

Early galaxy with jvv51: a challenge for λCDM ?

CNrs

Nicolas Laporte 14 november 2024 – News From The Dark Age of the Universe (Myr)

Redshift

The main questions on the primeval galaxies

Cosmic Dawn III P. OCVIRK, Observatoire astronomique de Strasbourg Cosmic Dawn & CLUES collaborations Summit / Oak Ridge Supercomputing Facility

z=25.0 16 cMpc/h sub-region

- When did the first stars and galaxies form in the early Universe ?
- What are the physical properties of the first galaxies ?
- What are the sources responsible for reionisation ?
- How did the first structures form in the early Universe ?

The quest for Cosmic Dawn before 2022

The first results from the Webb

TIMELINE OF THE FIRST PUBLICATIONS

- 15 July : Pascale et al. (2022) ; Mahler et al. (2022)
- 18 July : Caminha et al. (2022)
- 19 July : Carnall et al. (2022) ; Cheng et al. (2022)
- **20 July** : Castellano et al. (2022) ; Naidu et al. (2022) ; Ferreira et al. (2022)
- 21 July : Schaerer et al. (2022)
- 22 July : Suess et al. (2022)
- 25 July : Adams et al. (2022) ; Leethochawalit et al. (2022)
- 26 July : Atek et al. (2022) ; Roberts-Borsani et al. (2022) ; Trump et al. (2022) ; Curti et al. (2022) ; Sun et al. (2022) ; Donnan et al. (2022) ; Chen et al. (2022) ; Yan et al. (2022) ; Morishita et al. (2022) ; Santini et al. (2022), Merlin et al. (2022)

Some surprising results since July 2022

z=13

Bakx et al.

z=16.39±0.2

Donnan et al. (2022)

Arrabal-Haro et al. (2023)

z=17

CEERS-DSFG-1 (Finkelstein et al. 2022)

The *current frontiers* of the observable Universe

- Two modes if spectroscopic observations :
 - Low resolution (R~100) for the stellar continuum
 - High résolution (R~2900) for emission/absorption lines
- To date, the most distant galaxy has been detected in GOODS-South at z~14.3 (300 million years after the

Carniani et al. (2024)

The *current frontiers* of the observable Universe

This galaxy is one of the most luminous galaxies detected at z>7 in the GOODS-N and GOODS-S field.

Its stellar mass is not in contradiction with what can be obtained with λCDM

ID	JADES-GS-z14-0
Redshift	$14.32\substack{+0.08\\-0.20}$
UV slope $meta$	-2.20±0.07
M _{UV}	-20.81±0.16 ^b
UV radius (r _{UV}) (pc)	260±20
$\log_{10}(M_{\rm Star}/M_{\odot})^{\rm a}$	$8.6^{+0.7\mathrm{b}}_{-0.2}$
${ m SFR}_{100}~(M_{\odot}~{ m yr}^{-1})$	4^{+9}_{-3} b
${\rm SFR}_{10}~(M_\odot~{\rm yr}^{-1})$	19±6 ^b
$\mathrm{sSFR}_{10}(\mathrm{Gyr}^{-1})$	45^{+56}_{-35}
A _V (mag)	$0.31\substack{+0.14\\-0.07}$
$\log_{10}\left(Z/Z_{\odot} ight)$	$-1.5\substack{+0.7\\-0.4}$
$f_{ m esc}^{ m LyC}$	$0.84\substack{+0.09\\-0.16}$

The main questions on primeval galaxies

Ocvirk et al. (2018) - ObsAS

- When did the first stars and galaxies form in the early Universe ?
- What are the physical properties of the first galaxies ?
- What are the sources responsible for reionisation ?
- How did the first structures form in the early Universe ?

The distribution in Luminosity of galaxies

- The distribution in luminosity of the number densities of galaxies allows to constrain :
 - AGN activity (bright part)
 - The minimum mass of the dark matter halo
- The shape of the bright part
 - The density of AGN at high-redshift seems small
 - The shape of the faint part
 - Not deep enough to constrain the mass of the dark matter halo.

□ Needs of gravitational lensing

Too many and too massive high-z galaxies ?

Article

A population of red candidate massive galaxies ~600 Myr after the Big Bang

https://doi.org/10.1038/s41586-023-05786-2

Received: 25 July 2022 Accepted: 2 February 2023 Ivo Labbé¹⁵², Pieter van Dokkum², Erica Nelson³, Rachel Bezanson⁴, Katherine A. Suess^{5,6}, Joel Leja^{78,9}, Gabriel Brammer¹⁰, Katherine Whitaker^{10,11}, Elijah Mathews^{78,9}, Mauro Stefanon^{12,13} & Bingjie Wang^{78,9}

Labbe et al. (2023)

Too many and too massive high-z galaxies

It is now well-known that at high-z stars have a higher ionising efficiency, leading to the emission of stronger emission lines

reasonable masses

Too many and too massive high-z galaxies ?

Using JWST data, the SFE of a sample of 36 star-forming galaxies has been estimated. The most massive galaxies shows an average SFE of ~50%.

This is much higher than what is observed in the local Universe (~3 x) but not in conflict with λCDM

Xiao et al. (2024)

An abundance of "Little Red Dots"

- Too many galaxies are found at z>11 compared to predictions
- Several hypotheses:
 - Higher star formation efficiency
 - Non-negligible contamination by low-redshift interlopers
 - Stochastic star formation history

Evidence for a dynamical Dark Energy equation ?

DRAFT VERSION OCTOBER 31, 2024 Typeset using LATEX twocolumn style in AASTeX631

The Excess of JWST Bright Galaxies: a Possible Origin in the Ground State of Dynamical Dark Energy in the light of DESI 2024 Data N. MENCI¹, A. A. SEN², M. CASTELLANO^{11,2}

> ¹¹ INAF - Osservatorio Astronomico di Roma, via Frascati 33, I-00078 Monte Porzio, Italy ²²Centre For Theoretical Physics, Jamia Millia Islamia, New Delhi, 110025, India.

Assuming <u>a negative Cosmological Constant</u>, a new equation governing the expansion of the Universe can be derived :

$$\begin{bmatrix} H(a) \\ H_0 \end{bmatrix}^2 = \Omega_m a^{-3} + \Omega_\Lambda + \Omega_x f(a)$$
where $f(a) = a^{-3(1+\omega_0+\omega_a)} \exp[-3\omega_a(1-a)]$

it.

If the overdensity of galaxies at z>10 is confirmed, this new model with a negative Cosmological Constant could explain

Menci et al. (2024)

The sources responsible for reionisation

The Active Galactic Nuclei (AGN)

The star-forming galaxies

Rosdahl et al. (2022) CRAL

A result that restart the debate: many AGNs in the epoch of reionisation ?

Goulding et al.

A result that restart the debate: many AGNs in the epoch of reionisation ?

 Every week Webb identifies AGNs at z>6. This ask several questions

- What are the origin of this supermassive black holes in the early Universe ?
- What is the fraction of AGN within the first billion years of the Universe ?

What are their contribution to the
 Needohis for aproaces?spectroscopic
 follow-up campaign with MOS.

Bennett et al. (2024)

The key role of the faintest galaxies at high-z

- Despite the huge sensitivity of Webb, the use of gravitational telescopes is clearly needed to probe the faintest galaxies
- Preliminary results using galaxy clusters show that the faintest galaxies are sufficient to explain the reionisation process, and that they have a major role in this process.

□ There is a need for a huge spectroscopic follow-up campaign for the faintest galaxies.

The main questions on primeval galaxies

Ocvirk et al. (2018) - ObsAS

- When did the first stars and galaxies form in the early Universe ?
- What are the physical properties of the first galaxies ?
- What are the sources responsible for reionisation ?
- How did the first structures form in the early Universe ?

The environment of primeval galaxies

Laporte et al. (2022) *LAM*

- Webb can detect galaxies well beyond Hubble's limits
- We can for the first time detect and study the first structure in the early Universe

The three most distant proto-clusters with AGN in their center

The formation of the first structures

Scholtz & Witten et al. (2023)

- To date , at least 3 proto-clusters have been identified in *Webb* 's images
- They allow to trace the evolution of the large scale structures known today (eg. Amas de Coma)

□ There is a need for identifying other proto-clusters

□ There is a need for a large spectroscopic follow-up campaign with MOS.

Conclusions

New facilities within the next decade

Huge spectroscopic follow-up campaign on the brightest targets Hugespectroscopicfollow-upcampaignmulti-objectspectrographs

Huge spectroscopic campaign on the faintest targets at high-z

The need for identifying proto-clusters in Webb data in preparation for the first SKAO observation

The first billion years of the Universe seen by the James Webb Space Telescope

Accueil > Actualité > Sciences & Environnement

Publié le 28/02/2023 à 18:05, mis à jour le 02/03/2023 à 11:17

Vers une révolution cosmologique majeure ?

Réservé aux abonnés