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Cosmology and our current problems

e Why is the expansion rate of the Universe accelerating at late times?
e Why do different measurements of cosmological parameters disagree so severely?

e Whatis dark matter?




Gravitational lensing

Uniquely sensitive to cosmology and dark matter on a extremely wide range of scales.
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curving the geodesics. “
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where f3 is the unlensed source position, 0 is
the lensed image position and « is called the
deflection angle.

a(0) = Vip(0)

where 1 is the gravitational potential of the
lens.

¥, observer




Regimes of gravitational lensing

Lens Source Images
Microlensing  Planet, star, PBH  Star Single, highly magnified
Strong lensing  Galaxy, cluster Galaxy = Multiple, magnified, strongly distorted
Weak lensing  Galaxies Galaxies Single, weakly distorted
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Regimes of gravitational lensing
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Cosmology with strong lensing



Strong lensing for cosmology: time delays

For a variable source, the delay between the arrival time of separate images is given by

(1 + Zod) DodDos
c Dds
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Terms in yellow are dependent on the lens model and terms in red are dependent on the
cosmology .




Strong lensing for cosmology: time delays

For a variable source, the delay between the arrival time of separate images is given by
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Terms in yellow are dependent on the lens model and terms in red are dependent on the
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Strong lensing for cosmology: time delays
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Strong lensing for cosmology: time delays

Assuming Q) = o,

H :
z) _ Qum(1+2)® + Qpg (1 + 22T
Ho
wherew = —1fora

cosmological constant.

Use time delays plus stellar
kinematics combined using
hierarchical Bayesian inference.

B TDCOSMO collaboration,
Birrer et al. (2020).
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Strong lensing for cosmology: small-scale dark matter constraints

Mass—concentration relation of lens galaxies.

Halo and sub-halo mass functions.

Inner density slope of lens galaxy mass profiles.

Individual sub-halo detection via flux ratios.

EVegetti etal. (2023)




Cosmology with weak lensing



Weak lensing for cosmology: 3 x 2 point correlation functions

e Weak distortions mainly manifest as shear; squashing of circles into ellipses.
e Extremely noisy signal due to shape noise and intrinsic alignments.

e Noise beaten by statistics: 3 X 2 point correlation functions using millions of galaxy
shape and position measurements.




Weak lensing for cosmology: 3 x 2 point correlation functions
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Weak lensing for cosmology: 3 x 2 point correlation functions

oy

0.9 A

0.8

0.7 A

0.6

HEl BOSS+KV450 (Troster et al. 2020)

DES Y1 3 x 2pt (DES Collaboration 2018)
B KiDS-1000+BOSS+2dFLenS 3 x 2pt
B Planck TTTEEE+lowE

-

2%,

Bi Heymans et al. (2020).




Weak lensing for cosmology: 3 x 2 point correlation functions

oy

0.9 A

0.8

0.7 A

0.6

HEl BOSS+KV450 (Troster et al. 2020)

DES Y1 3 x 2pt (DES Collaboration 2018)
B KiDS-1000+BOSS+2dFLenS 3 x 2pt
B Planck TTTEEE+lowE

How can the weak lensing
- constraints be improved?

2%,

Bi Heymans et al. (2020).




Weak lensing for cosmology: 3 x 2 point correlation functions
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Cosmology with the weak lensing of strong lensing



Weak lensing of strong lensing for cosmology

e Strong lensing images also experience weak lensing distortions, called line-of-sight
effects’: if this ‘weak lensing of strong lensing’ can be measured it will provide additional
cosmological information.

e Must be done statistically — 6 x 2 point correlation functions.

e How to model the line-of-sight effects on a strong lens image?
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Modelling the line-of-sight effects

The amplification matrices are defined as

Kab + Re (Vab) Im (Yab) — Wah
Aab =1—
Im (Yab) + Wap Kab — Re (Vab)

where Ky, is the convergence, v}, the shear and w,y, the rotation; ab € od, ds, os.




Modelling the line-of-sight effects

The amplification matrices are defined as

Kap + Re (Vab) Im (Yab) — Wyp
Aab =1—
Im (Yab) + Wap Kab — Re (Vab)

where Ky, is the convergence, v}, the shear and w,y, the rotation; ab € od, ds, os.
The lens equation is thus modified,

B - Aose - Adso‘(‘Aode)~




.
Modelling the line-of-sight effects

The amplification matrices are defined as

Kab + Re (Vab) Im (Yab) — Wah
Aab =1—

Im (vap) + Wap  Kap — Re (vap)
where Ky, is the convergence, v}, the shear and w,y, the rotation; ab € od, ds, os.
The lens equation is thus modified,
B =Hos0 — Agsx(AodB).
A Valid in the tidal regime: perturbations are small.

For a treatment of beyond-tidal effects see B Duboscq et al. (2024).




What makes an Einstein ring elliptical?

Shear or ellipticity?

() lenstronomy




Cosmic shear from Einstein rings B Birrer et al. (2016, 2017)
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Conquering the shear-ellipticity degeneracy
Multiply the lens equation by the combination Aqq.A, ', creating the “minimal model”,

B = ALos® — Aogx(AogB),

where ALOS = AOdA(;Sl.AOS.

B Fleury et al. (2021)




Conquering the shear-ellipticity degeneracy

Multiply the lens equation by the combination Aqq.A, ', creating the “minimal model”,
B = ALosO — Axqx(Aodb),

where A;pos = Aod.ﬁl;slflos. It is thus the line-of-sight (LOS) shear, y10s, which is
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Conquering the shear-ellipticity degeneracy

Multiply the lens equation by the combination Aqq.A, ', creating the “minimal model”,
B = ALosO — Axqx(Aodb),

where A;pos = Aod.ﬁl;slflos. It is thus the line-of-sight (LOS) shear, y10s, which is
expected to be measurable.

&, Such transformations are possible as we cannot access {3, the unlensed source position.

B Fleury et al. (2021)




Demonstrating the efficacy of the minimal model
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Measuring LOS shear: a proof of concept with 64 complex mocks
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Measuring LOS shear in 50 SLACS lenses
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Weak lensing of strong lensing for cosmology: 6 x 2 point correlation
functions

n
TLOS
(Vios X Vios) ‘ring-ring RS,




Weak lensing of strong lensing for cosmology: 6 x 2 point correlation
functions
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Weak lensing of strong lensing for cosmology: 6 x 2 point correlation
functions
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Weak lensing of strong lensing for cosmology: 6 x 2 point correlation
functions
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Cosmology with the LOS shear: preliminary results

Example: cross-correlation of LOS shear with galaxy positions from a Euclid-like dataset.
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What dust is under the carpet?
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What dust is under the carpet?

Q: Multipolar distortions in lens mass; will ‘boxy’, ‘disky’, and ‘twisty’ features contaminate
shear measurements?

Q: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
Q: Automated vs case-by-case lens modelling?

Q: How to do science with O(10°) lenses from Euclid when modelling a single lens can take
a week?!
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What dust is under the carpet?

Q:

o » Lo » O &

Multipolar distortions in lens mass; will ‘boxy’, ‘disky’, and ‘twisty’ features contaminate
shear measurements?

: Theoretically speaking no — IF lens mass modelling is sufficiently descriptive.

: How prevalent are beyond-shear shape distortions (flexion) in real lines of sight?
: Can be addressed using simulations.

: Automated vs case-by-case lens modelling?

: Automated, provided we can understand when it fails.

: How to do science with O(10°) lenses from Euclid when modelling a single lens can take

a week?!

: JAX-based codes or machine learning.




Summary

e Gravitational lensing is a unique probe of dark matter on a vast range of scales.

e Anew probe, the weak lensing of strong lensing, has been proposed and can be accurately
measured; preliminary results indicate that the cosmological signal will be detectable.

e Euclid and JWST (ask me about COSMOS-Web!) are ushering in a new era of lensing in
cosmology.




1 THEY ALL ASK “WHAT IS DARK MATTER?”
AND “WHERE 1S DARK MATTER?”? BUT
NORODY ASKS “HOW IS DARK MATTER?”

N natalie.hogg@lupm.inzp3.fr W astronat & nataliebhogg.com



Back-up slides



Weak and strong lensing in COSMOS-Web

Highest-ever resolution dark matter map | | Twenty spectacular strong lenses
from weak lensing

B Mahler et al. (2024)
B Scognamiglio et al. (2024)

A catalogue of 100 strong lenses Do strong lens forecasts match COSMOS-
Web observations?

B Nightingale et al. (2024)
B Hogg et al. (2024)




The mass-sheet degeneracy

Under multiplicative transformation of the lens equation,
AB=0—Ax(0) —(1—A)0, (1)

where the source has been linearly displaced,  — AP, image positions are preserved.

B Falco et al. (1985), Schneider and Sluse (2013, 2014)




Time delay constraints on H,: using stellar kinematics

e Add mass-sheet degeneracy hyperparameters to the model.

e Constrain those parameters using stellar kinematics data from a separate strong lens
catalogue.

e Resulting cosmological constraints will be the most precise possible whilst making
minimal assumptions about the mass-sheet degeneracy.

B TDCOSMO collaboration, Birrer et al. (2020)




Time delay constraints on H,: using stellar kinematics

W TDCOSMO-only: Ho = 74.53§ km 571 Mpc™!
W TDCOSMO + SLACSjey:

TDCOSMO + SLACSspss: Ho = 67.4%%
W TDCOSMO + SLACSspss + ru: Ho = 67.474} km 57 Mpc™?
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Y10S = Yod + Yos — VYds




