \right].
$$

Terms in yellow are dependent on the lens model and terms in red are dependent on the cosmology .

Simple picture:

$$
t \propto \frac{1}{H_{\rm o}}.
$$

plus
$$
\alpha(R, \varphi) = \frac{2b}{1+f} \left(\frac{b}{R}\right)^{t-1} e^{i\varphi} {}_{2}F_{1}\left(1, \frac{t}{2}; 2 - \frac{t}{2}; -\frac{1-f}{1+f} e^{i2\varphi}\right)
$$

F Tessore & Metcalf (2015)

 \blacktriangle HoLiCOW collaboration, Wong et al. (2020); 2.4% precision measurement of H_0

Assuming $\Omega_k = 0$,

$$
\frac{H(z)}{H_o} = \left[\Omega_{\rm m}(1+z)^3 + \Omega_{\rm DE}(1+z)^{3(1+w)}\right]^{\frac{1}{2}}
$$

where $w = -1$ for a cosmological constant.

Use time delays plus stellar kinematics combined using hierarchical Bayesian inference.

 \blacktriangleright TDCOSMO collaboration, Birrer et al. (2020).

w < −1.75 from seven lenses + kinematics alone $w = -1.025 \pm 0.029$ combined with other data

 \exists Hogg (2023) \bigcirc tdcosmo_ext

Strong lensing for cosmology: small-scale dark matter constraints

- Mass–concentration relation of lens galaxies.
- Halo and sub-halo mass functions.
- Inner density slope of lens galaxy mass profiles.
- Individual sub-halo detection via flux ratios.

Cosmology with weak lensing

- Weak distortions mainly manifest as *shear*; squashing of circles into ellipses.
- Extremely noisy signal due to shape noise and intrinsic alignments.
- Noise beaten by statistics: 3×2 point correlation functions using millions of galaxy shape and position measurements.

⟨ε*ⁱ* × ε*j*⟩ 'cosmic shear'

⟨ε*ⁱ* × ε*j*⟩ 'cosmic shear'

⟨δ*k*×δ*l*⟩ 'galaxy clustering'

⟨ε*ⁱ* × ε*j*⟩ 'cosmic shear'

⟨δ*k*×δ*l*⟩ 'galaxy clustering'

⟨ε*i*×δ*k*⟩ 'galaxy–galaxy lensing'

 \blacktriangle Heymans et al. (2020).

How can the weak lensing constraints be improved?

 \blacktriangleleft Heymans et al. (2020).

How can the weak lensing constraints be improved? **How can uncertainties be reduced?** Is there more information to be found in lensing?

 \blacktriangleleft Heymans et al. (2020).

Cosmology with the weak lensing of strong lensing

Weak lensing of strong lensing for cosmology

- Strong lensing images also experience weak lensing distortions, called 'line-of-sight effects': if this 'weak lensing of strong lensing' can be measured it will provide additional cosmological information.
- Must be done statistically \rightarrow 6 \times 2 point correlation functions.
- How to model the line-of-sight effects on a strong lens image?

The amplification matrices are defined as

$$
\mathcal{A}_{ab} = \mathbf{1} - \begin{bmatrix} \kappa_{ab} + \text{Re} \left(\gamma_{ab} \right) & \text{Im} \left(\gamma_{ab} \right) - \omega_{ab} \\ \text{Im} \left(\gamma_{ab} \right) + \omega_{ab} & \kappa_{ab} - \text{Re} \left(\gamma_{ab} \right) \end{bmatrix}
$$

where κ_{ab} is the convergence, γ_{ab} the shear and ω_{ab} the rotation; ab \in od, ds, os.

The amplification matrices are defined as

$$
\mathcal{A}_{ab} = \mathbf{1} - \begin{bmatrix} \kappa_{ab} + \text{Re} \left(\gamma_{ab} \right) & \text{Im} \left(\gamma_{ab} \right) - \omega_{ab} \\ \text{Im} \left(\gamma_{ab} \right) + \omega_{ab} & \kappa_{ab} - \text{Re} \left(\gamma_{ab} \right) \end{bmatrix}
$$

where κ_{ab} is the convergence, γ_{ab} the shear and ω_{ab} the rotation; ab \in od, ds, os.

The lens equation is thus modified,

$$
\beta = \mathcal{A}_{\text{os}}\theta - \mathcal{A}_{\text{ds}}\alpha(\mathcal{A}_{\text{od}}\theta).
$$

The amplification matrices are defined as

$$
\mathcal{A}_{ab} = \mathbf{1} - \begin{bmatrix} \kappa_{ab} + \text{Re} \left(\gamma_{ab} \right) & \text{Im} \left(\gamma_{ab} \right) - \omega_{ab} \\ \text{Im} \left(\gamma_{ab} \right) + \omega_{ab} & \kappa_{ab} - \text{Re} \left(\gamma_{ab} \right) \end{bmatrix}
$$

where κ_{ab} is the convergence, γ_{ab} the shear and ω_{ab} the rotation; ab \in od, ds, os.

The lens equation is thus modified,

$$
\beta = \mathcal{A}_{\text{os}}\theta - \mathcal{A}_{\text{ds}}\alpha(\mathcal{A}_{\text{od}}\theta).
$$

. Valid in the tidal regime: perturbations are small.

For a treatment of beyond-tidal effects see **B** Duboscq et al. (2024).

What makes an Einstein ring elliptical?

Shear or ellipticity?

Cosmic shear from Einstein rings **A Birrer et al.** (2016, 2017)

A "fg shear" =
$$
\gamma_{\text{od}}
$$
; "bg shear" = $\gamma_{\text{os}} - \gamma_{\text{ds}}$.

Conquering the shear–ellipticity degeneracy

Multiply the lens equation by the combination ${\cal A}_{\rm od}{\cal A}_{\rm ds}^{-1}$, creating the "minimal model",

$$
\tilde{\beta} = \mathcal{A}_{LOS}\theta - \mathcal{A}_{od}\alpha(\mathcal{A}_{od}\theta),
$$

where $A_{\text{LOS}} = A_{\text{od}} A_{\text{ds}}^{-1} A_{\text{os}}$.

 \blacktriangle Fleury et al. (2021)

Conquering the shear–ellipticity degeneracy

Multiply the lens equation by the combination ${\cal A}_{\rm od}{\cal A}_{\rm ds}^{-1}$, creating the "minimal model",

$$
\tilde{\beta} = \mathcal{A}_{LOS}\theta - \mathcal{A}_{od}\alpha(\mathcal{A}_{od}\theta),
$$

where $A_{\rm LOS} = A_{\rm od} A_{\rm ds}^{-1} A_{\rm os}$. It is thus the **line-of-sight (LOS) shear,** $\gamma_{\rm LOS}$, which is expected to be measurable.

 \blacktriangleright Fleury et al. (2021)

Conquering the shear–ellipticity degeneracy

Multiply the lens equation by the combination ${\cal A}_{\rm od}{\cal A}_{\rm ds}^{-1}$, creating the "minimal model",

$$
\tilde{\beta} = \mathcal{A}_{\text{LOS}} \theta - \mathcal{A}_{\text{od}} \alpha (\mathcal{A}_{\text{od}} \theta),
$$

where $A_{\rm LOS} = A_{\rm od} A_{\rm ds}^{-1} A_{\rm os}$. It is thus the **line-of-sight (LOS) shear,** $\gamma_{\rm LOS}$, which is expected to be measurable.

 \mathcal{P} Such transformations are possible as we cannot access β , the unlensed source position.

 \bullet Fleury et al. (2021)

Demonstrating the efficacy of the minimal model

 \blacksquare Hogg et al. (2023)

Measuring LOS shear: a proof of concept with 64 complex mocks

 $\overline{}$

§ analosis

 \blacksquare Hogg et al. (2023)

Image quality

Measuring LOS shear: a proof of concept with 64 complex mocks

 $\chi^2 =$ 1.0; average precision of 1%; no outliers $>$ 2σ

 \blacksquare Hogg et al. (2023)

Measuring LOS shear in 50 SLACS lenses

\bigcirc dolphin \bigcirc Hogg et al. (in prep. 2024)

⟨γ *m* LOS ×γ *n* LOS⟩ 'ring–ring'

⟨γ *m* LOS ×γ *n* LOS⟩ 'ring–ring'

⟨γ *m* LOS×ε*i*⟩ 'ring–galaxy shape'

⟨γ *m* LOS ×γ *n* LOS⟩ 'ring–ring'

⟨γ *m* LOS×ε*i*⟩ 'ring–galaxy shape'

⟨γ *m* LOS×δ*k*⟩ 'ring–galaxy position'

⟨γ *m* LOS ×γ *n* LOS⟩ 'ring–ring'

⟨γ *m* LOS×ε*i*⟩ 'ring–galaxy shape'

⟨γ *m* LOS×δ*k*⟩ 'ring–galaxy position'

⟨ε*i*×ε*j*⟩; ⟨δ*k*×δ*l*⟩; ⟨ε*i*×δ*k*⟩

Cosmology with the LOS shear: preliminary results

Example: cross-correlation of LOS shear with galaxy positions from a *Euclid*-like dataset.

LOS shear from 10⁵ strong lenses with 5% precision **O** Théo Duboscq.

Q: Multipolar distortions in lens mass; will 'boxy', 'disky', and 'twisty' features contaminate shear measurements?

Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?

Q: Automated vs case-by-case lens modelling?

Q: How to do science with $O(10^5)$ lenses from *Euclid* when modelling a single lens can take a week?!

- Q: Multipolar distortions in lens mass; will 'boxy', 'disky', and 'twisty' features contaminate shear measurements?
- A: Theoretically speaking no **IF** lens mass modelling is sufficiently descriptive.
- Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
- Q: Automated vs case-by-case lens modelling?
- Q: How to do science with $O(10^5)$ lenses from *Euclid* when modelling a single lens can take a week?!

- Q: Multipolar distortions in lens mass; will 'boxy', 'disky', and 'twisty' features contaminate shear measurements?
- A: Theoretically speaking no **IF** lens mass modelling is sufficiently descriptive.
- Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
- A: Can be addressed using simulations.
- Q: Automated vs case-by-case lens modelling?
- Q: How to do science with $O(10^5)$ lenses from *Euclid* when modelling a single lens can take a week?!

- Q: Multipolar distortions in lens mass; will 'boxy', 'disky', and 'twisty' features contaminate shear measurements?
- A: Theoretically speaking no **IF** lens mass modelling is sufficiently descriptive.
- Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
- A: Can be addressed using simulations.
- Q: Automated vs case-by-case lens modelling?
- A: Automated, provided we can understand when it fails.
- Q: How to do science with $O(10^5)$ lenses from *Euclid* when modelling a single lens can take a week?!

- Q: Multipolar distortions in lens mass; will 'boxy', 'disky', and 'twisty' features contaminate shear measurements?
- A: Theoretically speaking no **IF** lens mass modelling is sufficiently descriptive.
- Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
- A: Can be addressed using simulations.
- Q: Automated vs case-by-case lens modelling?
- A: Automated, provided we can understand when it fails.
- Q: How to do science with $O(10^5)$ lenses from *Euclid* when modelling a single lens can take a week?!
- A: JAX-based codes or machine learning.

Summary

- Gravitational lensing is a unique probe of dark matter on a vast range of scales.
- A new probe, the weak lensing of strong lensing, has been proposed and can be accurately measured; preliminary results indicate that the cosmological signal will be detectable.
- *Euclid* and JWST (ask me about COSMOS-Web!) are ushering in a new era of lensing in cosmology.

 \blacktriangleright natalie.hogg@lupm.in2p3.fr \blacktriangleright astronat \clubsuit nataliebhogg.com

Back-up slides

Weak and strong lensing in COSMOS-Web

The mass-sheet degeneracy

Under multiplicative transformation of the lens equation,

$$
\lambda \beta = \theta - \lambda \alpha(\theta) - (1 - \lambda)\theta, \tag{1}
$$

where the source has been linearly displaced, $\beta \rightarrow \lambda \beta$, image positions are preserved.

 \blacktriangleright Falco et al. (1985), Schneider and Sluse (2013, 2014)

Time delay constraints on H₀: using stellar kinematics

- Add mass-sheet degeneracy hyperparameters to the model.
- Constrain those parameters using stellar kinematics data from a separate strong lens catalogue.
- Resulting cosmological constraints will be the most precise possible whilst making minimal assumptions about the mass-sheet degeneracy.

TDCOSMO collaboration, Birrer et al. (2020)

Time delay constraints on H₀: using stellar kinematics

 \blacktriangleright TDCOSMO collaboration, Birrer et al. (2020); 5% precision measurement of H_0

$$
\gamma_{LOS} = \gamma_{od} + \gamma_{os} - \gamma_{ds}
$$