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Collapsing Cosmological Condensates
1. Ultralight axion dark ma8er 

late-,me cosmology (ma8er & vacuum domina,on) 

2. QCD axion dark ma8er 
radia,on & early ma8er domina,on 

3. Inflaton 
post-infla,onary ma8er domina,on
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Axion-like (ALP) Dark Ma;er
ALPs are light, weakly coupled (pseudo)scalar par,cles mo,vated by the strong CP 
problem and string theory. They are excellent dark ma8er candidates. 

In the context of structure forma,on, we usually assume that ALPs are 

• classical (but waves) 

• nonrela,vis,c 

• only gravita,onally coupled 

→ m is the only free parameter 

Two classes of axion DM: 

1. ultralight / fuzzy DM: e.g. from string theory 

2. QCD axion DM: from strong CP problem / Peccei-Quinn mechanism 

unique small-scale phenomenology from wavelike effects (1.) or large 
isocurvature perturba,ons (2.)
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Figure 10.7: “Switching on” the mass term for the axion at some temperature, T ,
tilts the potential.

Choosing the explicit symmetry breaking potential along the real axis minimizes
✓ at 0. For now this is clearly arbitrary and we could always redefine ✓ such that
this holds true (the location of the real axis in the complex plane is just a choice
of coordinates in field space). The scale µ, which has dimensions of mass, is the
scale of explicit breaking of the U(1). For this to be “small” we need µ ⌧ v.

In general, we might expect that the symmetry breaking “switches on” at some
T , as sketched in Fig. 10.6, and we see that this “tilts” the potential, as shown in
Fig. 10.7. This is a phase transition. Phase transitions can break continuous global
symmetries as in the case of a liquid freezing to a solid, which breaks continuous
translational symmetry down to the discrete symmetry group of the solid crystal.

Fixing the � modulus to its vev at v/
p

2, the resulting potential for ✓ is

V (✓) = �µ
4(T ) cos ✓ (10.50)

) V (�) = �µ
4(T ) cos

⇣
�

v

⌘
(10.51)

and Taylor expanding

V =
1

2
µ

4
✓
2 ) m =

µ
2

v
. (10.52)

As v appears in the denominator, we can get a very small mass if v � µ without
making µ itself small, e.g. our example of m = 10�15eV with v ⇡ 1015 GeV implies
µ ⇡ 10 keV.

In the next section, we look at understanding:

• What provides the explicit symmetry breaking?

• How does m(T ) change the relic density calculation?

• What is (m, v) and interactions with the SM?



• In the Newtonian limit, ULAs obey the Schrödinger-Poisson (SP) equa,ons: 

• Dynamics of gravita,onally interac,ng random waves is equivalent to collisionless 
ma8er on large scales. 

• Madelung / fluid formula,on: 

• „Quantum Reynolds number“ (compare advec,on and quantum pressure terms): 

• Gravita,onal relaxa,on / condensa,on ,me:
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Siddhartha & Uréna-López 2003) or even one-dimensional (Hu
et al. 2000) to study this problem. These simplifications may
not capture what actually results in a three-dimensional system
with realistic initial conditions. In particular, the existence of a
flattened core has been derived or inferred from these previous
works of one-dimensional system or with spherical symmetry.
In this paper, we report high-resolution fully three-dimensional
simulations for this problem. Surprisingly, our simulations re-
veal that the singular cores of bound objects remain to exist even
when the core size is much smaller than the Jean’s length.

In Section 2, we provide an explanation for the possible
existence of the Bose–Einstein state for the extremely low
mass bosons under investigation here. We then discuss two
different representations of ELBDM and the evolution of linear
perturbations for the two representations. In Section 3, the
numerical scheme and initial condition are described. We
present the simulation results in Section 4. In Section 5, we
look into the physics of collapsed cores with detailed analyses
from different perspectives. Finally, the conclusion is given in
Section 6. In the Appendix, we present results of one- and two-
dimensional simulations and demonstrate that singular cores do
not occur in one- and two-dimensional cases.

2. THEORY

2.1. Bose–Einstein Condensate

A Bose–Einstein condensate (BEC) is a state of bosons cooled
to a temperature below the critical temperature. BEC happens
after a phase transition where a large fraction of particles
condense into the ground state, at which point quantum effects,
such as interference, become apparent on a macroscopic scale.
The critical temperature for a gas consisting of noninteracting
relativistic particles is given by (Burakovsky & Horwitz 1996)

Tc ∼
(nch

3m

)1/2
, (1)

where the Boltzmann’s constant and speed of light have been
set to unity. Given the extremely low particle mass assumed
here, Tc is derived from the relativistic Bose–Einstein particle–
antiparticle distribution with the chemical potential set to
particle mass m. Here, the “charge” density nch ≡ n+ − n−,
where n+ and n− are the number densities of particles and
antiparticles in excited states. On the other hand, we have
nch ∼ (m/T )n+, and it follows that Tc ∼

(
n+
3T

)1/2. Note that
n+ scales as a−3 and T as a−1, and it follows Tc scales as
a−1. It means that when T is below Tc at some time after a
phase transition, the temperature will remain subcritical in any
later epoch. As an estimate, if we assume 1% of ELBDM to
be in the excited states after its decoupling, the current critical
temperature becomes

Tc = 3 × 10−14
( m

eV

)−1/2
(

T

eV

)−1/2

eV. (2)

Substituting m ∼ 10−22 eV and T ∼ 10−4 eV, the same as
the present photon temperature, we find that the current critical
temperature Tc = 0.3 eV ≫ T . Hence ELBDM, if exists and
accounts for the dark matter, may very well be in the BEC
state ever since a phase transition in the early universe. Despite
ELBDM particles in the excited state are with a relativistic
temperature, almost all particles are in the ground state and
described by a single nonrelativistic wave function.

2.2. Basic Analysis

The Lagrangian of nonrelativistic scalar field in the comoving
frame is

L = a3

2

[
ih̄

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
+

h̄2

a2m
(∇ψ)2 − 2mV ψ2

]
,

(3)
and the equation of motion for this Lagrangian gives a modified
form of Schrödinger’s equation (Siddhartha & Uréna-López
2003):

ih̄
∂ψ

∂t
= − h̄2

2a2m
∇2ψ + mV ψ, (4)

where ψ ≡ φ(n0/a
3)−1/2 with φ being the ordinary wave

function, n0 the present background number density, and V is
the self-gravitational potential obeying the Poisson equation,

∇2V = 4πGa2δρ = 4πG

a
ρ0(|ψ |2 − 1). (5)

The only modification to the conventional Schrödinger–Poisson
equation is the appearance a−1 associated with the comoving
spatial gradient ∇, and the probability density |ψ |2 to be
normalized to the background proper density ρ/m. In the above,

ρ0 ≡ 3H 2
0

8πG
Ωm = mn0 (6)

is the background mass density of the universe.
To explore the nature of the ELBDM, we first adopt the

hydrodynamical description to investigate its linear evolution.
This approach is not only more intuitive than the wave function
description, its advantage will also become apparent later. Let
the wave function be

ψ =
√

n

n0
ei S

h̄ , (7)

where n = n̄a3, the comoving number density and n̄ is
the proper number density. The quadrature of Schrödinger’s
equation can be split into real and imaginary parts, which
become the equations of acceleration and density separately,

∂

∂t
v +

1
a2

v · ∇v +
∇V

m
− h̄2

2m2a2
∇

(∇2√n√
n

)
= 0 (8)

∂n

∂t
+

1
a2

∇ · (nv) = 0, (9)

where v ≡ ∇S/m is the fluid velocity. There is a new term
depending on the third-order spatial derivative of the wave
amplitude

√
n in the otherwise cold-fluid force equation. This

term results from the “quantum stress” that acts against gravity,
and it can be cast into a stress tensor in the energy and
momentum conservation equation (Chiueh 1998, 2000). The
quantum stress becomes effective only when the spatial gradient
of the structure is sufficiently large.

The fluid equations, Equations (5), (8), and (9), are linearized
and combined to yield

∂

∂t
a2 ∂

∂t
δn − 3H0

2Ωm

2a
δn +

h̄2

4m2a2
∇2∇2δn = 0. (10)

Upon spatially Fourier transforming δn, it follows

d

dt
a2 dnk

dt
−

(
3H0

2Ωm

2a

)
nk +

h̄2k4

4m2a2
nk = 0, (11)
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2. Theorie

Als Randbemerkung sei darauf hingewiesen, dass man auch für komplexe Felder
im newtonschen Limit das Schrödinger-Poisson-System mit der Ersetzung

� = �e≠ imc2t
~

erhält sofern angenommen wird, dass nur Moden e≠ik
µ

xµ mit k
0

> 0 besetzt sind.

2.3. Madelung-Transformation

Die Madelung-Transformation ist eine äquivalente Formulierung der Schrödinger-
Gleichung. Hierzu nimmt man den Ansatz

� =
Û

fl(x, t)
m

exp(iS(x, t)/~) (2.14)

mit reellen Funktionen fl und S. Dies eingesetzt in die Schrödinger-Gleichung und
Division durch exp(iS/~) ergibt

i~ fl̇

2Ô
fl

≠
Ô

flṠ(x) = ≠
~2

2m
Ò(ÒÔ

fl + i

~
Ô

flÒS) + mV
Ô

fl

= ≠
~2

2m
(Ò2Ô

fl + i

~
Òfl

fl
ÒS + i

~
Ô

flÒ
2
S ≠

1
~2

Ô
fl(ÒS)2)

+ mV
Ô

fl (2.15)

Der Imaginärteilteil dieser Gleichung lässt sich mit der Substitution v = m
≠1

ÒS

schreiben als

fl̇ + Ò(flv) = 0 (2.16)

und der Realteil als

1
m

Ṡ + 1
2m2 (ÒS)2 = ≠(Q + V ) (2.17)

wobei Q = ≠
~2

2m2
ÒÔ

flÔ
fl

. Der Gradient des Realteils ist dann

v̇ + (v · Ò)v = ≠Ò(Q + V ) (2.18)
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Navier-Stokes equations, we can compare the nonlinear velocity gradient term on the left-hand side to
the new quantum pressure term for gradients ⇠ 1/R (and a = 1):

Q/R

v2/R
'

~2

m2R3

R

v2
=

✓
�dB

R

◆2

(32)

with the characteristic coherence length of the scalar field �dB = ~/mv. Comparing Q with VN gives
the same result for virialized systems whose dynamical time equals their crossing time R/v.

Equation (32) suggests that the structure of halos consisting of scalar field dark matter should be
similar to CDM halos on length scales of order R as long as R � �dB with

�dB ' 0.2

✓
10�22 eV

m

◆ ✓
100 km/s

v

◆
kpc , (33)

if v is the virial velocity of the halo. Conversely, we expect new e↵ects on scales of the halo radius for
dwarf galaxies (with virial velocities of order 10 km/s) if m ⇠ 10�22 eV.

What is the characteristic timescale after which significant deviations from the evolution of CDM
halos under purely gravitational interactions become apparent? Again, several di↵erent arguments give
approximately the same answer, so let us begin with the gravitational scattering time for wave scattering
in a condensate. In the vacuum, the scattering rate � ⇠ ⌧�1 scales with the scattering cross section
�g, the mean relative velocity hvi =

p
2v, and the number density n = ⇢/m, � ⇠ �g hvi n. If the final

state is macroscopically occupied, Bose-Einstein stimulation enhances the rate by the axion phase space
density (or occupation number)

N =
h3 n

Vp

=
(2⇡~)3 n

(4⇡/3)(mv)3
=

6⇡2~3 n

m3v3
.

N is a very large number if axions make up a significant fraction of dark matter. Correspondingly, the
scattering time can be su�ciently short to become cosmologically relevant. It is given by

⌧ '
m3v2

6⇡2
p

2~3 n2�g

. (34)

The momentum-transfer cross section �g for Rutherford scattering is �g ' ⇡G2m2v�4 log ⇤ with ⇤ =
#max/#min ⇠ R/�dB, yielding

⌧ '
mv6

6
p

2⇡3~3G2 n2 log ⇤
. (35)

Using the virial velocity v2 = GMR�1 of a halo with uniform density ⇢ = nm ⇠ MR�3 in Eq. (35),
[38] point out that ⌧ scales as

⌧ ⇠ 10�2
⇥

✓
�dB

R

◆�3

tcr , (36)

where tcr = R/v is the halo crossing time. As above, this suggests that axion dark matter halos
behave similarly to CDM halos on dynamical timescales if �dB ⌧ R. On the other hand, we may
expect interesting new e↵ects over periods of order O(⌧). Such e↵ects include gravitational heating and
relaxation in FDM halos, to be discussed in Section 4.3, and the formation of solitonic objects by wave
condensation that we will turn to next.
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if v is the virial velocity of the halo. Conversely, we expect new e↵ects on scales of the halo radius for
dwarf galaxies (with virial velocities of order 10 km/s) if m ⇠ 10�22 eV.

What is the characteristic timescale after which significant deviations from the evolution of CDM
halos under purely gravitational interactions become apparent? Again, several di↵erent arguments give
approximately the same answer, so let us begin with the gravitational scattering time for wave scattering
in a condensate. In the vacuum, the scattering rate � ⇠ ⌧�1 scales with the scattering cross section
�g, the mean relative velocity hvi =

p
2v, and the number density n = ⇢/m, � ⇠ �g hvi n. If the final

state is macroscopically occupied, Bose-Einstein stimulation enhances the rate by the axion phase space
density (or occupation number)

N =
h3 n

Vp

=
(2⇡~)3 n

(4⇡/3)(mv)3
=

6⇡2~3 n

m3v3
.

N is a very large number if axions make up a significant fraction of dark matter. Correspondingly, the
scattering time can be su�ciently short to become cosmologically relevant. It is given by

⌧ '
m3v2

6⇡2
p

2~3 n2�g

. (34)

The momentum-transfer cross section �g for Rutherford scattering is �g ' ⇡G2m2v�4 log ⇤ with ⇤ =
#max/#min ⇠ R/�dB, yielding

⌧ '
mv6

6
p

2⇡3~3G2 n2 log ⇤
. (35)

Using the virial velocity v2 = GMR�1 of a halo with uniform density ⇢ = nm ⇠ MR�3 in Eq. (35),
[38] point out that ⌧ scales as

⌧ ⇠ 10�2
⇥

✓
�dB

R

◆�3

tcr , (36)

where tcr = R/v is the halo crossing time. As above, this suggests that axion dark matter halos
behave similarly to CDM halos on dynamical timescales if �dB ⌧ R. On the other hand, we may
expect interesting new e↵ects over periods of order O(⌧). Such e↵ects include gravitational heating and
relaxation in FDM halos, to be discussed in Section 4.3, and the formation of solitonic objects by wave
condensation that we will turn to next.

10

= ϵ2



From waves to par?cles

• Kine,c formalism (Levkov+ ’18):

From waves to particles 21

Kinetic formalism (c.f. [LPT18])

I ensemble of waves with random phases and only
gravitational interactions

I Wigner function:

fW (x,p) =

Z
d3⇠

(⇡~)3 e�2ip⇠/~
h (x + ⇠) ⇤(x � ⇠)i

I use SP equation, expand in ✏:

@tfW + rpH rxfW � rxH rpfW + O(✏2) = St fW

H =
p2

2a2m
+ mhVN i , r

2
hVN i =

4⇡Gm

a

✓Z
d3p fW � n

◆

I scattering integral: St fW ' fW /⌧ ⇠ O(✏3)

use N-body methods



Simula?ons with bosonic dark ma;er
Different scales / physics require different numerical methods. 

1. N-body with modified ini?al condi?ons: 

CDM-like dynamics, linear / weakly nonlinear scales: useful for large-scale structure 
constraints on FDM (Ly alpha forest, reioniza,on, high-z luminosity func,ons etc.) or 
QCD axion miniclusters  

2. Madelung (fluid) formula?on (SPH, PM, or finite volume): 

same as above, includes „quantum pressure“ effects, resolu,on requirements and 
validity unclear 

3. Schrödinger formula?on (finite difference or pseudo-spectral): 

full wave-like dynamics, requires phase resolu,on, can only handle rela,vely small 
boxes, nonlinear scales: useful for isolated halos or small cosmological boxes  

4. Hybrid zoom-in method (N-body on coarse grids, Schrödinger on finest grid): 

dynamics CDM-like on large scales, wave-like on small (nonlinear) scales: useful for 
zoom-in simula,ons in cosmological boxes  



Hybrid N-body / Gaussian Beam Method 
(Schwabe, JN ’22, PRL 128, 181301)

• AGORA proof-of-concept halo (Kim+ ’14) 

•  

•  

• wave func,on reconstructed from par,cle phases at 11th AMR 
level, addi,onal 3 levels using Schrödinger solver 

• effec,ve resolu,on of 20 pc

Mvir = 1.7 × 1011 M⊙ in (60h−1 Mpc)3 box
m = 2.5 × 10−22 eV



I. Ultralight axions
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>  DM from vacuum realignment: 

§  In early universe, axion frozen at ran-
dom initial value 

§  Later, field feels pull of mass to-
wards zero and oscillates around it   

§  Spatially uniform oscillating classical 
field  = coherent state of many, extre-
mely non-relativistic particles = CDM 

>  If PQ symmetry broken during 
inflation and not restored after-
wards (pre-inflationary PQ brea-
king scenario) 

§  Axion CDM density depends on sing-
le initial angle during inflation and 

Axion Cold Dark Matter 

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....] 

[Saikawa]    K. Saikawa

Ultra-light dark matter 7

Fig. 2 In this figure, inspired from (Kuhlen et al. 2012), we show how the dimensionless power spectrum can be probed by many large
scale and small scale observables, which can be seen as a function of the wavenumber k. The solid line shows the linear dimensionless
power spectrum coming from a ⇤CDM universe. To show how the small scales might reveal di↵erent behaviour for di↵erent DM
components, we show the linear power spectrum of warm DM (WDM) with mass of 10 keV (red dotted line), WDM with mass of 4 keV
(green dashed line), and for fuzzy DM with mass 10�22 eV (orange dash-dotted line). The gray dotted horizontal line represents the
limit from linear to non-linear regime, where � ⇠ 1. The power spectrum for ⇤CDM and for WDM were generated using the Boltzmann
code CLASS (Lesgourgues 2011; Lesgourgues and Tram 2011), and for the fuzzy DM using AxionCAMB (Lewis et al. 2000; Hložek et al.
2015)3.

Summary of scales and galaxies4

Galaxy clusters: Largest gravitationally bound systems in the universe, with masses ⇠ 1014 � 1015M�
(equivalent to k ⇠ [1.5 � 6] ⇥ 10�1 Mpc�1), containing hundreds of galaxies, hot gas and mostly DM.

Milky-Way (MW) galaxy: MW is a barred spiral galaxy and part of the Local Group of galaxies with mass
⇠ 1012 M�. It has a stellar disk of approximately 30 kpc in diameter and 0.3 kpc thick, and vvir ⇠ 100 km/s
(virial velocity, defined below), with the halo of the MW being hundreds of kpc in size.

Dwarf galaxies: Dwarf galaxies are low luminosity, small size galaxies, with masses smaller than 109 M�.
Regarding their mass, they can be further divided into: Bright dwarfs (M ⇠ 107�9M�), classical dwarfs
(M ⇠ 105�7 M�), and ultra-faint dwarfs (M ⇠ 102�5 M�). Regarding their characteristics, they can be
divided into ellipticals, spheroidal and irregulars, that contain gas and star formation.

Dwarf Spheroidals (dSphs): Type of dwarf galaxy with a close to spheroidal shape, they have low-
luminosity with a very small quantity of gas and dust, and no recent star formation. They present a
large amount of DM and are usually the satellites.

4 The masses are indicated in terms of the solar mass M� which is equivalent to 2 ⇥ 1030 kg in SI units. Distances are denoted in
parsec (pc), where 1 parsec corresponds to 1 arcsecond of measured parallax, and it corresponds in SI units to 3.1⇥ 1016 m.

Ferreira  ´20



II. (Mostly) QCD axions
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Axion Cold Dark Matter 

>  If Peccei-Quinn symmetry re-
stored after inflation (post-in-
flationary PQ breaking scena-
rio) 

§  Vacuum realignment contribution 
depends on spatially averaged 
initial misalignment angle and 

§  Upper limit on      from requirement 
that realignment contribution 
should not exceed DM abundance 
gives lower limit on axion mass: 

    using lattice result on        ,   

 

 

[Borsanyi et al. `16] 

[Saikawa]    K. Saikawa
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FIG. 2. To illustrate our main point, we sketch the dimensionless power spectrum of dark matter density fluctuations at
matter-radiation equality including the white noise excess and free-streaming cuto↵. For keq < k < kJ(t), after equality this
curve approximately shifts upwards with a

2(t)/a2
eq. Note that kfs(t) ⌧ kJ(t). The orange shaded region is observationally

constrained to be roughly scale-invariant. The orange curve is sketched using m = 10�20 eV and kwn ⇠ 103 Mpc�1– the
suppression of power due to free-streaming for k < kobs ⇠ 10 Mpc�1 makes this spectrum inconsistent with observations. More
generally, for the white noise contribution not to exceed the scale-invariant one at k . kobs, requires kwn & 102

kobs, which
together with kfs & kobs, leads to our lower bound: m & 10�19 eV.

k space where the density perturbations become nonlin-
ear. Furthermore, while not necessary for the follow-
ing sections, a parameterization of kwn ⇠ k⇤ in terms of
the time and lengthscale associated with the production
mechanism, and mass m, is provided in the supplemen-
tary material section (VI A).

The reader who is familiar with the theory of structure
formation might be skeptical about this flat spectrum.
Indeed, it is well known that the stochastic contribution
to the nonlinear P�(t, k) arising from clustering behaves
as k

4 rather than k
0 at low k. This is a consequence of

mass and momentum conservation (see [11], chapter 28).
A white-noise contribution / k

0, would imply that start-
ing from the same initial matter density ⇢̄(t1), a finite-
volume universe could end up with di↵erent final values
of ⇢̄(t2), as a result of random clustering. Of course, this
is impossible. On the other hand, it is perfectly possible
that an initially radiation dominated universe ends up
with di↵erent amounts of matter (i.e. di↵erent Teq) be-
cause of random fluctuations in the dark matter produc-
tion scenario. For instance, there is a finite, though ex-
tremely small, probability that after Peccei-Quinn sym-
metry breaking, everywhere in a finite-volume universe
the axion field finds itself near the bottom of the would
be axion potential.

III. FREE-STREAMING

Now we include adiabatic perturbations. Initially, they
modulate the energy density in ' in the standard way,
leading to the usual adiabatic contribution to the matter
power spectrum at very large scales. At smaller scales,
however, the subsequent evolution is non-standard due
to the sizable momentum ⇠ k⇤ carried by the field fluc-

tuations. The small scale adiabatic perturbations will be
washed out up to a free streaming length. During radi-
ation epoch this length is known to grow logarithmically
after k⇤ < a(t)m [12]

k
⇤
fs(t) =

"Z t
dt

0

a

(k⇤/a)p
k2

⇤/a2 + m2

#�1

⇡
a
2
Hm

k⇤ log
⇣

2am
k⇤

⌘ ,

(3)
where we assume that t . teq. In the supplementary
material section (VI F 2), we will see that the e↵ect can
be approximated (at about 10%) for k  k

⇤
fs as a multi-

plicative correction to the adiabatic transfer function

P
(ad)
� (t, k) ⇡ P⇣(ti, k)T 2
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Z
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k/qfs(t)

�2 (4)

where qfs(t) ⌘

hR
a

�1
dt

0(q/a)/
p

q2/a2 + m2
i�1

. We de-

fine a free-streaming transfer function:

T
2
fs(t, k) ⌘
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⇢̄(t)

Z
d ln q

q
3

2⇡2
P'(t, q)

sin[k/qfs(t)]

k/qfs(t)

�2

,

with T
2
fs(t, khm) = 1/2, (5)

defining the “half max” suppression wavenumber khm.
For q

3
P' sharply peaked at k⇤, we have k

⇤
fs ⇠ khm.

As a conservative choice, we only consider free-streaming
e↵ects up to t = teq.[13]

Famously, fuzzy dark matter has an associated Jeans
scale kJ(t) = a(t)

p
mH(t) above which the growth of

perturbations is suppressed [14]. This enters Tad(t, k),
but it is not so relevant because kfs(t) ⌧ kJ(t).

Amin & Mirbabayi ‘24 

• Post-infla,onary symmetry breaking ( ) is mostly relevant 
for higher m (e.g. QCD axions) to avoid fine-tuning of DM abundance 

• For ULA, observa,on of nearly scale-invariant density perturba,ons  implies 
m > 10-19 eV (Amin & Mirbabayi ’24)

f < Hi ≲ 1014GeV



Ultralight axions (ULA),  „fuzzy dark ma8er“  (FDM) (Hu+ ´00) 
1. Linear effects: suppression of small-scale perturba,ons 

CMB , galaxy clustering, weak lensing (Hlozek+ ’18, Dentler+ ‘22, Rogers+ ’23) 

high-z luminosity func,ons, reioniza,on (Bozek+ ’15, Schive+ ’16, Corasani,+ ’17, Menci+ ’17, Schneider 
’18; Lidz, Hui ’18, Winch+24, Lazare+ ’24, Sipple+ ‘24)  

Lyman-α forest (Iršič+ ’17, Armengaud+ ’17, Rogers+ ’20, Rogers & Poulin ‘23) 

MW satellites (Nadler+ ‘21, Nadler+ ’24)

with the standard ΛCDM prediction over the entire range of
wavenumbers studied here, with an accuracy down to a few
tens of percents.

2. UV LF Data

We use galaxy abundance measurements gathered over the last
decade with the Hubble Space Telescope (HST). In particular, we
will perform our analysis with the data from Oesch et al. (2018)
and Bouwens et al. (2021), who compiled search results from the
Hubble Legacy Fields and Frontier Fields programs to determine
the UV LF over the redshift range z= 4−10. These data are
based on blank- and parallel-field observations, where galaxies
were selected using an object classifier (Bertin & Arnouts 1996),
alongside color criteria requirements in selection techniques
similar to the Lyman-break dropout method (Steidel et al. 1996).
Importantly, galaxies behind lensing clusters were excluded to
avoid systematic errors that may arise during the construction of
lensing models (Bouwens et al. 2017). The data as is do not
account for cosmic variance or the attenuation caused by dust
extinction. In addition, since the UV LF is defined in terms of
number densities, the data are reported within a certain fiducial
cosmology (a flat ΛCDM universe,6 with Hubble parameter
H0= 70 km s−1 Mpc−1 and matter density parameter Ωm=
0.3). We correct the UV LF for all three points using the
methods described in detail in our companion paper (Sabti et al.
2022). In short, we correct for the Alcock–Paczyński effect
(Alcock & Paczynski 1979), use the IRX−β relationship
(Meurer et al. 1999) with the calibration from Overzier et al.
(2011) to compute the dust attenuation, and impose a minimal
error of 20% on each individual data point to account for
cosmic variance.

3. Formalism and Models

In order to translate the UV emission and abundance of high-
redshift galaxies to cosmological parameters, we need to
consider two separate components. The UV LF is defined as

' � q
n
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where the first term (the halo mass function, HMF) mainly
depends on cosmology, whereas the second term (the halo–galaxy
connection, which links the massMh of a DM halo to the absolute
magnitude MUV of the galaxy it hosts) depends on astrophysics.
Here we implicitly assumed that the halo occupation distribution
is unity, i.e., each halo hosts one central galaxy, which is a good
approximation at these high redshifts (Bhowmick et al. 2018).
For the HMF, we make use of the Sheth–Tormen mass

function, given by Sheth & Tormen (2002),
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where Sm is the average comoving matter energy density, TM
2

h

is the variance of the density field smoothed over a mass scale
Mh, AST= 0.3222, aST= 0.707, pST= 0.3, and δST= 1.686.
The mass variance is defined as
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where WMh is a window function, and Tζ and Pζ are the transfer
function and primordial power spectrum of the comoving
curvature perturbation ζ, respectively. Unless otherwise stated,
we use for the window function a spherical top hat in real
space, which in Fourier space reads
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where QS�R M M3 4h h m
1 3( ) [ ( )] is the Lagrangian radius

(also known as the filter scale). This HMF has been tested
against N-body simulations at the redshifts of interest (Lukic
et al. 2007; Schneider 2015), including in a specific study of
UV LFs (Tacchella et al. 2018).
As for the halo–galaxy connection, we use three astro-

physical models to translate Mh into MUV, with differing
assumptions about halo accretion, star-to-halo mass ratios, and
UV emission. These are detailed in our companion paper (Sabti
et al. 2022), where they are shown to produce consistent
cosmological results. Here we will simply summarize our
fiducial model. The star formation rate (SFR) �

*M of high-
redshift galaxies strongly depends on their host halo mass
(Moster et al. 2018; Wechsler & Tinker 2018; Behroozi et al.
2019). In particular, the SFR is expected to peak for galaxies
hosted in halos similar to that of the Milky Way and decrease
for both smaller and bigger galaxies (Sun & Furlanetto 2016).

Figure 1. Illustration of the redshift and wavenumber ranges probed by
different types of observations. These include Milky Way (MW) satellites
(Banik et al. 2021), cosmic shear (Abbott et al. 2022) and luminous red galaxy
(LRG; Chabanier et al. 2019) surveys, CMB (Aghanim et al. 2020a) and CMB
lensing (Abazajian et al. 2016) observations, the Lyα forest (Chabanier
et al. 2019), and (future) 21 cm (Muñoz et al. 2020) data. The blue region
corresponds to our UV LF studies and covers scales and times that are currently
inaccessible with other probes. For reference, the right axis is a rough estimate
of the corresponding halo masses at redshift z = 0, and the region above the
black line indicates the nonlinear regime.

6 Throughout this work, we will fix the total sum of the neutrino masses to
∑mν = 0.06 eV. This choice allows us to make comparisons with other
analyses but has a negligible impact on our results.

2

The Astrophysical Journal Letters, 928:L20 (6pp), 2022 April 1 Sabti, Muñoz, & Blas
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Pure FDM constraints 
FDM Constraints From HFF 11

Figure 6. A selection of constraints on FDM particle mass from various methods and analyses (2� unless otherwise noted).
(1) UVLF: This work (Section 3), (Winch et al. 2024; Corasaniti et al. 2017; Schive et al. 2016), (2) cumulative UVLF: This
work (Section 4), (Ni et al. 2019), (3) Milky Way satellite galaxies: (Schutz 2020; Nadler et al. 2021; Banik et al. 2021), (4)
Lyman-↵ forest: (Iršič et al. 2017; Armengaud et al. 2017; Kobayashi et al. 2017; Rogers & Peiris 2021). See Section 6 or
relevant publications for corresponding assumptions and additional details.

HMF.14 Schive et al. (2016) derive a bound of m22 > 0.9
from Bouwens et al. (2015) cumulative UVLF data in
the field, i.e. they do not consider the lensed faint-end
measurements.
Third, are FDM bounds obtained from the absence of

a cuto↵ in the inferred subhalo mass function. Recent
constraints of of m22 & 20�30 have been obtained from
Milky Way satellite galaxy luminosity functions (Nadler
et al. 2021) or a combination of gaps in stellar streams
and: strong gravitational lensing (Schutz 2020) or satel-
lite galaxy counts (Banik et al. 2021).
Fourth, Lyman-↵ forest analyses, which probe the

matter power spectrum by mapping the neutral hydro-
gen in the intergalactic medium (IGM), have determined
constraints of m22 & 20 (Iršič et al. 2017; Armengaud
et al. 2017; Kobayashi et al. 2017), or more recently
m22 > 200 (Rogers & Peiris 2021). These results are
subject to uncertainties in the thermal state of the IGM
and also to the treatment of fluctuations in the UV radi-
ation background and in the IGM temperature-density
relation, which are challenging to model in full detail
(e.g. McQuinn et al. 2009).
While we believe that this compilation of constraints

from the literature is representative, it is by no means
complete. Given the broad interest in FDM, it is hard
to provide a full summary of the range of techniques
being considered. Additional techniques, left out of Fig-
ure 6 for simplicity, include bounds from the cosmic mi-

14 Earlier results from Menci et al. (2017) found m22 > 8 at 3�,
however they relied on UVLF values from an earlier version of
Livermore et al. (2017), some of which have since been revised
downward (Yung et al. 2018; Ni et al. 2019).

crowave background and large scale structure (Hložek
et al. 2018), black hole superradiance (Stott & Marsh
2018; Davoudiasl & Denton 2019), halo core density pro-
files (Safarzadeh & Spergel 2020), ultra-faint dwarf kine-
matics (Dalal & Kravtsov 2022) and weak gravitational
lensing (Dentler et al. 2022) (see Ferreira (2021) for ad-
ditional examples and discussion).

7. FUTURE JWST UVLF

JWST has already begun to make novel measurements
of high redshift galaxies (Harikane et al. 2023; Bouwens
et al. 2023; Harikane et al. 2024; Donnan et al. 2024).
Interestingly, early results suggest a large population of
UV bright galaxies even at z ⇠ 11 � 16 — exceeding
extrapolations from the lower redshift evolution in the
UVLF and the expectations of many associated mod-
els (Mason et al. 2023; Bouwens et al. 2023; Mirocha
& Furlanetto 2023; Muñoz et al. 2024; Sipple & Lidz
2024). Regardless, further constraints on FDM require
determining the abundance of fainter galaxies (Winch
et al. 2024). Ultimately, robust measurements in JWST
lensing fields (see Fujimoto et al. (2023) for an early ex-
ample), analogous to the HFF lensing fields of HST (Coe
et al. 2015; Lotz et al. 2017; Bouwens et al. 2022b), will
be required to pin down the extreme faint-end.
JWST forecasts (Jaacks et al. 2019; Shen et al. 2023)

predict detection limits in the field of MUV ⇠ �15. As-
suming similar lensing magnification factors to those in
the HFF of ⇠ 100 (Atek et al. 2018; Bouwens et al.
2022b), we expect measurements near MUV ⇠ �10 for
JWST lensing fields. As shown in Figure 5, the ability
to better probe the extreme faint-end of the UVLF may
be more important than going deeper in redshift (con-
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Figure 3. Projected DM density maps at z = 0 for a subset of the high-resolution beyond-CDM simulations of a MW–like system (Halo004).
For each simulation, the visualization is centered on the host halo and spans 1.5 times its virial radius. The half-mode scale is the same for every
model within each column, except for the IDM models in the left column, which correspond to envelope cross sections for mIDM = 10-2 GeV
with n = 2 (third row) and n = 4 (fourth row). The mWDM = 6.5 keV visualization is highlighted as a reference model used throughout the
paper. Note that the mWDM = 10 keV and mFDM,22 = 490 density maps are visually similar to CDM. Visualizations were created using MESHOID

(https://github.com/mikegrudic/meshoid).
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Figure 10. Same as Figure 8, for our FDM SHMF model. In the right panel, FDM SHMF suppression functions are compared to WDM models
with matched half-mode wavenumbers (faint orange lines).

WDM model. Second, many of the envelope IDM models
produce total subhalo abundances comparable to the most
suppressed WDM model we simulate (i.e., mWDM = 3 keV).
These results justify the procedure in Maamari et al. (2021)
to place bounds on the envelope models using the MW satel-
lite population, as they would produce many fewer satellite
galaxies than the limiting mWDM = 6.5 keV WDM model.

The SHMFs in IDM models with the same half-mode
scale as mWDM = 6.5 keV are statistically consistent with the
SHMFs that best fit the WDM simulations, reported in Sec-
tion 5.2. As a result, we expect that upper bounds on the IDM
cross section from the MW satellite population should be
closer to the half-mode than the envelope cross section; this is
further quantified below (see Section 6.4). IDM models yield
slightly higher subhalo abundances than the mWDM = 6.5 keV
model, which indicates that these scenarios are not ruled out
at 95% confidence by the Nadler et al. (2021b) analysis, con-
sistent with the reasoning in Maamari et al. (2021).

To facilitate comparisons between IDM and WDM
SHMFs, we find the value of mWDM that yields a total num-
ber of subhalos with Msub > 1.2 ⇥ 108 M� that most closely
matches the value we measure in IDM, after averaging over
the three host halos in each scenario. Since our simulation
suite only has a limited number of WDM mass benchmarks,
to predict the total subhalo abundance as a function of mWDM,
we apply the WDM SHMF suppression model from Equa-
tion 19, evaluated at the best-fit parameter values from Equa-
tion 24, and modify the total count of subhalos measured in
the CDM simulations accordingly. We match IDM to WDM
based on total subhalo abundance rather than the full SHMF
as a simple first-order comparison relevant for limits based
on total MW satellite abundances. The results of this pro-
cedure are illustrated in Figure 12, and read as follows: for
the n = 2 case (n = 4), WDM scenarios with particle masses
of 7.5 (7.6), 10.4 (9.4), and 6.6 (9.7) keV, match half-mode
IDM scenarios with mIDM = 10-4 GeV, 10-2 GeV, and 1 GeV,
respectively; for the n = 4 case, the same IDM scenarios are

matched by WDM scenarios with particle masses of 7.6, 9.4,
and 9.7 keV, respectively; for the corresponding envelope
models, we obtain 4.1, 2.7, and 2.2 keV for n = 2, and 4.5,
3.5, and 2.8 keV for n = 4.

Several interesting comparisons between IDM models
emerge from Figure 12. In the half-mode panels, the key
takeaway is that all IDM transfer functions yield statisti-
cally indistinguishable subhalo abundances, as shown in Fig-
ure 11. For example, compare the transfer functions for
mIDM = 10-2 GeV and 1 GeV half-mode models with n = 4,
which mainly differ in the height of the first DAO peak. The
similarity of the resulting subhalo abundances implies that
our measurement is not sensitive to the amplitude of the DAO
peak for kpeak & 100 Mpc-1. This wavenumber corresponds
to a mass of ⇡ 5⇥106 M�, well below our resolution limit.

DAOs play a more significant role for our envelope mod-
els because they appear on the scales of resolved halos. For
n = 4, the mIDM = 10-2 GeV case is matched to a less sup-
pressed WDM transfer function than the 1 GeV case, even
though its initial cutoff occurs at smaller wavenumbers (com-
pare the medium vs. dark green lines in the bottom-left panel
of Figure 12). Thus, SHMF suppression is reduced due to
the large DAOs in the mIDM = 10-2 GeV envelope model. A
similar result holds for n = 2 models (compare the medium
vs. dark blue lines in the top-left panel of Figure 12). Note
that the impact of DAOs varies over the range of IDM masses
we study. For example, the mIDM = 10-4 GeV models behave
fairly similarly to WDM because of their small DAOs, al-
though minor differences persist even in these cases because
of the steeper initial cutoffs in these models.

Several previous studies have simulated IDM models with
DAOs, although (to our knowledge) no zoom-in simulations
have been performed with ICs for the DM–baryon scatter-
ing models we consider. In particular, Schewtschenko et al.
(2016) ran simulations with ICs appropriate for DM–photon
scattering; DAOs in the models they simulate are small, with
typical peak heights of O(1%) relative to CDM (also see

Figure 2.13: Halo mass function for FDM computed from di↵erent approaches com-
pared to CDM.

the cumulative number density of halos with M > 106M� at z = 6 for di↵erent FDM

masses computed from the HMF we obtained numerically (soild curve) compared to

the 1 � �, 2 � � and 3 � � regions of the observed cumulative number density from

[3]. We also show the cumulative number density computed from the fitting HMF

by [32] and the ST HMF for FDM. Similar to the previous conclusion, the ST HMF

overestimates the number of halos thus gives a less strong constraint on the FDM

mass. For smaller FDM masses, the cumulative number density we obtain has a

larger deviation from the one obtained by considering the fitting HMF Eq. (2.105).

But for FDM with ma > 5⇥ 10�22eV, our results are very close to the one computed

from Eq. (2.105). Thus we get a similar lower constraint of 7 ⇠ 8 ⇥ 10�22eV on the

FDM mass as in [3].

2.4.2 Validating Merger Trees

To check the consistency of the merger tree algorithm, we run merger trees with 1000

trees per decade in mass for haloes with masses in the range [4⇥ 108, 4⇥ 1013]M� at

z = 0. The mass resolution is set to 2⇥ 108M�.

We compare the HMF obtained by counting the haloes in our merger trees with

the one derived from solving the excursion set problems at di↵erent redshifts. The
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Mixed ULA / CDM constraints (and hints): 
Planck, BOSS, HST UVLFs, Ly-⍺ forest 2

FIG. 1. Constraints on FDM from this study, achieved using UVLFs, the CMB optical depth ⌧ , and the neutral hydrogen
fraction xHI at z=5.9. For comparison, we include constraints from previous studies. In blue, CMB bounds from Planck [7, 19],
with LSS bounds from galaxy clustering combined with Planck (+BOSS) [36]. In orange, bounds from the Ly↵-forest (Ly↵f) [39–
42]. In green, previous bounds from the UV luminosity function and optical depth to reionization (Rei.) [43]. In purple, bounds
from galaxy rotation curves (SPARC) [49]. fFDM = 1 in ruled out by DES for 10�25 eV . mFDM . 10�23 eV [50]. In grey,
bounds from the M87 black hole spin, derived from the non-observation of superradiance [51–53]. In brown, bounds from the
half-light radius of the central star cluster in the dwarf galaxy Eridanus-II [54]. New constraints using UVLFs + ⌧ + xHI is
shown in maroon, and the turquoise dashed line is a forecast for bounds that can be derived from future 21cm power spectrum
observations. The last two are the main results of this work. All the bounds presented here are with 95% confidence level.

pipeline, realizations of the observables under examina-
tion are generated at each step, according to the likeli-
hood of the former step. A consistent calculation of the
21cm signal, the neutral hydrogen fraction at the EoR,
and the CMB optical depth to reionization, requires sim-
ulating the evolution of the Universe from the dark ages
to the EoR [61–78], which can be computationally ex-
pensive (although estimates can be achieved using fast
analytical prescriptions [75]). Such simulations can take
O(1 hour) even for fast semi-numerical codes such as the
public 21cmFAST [79] and 21cmFirstCLASS [48] codes.

Calculating the UVLFs at various redshifts can be
done in O(1 sec) when assuming a ⇤CDM cosmology,
but when probing axion cosmology, the calculation of
the matter transfer function has to be done for each
set of cosmological+FDM parameters, which can take
O(1minute) when small scales (k > 10Mpc) are consid-
ered, using a Boltzmann solver such as AxiCLASS [19].
The consequences of sequentially generating realizations
for the observables we examine via this method is that
a traditional Markov Chain Monte Carlo (MCMC) infer-
ence can take a significant amount of time to converge.

For that reason we have developed a machine-learning
(ML) based pipeline that can overcome this obstacle. ML
techniques have emerged as powerful tools for emulating
the EoR and cosmic dawn observables [80–88]. Train-
ing, validating and testing a ML model requires to pre-
compute a large set of simulations, but once those are
in hand it is possible to generate fast and accurate em-
ulators that given a set of cosmological and astrophysi-

cal parameters can e�ciently predict the observables the
model was trained on. In this work we have generated
a combined emulator for all of the above-mentioned ob-
servables, and used it to evaluate the constrains they can
impose on FDM (and the FDM window in particular).
While we were finalizing a draft to summarize our re-

sults, Ref. [47] came out, where UVLFs were also used
to derive bounds on FDM. In order to be able to directly
compare and discuss the di↵erences between our work
and that of Ref. [47] (see Section V), we carefully revised
our analysis to minimize the di↵erences in the assump-
tions taken in both modeling and data selection. The
consistency between our findings is encouraging given
the very di↵erent analysis methods adopted. Using ad-
ditional datasets, namely the neutral hydrogen fraction
and the CMB optical depth, the constraints we derive
here are stronger than those reported in Ref. [47].
Our paper is organized as follows. In Section II we de-

scribe the computation of the di↵erent observables used
in this work, and demonstrate the impact of FDM on each
of them. In Section III we describe the artificial neural
network architecture our emulator is based on, explain
how the training, validation and testing sets were built,
and show the emulator performance for each of the out-
puts. Section IV describes the details of our Bayesian in-
ference scheme, presents the bounds on FDM we derived
using current UVLFs, ⌧e and xHI data, and conducts a
forecast for constraints that can be achieved from future
21cm power spectra measurements. In Section V we dis-
cuss our results and compare them to other works.

Winch+  ´24

Lazare+  ´24
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FIG. 13. The discrepancy between the data and the best fit
model with varying fFDM, per z, averaged over the magnitude
bins, for mFDM = 10�24 eV. The di↵erence is presented in
units of the standard deviation of the HST measurements.

ables used in Ref. [47] are the CMB temperature power
spectrum and the HST UV luminosity functions. Here we
do not use the CMB temperature power spectrum likeli-
hood, but the prior range of the cosmological parameters
is taken to be the 2� limits from Planck [90], which has
similar impact. In both inferences the main driver of
the constrains are the UVLFs. A significant di↵erence
between the studies is that we use an emulator instead
of the direct approach used in Ref. [47]. The emulator
pipeline can introduce small accuracy errors to the infer-
ence, but those are shadowed by the advantages of this
method. First, the ANN-based MCMC is significantly
accelerated with respect to a computation-based one.
This makes our pipeline robust, and drastically simplifies
accounting for di↵erent, more complicated cosmological
models. Furthermore, it enables to take into account in
greater detail the observables a↵ected by astrophysics,
such as the 21cm power spectrum, the optical depth to
reionization and the neutral hydrogen fraction. This is
important since those are impacted by the SFR, which is
also constrained by the UVLFs. It is crucial to check that
the SFR model and parameters that fit the HST UVLFs,
do not contradict the other observations, and this can be
done easily using an emulator-based MCMC. Our work
also forecasts bounds that can be derived using future
detections of the 21cm signal, e.g. by HERA. This is pos-
sible thanks to the emulator-based approach, since a di-
rect computation of the 21cm power spectrum can take
up to O(1 hour), which leads to weeks-to-months–long
runtime for MCMC analyses. Ref. [47] also examined
the impact of UVLFs from JWST. It showed that JWST
detections are not yet significant enough to overcome the
constraining power of HST. Another di↵erence between
our work and Ref. [47], is that we chose to set a constant
value for some of the astrophysical parameters varied in
Ref. [47]. The reason for that is that training an emu-

lator on a high-dimensional parameter space requires a
large amount of training samples, and each added param-
eter contributes exponentially to the number of samples
needed for an adequate accuracy. The parameters we de-
cided to keep constant (see Section III) have the smallest
impact on the luminosity function form, and their influ-
ence can be partially compensated by other parameters.
Nevertheless this can source some of the di↵erences be-
tween our results and that of Ref. [47] (see Appendix A).
Overall, our results and those published in Ref. [47]

agree that FDM is strongly constrained by the HST
UVLFs, although there is some di↵erence in the allowed
fraction of FDM for each axion mass. Fig. 13 shows the
discrepancy between the data and our best fit model,
with di↵erent values of FDM fraction averaged overMUV,
for mFDM = 10�24 eV. While considering this plot, one
must take into account that at redshifts z = 9, 10, there
are much fewer datapoints than in the later redshifts.
With this in mind, one can intuit why our inference pro-
hibits fFDM & 0.05 for mFDM = 10�24 eV. While for
z = 4, 5, fFDM = 0.05 is slightly more likely, for z = 6, 7, 8
the di↵erence between the models fit to the data exceeds
1�. This will result in a strong favoring of smaller FDM
fractions, which provides a visual justification for the
results presented in Table II, and further validates our
pipeline and conclusions. Based on our findings, it seems
safe to conclude that FDM cannot make up more than
⇠10% of DM for any axion mass smaller than 10�23 eV.
Lastly, in Fig. 14 we plot our final constraints alongside

the preferred region found in a joint analysis of CMB and
Ly↵-forest measurements using data from the Extended
Baryon Oscillation Spectroscopic Survey (eBOSS [139]),
which found that a non-zero fraction of axion FDM in
the 10�26 eV.mFDM.10�23 eV mass window can ame-
liorate the S8 tension (see Ref. [140]). Most of this region
remains allowed by our limits. Future UVLF and 21cm
data should allow to fully test this hypothesis.

FIG. 14. 95% c.l. constraints from this work alongside
the highest preference region for axion FDM reported in
Ref. [140], which used Planck CMB and eBOSS Ly↵-forest
data. Our constraints start to push into this preferred region.

3

Figure 2. The approximate range of wavenumbers k and redshifts z

probed by various astrophysical measurements capable of constrain-
ing axions and the nature of DM. Hubble and James Webb Space
Telescope (JWST) measurements of the UVLF probe a unique range
of small scales and high redshifts that are currently inaccessible oth-
erwise.

z. This function depends on the astrophysical model of star
formation within the galaxy which contributes to the UV lu-
minosity through the number of bright young stars, as well
as depending on the halo mass function (HMF), which de-
scribes the number density of halos of a given mass. Since
the de Broglie wavelength of ultralight axions prevents them
from clustering into halos below a certain scale, this will im-
pact the HMF, which will in turn impact the UVLF (Bozek
et al. 2015; Schive et al. 2016; Corasaniti et al. 2017). Thus,
the UVLF has the potential to probe axion physics on small
scales, beyond the reach of more established large-scale
structure observations. We use the UVLF likelihood package
GALLUMI (Sabti et al. 2022a), which computes the UVLF
using the formalism we describe in Sections 2 and 3. Sabti
et al. (2022a,b) already demonstrated the power of the high-
z UVLF in testing the standard cosmological model. We
present here the first use of this modeling of the UVLF in test-
ing a concrete example of beyond Standard Model physics.

Previous studies constraining axions with the UVLF in-
clude Bozek et al. (2015); Schive et al. (2016); Corasaniti
et al. (2017). Schive et al. (2016); Corasaniti et al. (2017) use
N -body simulations to compute the observables and were
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Figure 3. 2� constraints on axion mass and DM fraction from
cosmological probes (astrophysical constraints are neglected due to
their complex dependence on soliton modeling). The right shaded
region represents constraints using the Lyman-↵ forest computed in
Kobayashi et al. (2017), with data from the XQ-100 survey (López
et al. 2016) and the MIKE and HIRES spectrographs, which only
considered axions down to a mass of 10�23 eV. The left shaded
region represents joint constraints from Planck CMB and BOSS
galaxy clustering, as computed in Rogers et al. (2023). This work
(in red, also shown in Fig. 13) crucially fills a gap between these two
other methods. The gold contours represent the reported preference
for axion DM presented in Rogers & Poulin (2023), computed using
both Planck CMB and eBOSS Ly-↵ forest data, which is consistent
with our UVLF limits.

therefore unable to perform a detailed statistical analysis be-
ing limited by the number of simulations they could calcu-
late. Bozek et al. (2015) use similar semi-analytic methods
to those we use here, but did not perform a full statistical
analysis of constraints on mass and fraction. These previous
works find consistent results with one another, validating the
semi-analytic methods. In the present work, we perform, for
the first time, a complete statistical analysis combining CMB
and UVLF data (see Fig. 3 for a summary of our main result).

The HST has observed over 24,000 UV sources between
different surveys at redshifts 4  z  10 (Bouwens et al.
2021, 2022). These UVLF measurements have recently
been augmented by groundbreaking new results from JWST,
which can observe UV sources at much higher redshifts, up
to z ⇠ 16 (Bisigello et al. 2016; Harikane et al. 2024). We
find that while the JWST data do constrain the axion fraction
on their own, the quality of the HST data still provides tighter
constraints on axion physics.

 for 

 

fULA < 0.22…0.04
−26 < log(m) < − 23

 for 

 

fULA < 0.16…0.01
−26 < log(m) < − 23Rogers & Poulin  ´24
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Eri II: A Fossil from Reionization 3

Figure 1. ACS color image of Eri II. Since we only have data in two filters, the F606W image is used for the blue channel, the F814W
image is used for the red channel, and the green channel is the average of the two. The ACS field of view subtends approximately the
half-light radius of Eri II, so the galaxy itself is not visually obvious in the image even though essentially all stars detected in the field are
Eri II members. The cluster is visible as a much denser concentration of stars slightly below and to the left of center, and is highlighted in
a 2800 ⇥ 2800 inset. At the distance of Eri II (Section 3.1), 10 corresponds to 99 pc.

by Garofalo et al. (in prep.).
To characterize the photometric uncertainties and

completeness as a function of color and magnitude, over
5 ⇥ 106 artificial stars were blindly inserted and recov-
ered from the images, adding small numbers of stars at a
time to avoid significantly a↵ecting the stellar crowding,
and including the e↵ects of charge transfer ine�ciency
on the recovered S/N. The 90% completeness limits are
m606 = 28.70 and m814 = 29.15, and 50% completeness
is reached at m606 = 29.36 and m814 = 29.74.
We used the brightest stars in the field (m606 < 21.5)

to place the HST astrometry in the reference frame of
the second data release (DR2; Gaia Collaboration et al.
2018; Lindegren et al. 2018) of the Gaia mission (Gaia
Collaboration et al. 2016). Based on the positions of 29
stars with both HST and Gaia positions, the native HST

astrometry was o↵set from the Gaia coordinates by 0.0048.
After correcting this o↵set, the HST coordinates of the
bright stars agree with the Gaia measurements with a
standard deviation of 0.0002. All coordinates given in this
paper have been shifted to the Gaia frame.

3. THE STAR FORMATION HISTORY OF ERI II

3.1. Metallicity Distribution, Distance, and Reddening

In order to provide a zero point for comparing theoret-
ical isochrones to the observed color-magnitude diagram,
the metallicity of Eri II stars, the distance to the galaxy,
and the reddening along the line of sight must be deter-
mined first.
Li et al. (2017) measured the metallicities of 16 stars

in Eri II based on spectroscopy of the Ca triplet absorp-
tion lines. We used those metallicities to construct a
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described by the core radius, rc, and has a flat central
density, @r⇢|0 = 0. The soliton mass within the core ra-
dius is observed to follow a scaling relation with the host
halo mass, which at redshift z = 0 is given by [32, 33]:

Msol =
M0

4

✓
Mh

M0

◆1/3

, (2)

where the scale M0 ⇡ 4.4 ⇥ 107m�3/2
22

M� is approxi-
mately the Jeans mass. The relation Eq. (2) can be used
to fix rc in terms of Mh:

rc = 740
⇣

ma

10�21 eV

⌘�1
✓

Mh

107M�

◆�1/3

pc . (3)

The core-halo mass relation constrains FDM based on
galactic rotation curve observations [34].
The central soliton has some favourable consequences,

e.g. its stabilising e↵ect on the cold clump in Ursa Mi-
nor [35], a possible explanation for cored density profiles
in dSphs [27, 36–38] and UFDs [39], help alleviating the
“too big to fail” problem [6, 40], and an explanation for
excess mass in the centre of the MW [41]These observa-
tions, as well as other hints from the small-scale struc-
ture of DM [6, 8, 42], point to a preferred FDM mass
m22 = O(few).
Eridanus II (Eri II) is a UFD with a centrally located

star cluster [10, 43]. Eri II is located at a distance of 370
kpc from the centre of the MW. The mass within the half-
light radius is estimated as MEII = 1.2+0.4

�0.3⇥ 107 M�, 1D

velocity dispersion �v = 6.9+1.2
�0.9 km s�1, and central DM

density ⇢DM = 0.15M� pc�3. The central star cluster
has a half light radius rh = 13 pc, age TEII = 3 ! 12 Gyr
and mass M? = 2000M�. These values have been shown
to be consistent with the expected dynamical evolution
in the presence of a DM core, disfavouring a cuspy DM
profile [44].
We can use these basic properties of Eri II to assess the

relevant FDM scales. The total number of MW subhalos
in the 2� range around MEII (Mlow = 4⇥106M�, Mup =
2⇥ 107M�) is

nEII(ma) =

Z Mup

Mlow

d lnM
dnsub(ma)

d lnM
, (4)

where dnsub/d lnM is the subhalo mass function (see
Fig. 1). We estimate the FDM subhalo mass func-
tion with the fits of Ref. [45], which uses the methods
of Refs. [6, 8, 46, 47] applied to merger trees, and in-
cludes a model for tidal stripping [48]. The exclusion
on ma implied by the existence of Eri II is found by
setting nEII(ma) = 1, and gives the approximate bound
ma & 8⇥10�22 eV if FDM is all of the DM. As a compar-
ison we also test the subhalo mass function of Refs. [49–
51] computed using the sharp-k filtering method [49].
The sharp-k filtering model does not include stripping,
and should be compared to the pre-infall mass of Eri II,
5 ⇥ 108M� [44]. The two models give comparable con-
straints on the FDM mass. When ma = 10�21 eV Eri-II
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FIG. 1. Number of subhalos in the range of the mass of
Eri II as a function of FDM mass ma. Solid: from merger
trees with modified barrier (with tidal stripping: present day
half-light mass); dashed: sharp-k filter (no tidal stripping:
estimated pre-infall mass). We demand FDM produce at least
one subhalo (black horizontal line). The horizontal red line
shows the CDM prediction with tidal stripping.

is a single core remnant (see also Ref. [52]). For larger
values of ma, Eri II will have a granular outer halo in
addition to the core.
The stability of the star cluster in Eri II can be taken

to imply the existence of a DM core with radius rc �

rh. Assuming that the total mass of Eri II is given by
MEII, using Eq. (3) with Mh = MEII we can fix rc = rh

and solve for ma to find the highest possible FDM mass
consistent with the star cluster residing within the soliton
core, giving ma ⇡ 10�19 eV. For ma . 10�20 eV the Eri
II star cluster is guaranteed to be inside the soliton core.
For 10�20 eV . ma . 10�19 eV it is possible for the star
cluster to lie either inside or outside the soliton within the
(aproximate) observational uncertainty on the location of
the star cluster.
Di↵usion Approximation: Star Cluster Heating Small

fluctuations of the gravitational potential averaged over
the orbital period increase the energy of stellar orbits
(gravitational heating) [53]. This e↵ect can be computed
in the di↵usion approximation provided that the stellar
orbital period, ⌧orb, is long compared to the timescale of
the fluctuations which, in the core, is set by the period
of stochastic oscillations ⌧osc. The typical oscillation fre-
quency is ! = ma�

2

3D, with �3D =
p
3�1D. Taking the

stellar period to be the Keplerian period we find:

⌧orb

⌧osc
⇠

ma

10�21 eV
. (5)

We relate the spatial and temporal fluctuations with the
dispersion velocity v of the dark matter as r = vt. We
neglect the intrinsic relaxation caused by the cluster stars
to obtain an upper limit on the allowed amplitude of
dark matter fluctuations. Two-body relaxation by cluster



Mhalo ¼ maxr

!
V2
obsðrÞr
G

"
; ð14Þ

where Vobs is the observed rotation velocity and the
maximization is carried with respect to all radius bins.
In Fig. 5, we show a scatter plot of the Msol=MSH bound

versus Mhalo, obtained for three representative values of m.
For clarity, we truncate the y axis at Msol=MSH ≤ 1;
namely, we show only those systems which place an
informative limit on ULDM. We can see that more massive
galaxies place the most important constraints for small
values of m (blue dots corresponding to m ¼ 10−24 eV),
while lower mass galaxies are most important at larger m
(orange þ and green × corresponding to m ¼ 10−22 eV
and m ¼ 10−20 eV, respectively). The main reason for this
is simply the data coverage of different types of galaxies in
the sample: The data for massive galaxies often extend out
to many kiloparsecs, allowing one to probe the slow-rising
soliton profiles of low-m ULDM, but is not well resolved at
small r ≪ 1 kpc and, thus, cannot constrain the abrupt
feature induced by large-m ULDM. Low mass galaxies
have the opposite trend.

5. Statistical significance

Figure 6 compares the 3σ, 5σ, and 10σ constraints
obtained by combining the data from all of the SPARC
galaxies. At large m≳ 10−21 eV, the difference between
the 3σ and 10σ excluded regions, in terms of Msol=MSH or
m, is roughly a factor of 2.

III. CONSTRAINING THE ULDM FRACTION

The constraints we derived in Sec. II B on Msol=MSH
versus m were purely observational: We simply looked in
the data for the imprint of the soliton core and constrained
its possible amplitude. The role of the theoretical quantity
MSH in that exercise was simply to provide a convenient
reference point, so that results from different galaxies could
be analyzed in conjunction. In the current section, our goal
is to turn these observational limits into constraints on the

fraction f of the total DM, which could be supplied by
ULDM. To do this, we need to understand under what
conditions the soliton-halo relationMsol ≈MSH is expected
to hold in reality.
An irreducible channel for the formation of soliton cores

is via gravitational dynamical relaxation [28,42,50] acting
on an initially incoherent ensemble of ULDM waves.6 The
dynamical relaxation time for ULDM in a system with
ULDM density ρ and one-dimensional velocity dispersion
σ is [28,42,50]

τ ¼ b
ffiffiffi
2

p

12π3
m3σ6

G2ρ2 lnðmσRÞ

≈ 10 Myr
!

m
10−22 eV

"
3
!

σ
50 km

s

"
6

×
!0.1 M⊙

pc3

ρ

"2!
3

lnΛ

"
: ð15Þ

The numerical factor b ≈ 0.7 is calibrated by numerical
simulations [42] (see also [45–47]). We estimate the
Coulomb log as lnΛ ¼ ln ðmσRÞ, where R is the character-
istic radius of the system. Note that Eq. (15) is expected to
become inaccurate for lnΛ≲ 1.
Equation (15) shows that, over wide regions in the

density profile of typical galaxies (specifically, typical
SPARC galaxies referred to later on in this work), τ can
become much shorter than the age of the galaxy.
The relaxation time becomes longer if ULDM comprises

only a fraction f < 1 of the total density ρ; in that case, we

FIG. 5. Scatter plot of the Msol=MSH bound versus halo mass
(inferred from the rotation curve; see the text), for all galaxies in
the sample, specified at three reference values of m: 10−24 (blue
dot), 10−22 (orange þ), and 10−20 eV (green ×).

FIG. 6. Combined 3σ, 5σ, and 10σ constraints on the soliton-
halo relation. The axes are the same as Fig. 1.

6Dynamical relaxation starting from a stochastic initial state is
not necessarily the only channel to form solitons. In principle, a
coherent soliton core could exist in halo centers from the early
structure formation stage.
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Nonlinear constraints (halo profiles, substructure, hea?ng)

• VLBI jet lensing (Powell+ ‘23):  
m > 4.4 x 10-21 eV 

• UFD stellar velocity dispersion heated by wave granules (Dalal & Kravtsov ’22): 
m > 3 x 10-19 eV 

• SPARC rota,on curves with central solitons (Bar+ ’22) 

• Leo II satellite stellar kinema,cs (Zimmermann+ ’24) :  

m > 2.2 x 10-21 eV

excluded
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ing in the FDM halos for 10 Gyr using the method
of Ref. [21], with mean density profiles that follow the
NFW profile with a given normalization treated as a nui-
sance parameter, and with stars initialized using isotropic
Maxwellian velocity distributions that satisfy the Jeans
equation. We derive bounds on the FDM mass by
marginalizing over the nuisance parameters: the halo
mass (v1/2, circular velocity within the stellar half-light
radius) and the stellar size parameter r0, using a suite of
simulations that span the parameter space relevant for
the Segue 1 and Segue 2 galaxies used in our constraint.

Figure 2 shows examples of how the stellar distribu-
tion evolves over time in these simulations. The velocity
dispersion and half-light radius grow steadily over time,
depending on the mFDM value. For some values, the
heating rate is so strong that the evolved dispersion is
inconsistent with observed kinematics, regardless of the
assumed initial velocity dispersion.

III. ANALYSIS

Using this suite of simulations, we constrain the FDM
mass using simulation-based Bayesian inference. For
each simulation, we first measure the line-of-sight ve-
locity distribution of the test particles as a function of
projected radius, psim(vr|r) by using 500 random projec-
tions of a given simulation snapshot and approximating
the resulting mean distribution by a 2D spline. We then
use the likelihood to observe velocities {vi} for stars at
projected radii {ri}

pvel =
Y

i

Z
dvi psim(vi|ri) pobs,i(vi), (2)

where pobs,i(vi) is a Gaussian of mean and width given
by the observed values reported by Refs. [31, 32], and the
index i runs over all the observed stars for a given galaxy.

Note that the conditional PDF of the velocity,
psim(v|r) = psim(v, r)/psim(r), is undefined at locations
where no test particles are found, which can be an issue
for very small initial r0. Since we do not know the spa-
tial dependence of the selection function of spectroscopic
targets, we use only the line-of-sight velocity measure-
ments in constructing the likelihood, i.e. we do not also
model the likelihood to observe a star at radius ri, which
in principle is another prediction of each model.

Instead of modeling the locations of the stars, we eval-
uate the likelihood for the observed half-light radius to
agree with the half-light radius found in each simulation,

psize =
1p

2⇡�1/2

exp

"
�

(R1/2,sim � R1/2,obs)
2

2�2
1/2

#
, (3)

where R1/2,obs and �1/2 are the observed value and er-
ror of the projected 2D half-light radius. We define the
likelihood of each model as the product

ptot(model) = pvel ⇥ psize. (4)
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FIG. 2. Evolution of galaxy properties in response to FDM
heating. In both panels, the 4 curves correspond to two dif-
ferent FDM masses and two di↵erent initial r0, for host halo
with v1/2 = 3 km/s. The upper panel shows growth in the
projected half-light radius over time, while the bottom panel
shows the growth in the velocity dispersion for stars within
3D radius r = 100 pc. For comparison, the grey bands indi-
cate the observed 68% and 95% confidence regions estimated
in observations for these quantities.

We evaluate ptot for each model, where the model pa-
rameters consist of the FDM mass mFDM, the host halo
maximal circular velocity vmax, the circular velocity at
the observed half-light radius v1/2, and the initial scale
length r0 of the test particles. Our simulations find that,
at fixed v1/2, the posterior ptot in Eqn. (4) is nearly inde-

observed

observed

2

this leads to m & 2⇥10�23 eV. This is at the same order
of magnitude as the commonly assumed lower limit on
the DM particle mass: the ‘folk limit’ referred to in the
abstract. In the rest of this Letter, we work to derive
a more rigorous limit, which will turn out to be two or-
ders of magnitude stronger. In particular, we strengthen
the limit to m > 2.2 ⇥ 10�21 eV (CL > 95%). Of course,
there are a number of other relevant limits on ultra-light
dark matter candidates, see in particular Refs. [19–21].
Such limits, however, depend on details of cosmology,
non-linear gas physics, and/or long-time dynamics, all of
which our limit is independent of. We postpone a de-
tailed comparison and discussion to the end of this work.

Our rigorous analysis is composed of two steps: Start-
ing from the assumption of a stationary and spherically
symmetric galaxy, we reconstruct an ensemble of 5000
DM wave functions for Leo II as an exhaustive expan-
sion in DM energy eigenstates, using as input an ensem-
ble of reconstructions of the gravitational potential. We
then compare our wave functions to an, e↵ectively model-
agnostic, reconstruction of the density profile derived
from stellar kinematical data and vary the boson mass
m until both ensembles are statistically indistinguishable.
We formalise this idea as a non-parametric, two-sample
hypothesis test based on the fused maximum mean dis-
crepancy [22, 23] for functional data [24]. The analy-
sis relies on jaxsp, our di↵erentiable and scalable wave
function reconstruction tool based on a semi-analytical
treatment of Schrödinger’s equation. We describe jaxsp
in our companion paper [25] (in prep.).

Leo II dSph data. To carry out the wavefunction fit,
we require robust data-driven reconstructions of the DM
density profiles within dwarf galaxies. Specifically, we
need a statistical ensemble of spherically symmetric DM
density profiles ⇢(r) that are consistent with the photo-
metric and kinematical measurements of the stellar tracer
population in Leo II [15]. For this we use gravsphere
[16, 17, 26, 27], a Markov-Chain-Monte-Carlo sampler
that infers realisations of ⇢ by solving the spherical Jeans
equation [18, 28, 29]. To mitigate the well-known degen-
eracy between the halo density and the stellar velocity
anisotropy inherent to Jeans modelling [30–33], grav-
sphere incorporates higher order velocity moments, so
called virial shape parameters [30, 34], into its likeli-
hood. The results of this analysis are posterior parameter
samples for the highly flexible, coreNFWtides-density
model, ⇢cNFWt. This density model augments the canon-
ical NFW profile [35] with four additional parameters.
At small radii, a ‘coredness’ parameter, 0  n  1, and
core radius rc permit us to interpolate between a perfect
core ⇢(r ⌧ rc) ⇠ ⇢0 or cusp ⇢(r ⌧ rc) ⇠ r

�1. At large
radii, the introduction of a tidal radius rt and power law
decay ⇢(r � rt) ⇠ r

�� allow for an e↵ective model of
tidal forces stripping peripheral mass away, if a larger
host halo is present.

.

FIG. 1. Direct comparison of di↵erent density ensembles for
the Milky way dwarf Leo II. Black curves depict density sam-
ples generated by the Jeans code gravsphere and act as
data-driven input set X to our analysis pipeline. The pipeline
output is a population Ym22 of reconstructed DM wave func-
tions densities h| |2i at boson mass m = m22 ⇥ 10�22eV
(red/blue curves). Higher mass eigenstates enjoy a stronger
spatial localisation, and are therefore able to resolve more
structure of a cuspy input density at small radii. Testing this
small scale discrepancy in the validity region of gravsphere
(orange sector) at the population level, cf. Fig. 3, summarises
the key idea behind our lower mass limit.

Our choice of Leo II was motivated by its ability to
set a strong limit due to its steep inner profile, and its
statistically robust description as a static [36, 37], spheri-
cally symmetric distribution [37–40] with a well measured
cusp. Draco is another possible candidate object [41],
however, it is computationally more challenging with our
method [25]. We have explicitly checked in a pared-down
analysis that Draco gives a consistent limit with Leo II.

Fig. 1 displays the 5000 posterior samples for Leo II
(black lines) that we use in our analysis. Note that
Collins et al. [17] also validate gravsphere’s mass mod-
elling on the spherical mock data described in Ref. [42]2

and find it to recover the true density within the 95%
confidence interval of the density samples over the radial
range 0.25  r/r1/2  4 (orange sector in Fig. 1) around
the half-light radius r1/2 even if only O(100) tracers are
available. We adopt this radial range for our analysis.

Self-consistent Reconstruction of the DM wave

function. In the non-relativistic limit, the dynamics of
spin zero, bosonic DM with m ⌧ O(10) eV are described
by a complex scalar  (x, t) that obeys the Schrödinger-
Poisson (SP) equation [43] and sources its gravitational
potential V via the DM density ⇢(x, t) = | (x, t)|2. As-

2
Also available as part of the Gaia Challenge
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing effect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2i = oj
p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the effects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by diffuse low-mass haloes would already be accounted
for in the smooth model. The practical effects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc

MNRAS 000, 1–5 (2023)



BH superradiance, pulsar ?ming

2.9 × 10−21 < μS < 4.6 × 10−21 eV; ð10Þ

8.5 × 10−22 < μV < 4.6 × 10−21 eV; ð11Þ

as shown in Fig. 1, which also includes the constraint from
the lighter Ark 120 with MBH ¼ ð0.150$ 0.019Þ ×
109 M⊙ and a% ¼ 0.64þ0.19

−0.11 [18,34–36]. For the timescale
of Ark 120 we have conservatively taken τBH ¼
τSalpeter=10 ¼ 4.5 × 106 yr, as in Ref. [18]. The mass
measurement of Ark 120 comes from reverberation meth-
ods [36] and the spin determination comes from x-ray data
[34]. For larger boson masses, there is fairly continuous
coverage from OðfewÞ × 10−20 eV to OðfewÞ × 10−17 eV
from SMBH observations with just a small gap at
OðfewÞ × 10−19 eV. Then there is large gap up to
OðfewÞ × 10−14 eV at which point stellar mass BHs
provide constraints up to ∼10−11 eV. It is interesting to
note that this is the largest black hole for which we have a
spin measurement [34,37,38], which means that M87% has
the most angular momentum of any measured single object.

We also explored the effect of the spin measurement of
M87% on the constraint, as shown in Fig. 2. A constraint on
vector bosons exists for any ja%j > 0.2 which overlaps with
the fuzzy DM range. A constraint on scalar bosons only
exists for ja%j > 0.55, none of which probes the fuzzy
DM range.
Outlook.—With additional analyses and observations,

the spin of M87% will become more precisely determined. If
the spin is determined to be larger than assumed here, the
constraints on ultralight bosons will become stronger.
The largest SMBHs are more than an order of magnitude

more massive than M87%, but are significantly farther away,
making them difficult targets for the EHT or other probes
that could provide good spin measurements [39]. Still, this
means that it is, in principle, possible to probe the entire
fuzzy DM parameter spin using this technique, depending
on the spins of the largest SMBHs.
Lyman-α forest measurements and observations of the

heating of the core of star clusters provide separate
constraints on fuzzy DM that disfavor most of the param-
eter space, leaving a possible opening around ≳10−21 eV
[40–42]. We note that this region is now constrained
by M87%.
Conclusions.—The Event Horizon Telescope has pro-

vided the first direct image of a BH.We have shown that the
information gained from this observation can be used to
place constraints on particle physics, specifically ultralight
bosons via the mechanism of superradiance. Superradiance
leads to a large extraction of energy from a rotating BH and
any determination of a BH’s spin could place a constraint
on the presence of ultralight bosons. The measurement of
M87% provides constraints on both vector and scalar bosons
(as well as axial-vector and psuedoscalars such as axions),
and in the vector case constrains some of the fuzzy dark
matter parameter space. Future observations of M87% ’s spin
can pin down the exact constraint and, in principle, future
spin measurements of SMBHs could possibly cover the
entire fuzzy dark matter parameter space.
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FIG. 1. Regions of parameter space constrained by observations of SMBHs. The orange (blue) region is ruled out for vector (scalar)
bosons by M87%. Note that the constraints apply to both parity even and parity odd particles. Each constraint is derived using the 1σ
conservative values for the mass and spin, and the shaded band on the left of each region represents the size of the theoretical uncertainty.
The green region is the constraint on vector bosons from Ark 120 [18], which cannot constrain scalars. The region preferred by fuzzy
DM (FDM) is shown in gray.

FIG. 2. The constraints on light bosons as a function of the spin
of M87%. The region constrained for scalar bosons (blue) is also
constrained for vector bosons (orange). The characteristic fuzzy
DM range is shown in gray, and the 1σ inference region of the
spin is shown in khaki [33].
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TABLE I: Parameters employed for the search along with their respective priors. In the correlated limit, the
parameters �̂2

E, �̂
2
P are accounted for by a redefinition of  c, while in the pulsar-correlated regime �̂2

E = �̂2
P = �̂2 is a

free parameter.

Parameter Description Prior Occurrence

White Noise
�
� = E2

f �
2

TOA + E2

q

�

Ef EFAC per receiver-backend system Uniform [0, 10] 1 per pulsar

Eq EQUAD per receiver-backend system Log10-Uniform [�10,�5] 1 per pulsar

Red Noise

Ared Red noise power-law amplitude Log10-Uniform [�20,�6] 1 per pulsar

�red Red noise power-law spectral index Uniform [0, 10] 1 per pulsar

ULDM

 c ULDM signal amplitude Log
10
-Uniform [�20,�12] 1 per PTA

m� [eV] ULDM mass Log10-Uniform [�24,�22] 1 per PTA

�̂2

E Earth factor e�x 1 per PTA

�̂2

P Pulsar factor e�x 1 per pulsar

�E Earth signal phase Uniform [0, 2⇡] 1 per PTA

�P Pulsar signal phase Uniform [0, 2⇡] 1 per pulsar

Common spatially Uncorrelated Red Noise (CURN)

AGWB Common process strain amplitude Log10-Uniform [�20,�6] 1 per PTA
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FIG. 1: Upper limits on ULDM, and namely on the dimensionless amplitude ( c, left panel) and the ULDM
fraction of the local DM density ⇢DM = 0.4GeV/cm3 (⇢�/⇢DM, right panel), at 95% credibility. The bottom

horizontal axes show the ULDM particle mass, whereas the top horizontal axes show the equivalent oscillation
frequency of the scalar field. The upper limits from previous searches [38, 39] are shown for comparison. As a
reference, we highlight the frequency T�1

obs. In the right panel, we zoom in on the excluded ULDM masses. The
horizontal dotted line represents the value of ⇢� that would saturate the local DM density. Notice that based on our
results ULDM particles with mass �24.0 < log10 (m�/eV) < �23.7 can only make up at most 30 � 40 % of the total
DM energy density, while particles with mass �23.7 < log10 (m�/eV) < �23.3 can contribute at most up to ⇠ 70 %.

There, the upper limits provided in the correlated and
uncorrelated scenarios di↵er at low frequency. This can
be understood by noticing that the correlated limit of
NANOGrav corresponds to our pulsar-correlated limit.
However, in the low mass limit of Fig. 1, the pulsars, the

Earth and the stellar and gaseous tracers used for ro-
tation curves estimates lie well within the area spanned
by the coherence length; thus, one can only measure the
combination  0

c =  c�̂2, which represents the realiza-
tion of DM in our Galaxy. Therefore, we remove the
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Figure 13. Constraints on the local ULDM density for the
correlated (solid line) and uncorrelated (dashed line) signals
at the 95% credible level (see the discussion in the text). The
gray dashed line indicates the predicted DM abundance.

model including the ULDM signal in the correlated (un-
correlated) regime. This result is expected given the ex-
cess of monopolar-correlated power observed in the sec-
ond frequency bin of the common red-noise process (see
the discussion in NG15gwb for more details). Unfortu-
nately, an ULDM interpretation of this monopolar sig-
nal is di�cult, since the corresponding ULDM masses,
m� ⇠ 2 ⇥ 10�23 eV, needed to explain this excess are in
tension with other astrophysical bounds: Lyman-↵ for-
est (Armengaud et al. 2017; Iršič et al. 2017; Kobayashi
et al. 2017; Rogers & Peiris 2021), galactic subhalo mass
functions (Schutz 2020; Banik et al. 2021; Nadler et al.
2021), and stellar kinematics (Dalal & Kravtsov 2022).

Without convincing evidence for a signal, we compute
constraints on the ULDM model parameters, shown in
Figs. 13-15. All constraints are the 95th percentile of the
marginalized posterior distribution for the parameter on
the vertical axis. The curves labeled “(un)correlated”
correspond to the analysis done in the (un)correlated
limit, discussed in the previous section.

In Fig. 13, we show the constraints on the local ULDM
energy density that can be derived assuming only gravi-
tational coupling between the ULDM and SM fields. In
Fig. 13, we show the constraints on the local ULDM
energy density that can be derived assuming only grav-
itational coupling between the ULDM and SM fields.
The strongest bounds are obtained in the mass range

m� . 10�23 eV, where we nearly constrain ULDM to
be a subcomponent of the total DM abundance. While
we show constraints down to m� = 10�24 eV, it is
easy to extrapolate them to lower masses, where we
expect them to remain flat down to m ⇠ 10�26 eV,
where 1/m� becomes of the same order of the inter-
pulsar separation and the ULDM signal is additionally
suppressed (Khmelnitsky & Rubakov 2014; Unal et al.
2022). While future PTA analyses will be able to im-
prove on these constraints, constraining ULDM with
m� & 10�23 eV to have a local abundance smaller than
⇢� = 0.4 GeV cm�3 will be challenging, given that the
constraints scale as ⇢

lim
�

/ m
3
�

for m� & 1/Tobs.
In Fig. 14, we show the constraints for all the d pa-

rameters describing the scalar ULDM Lagrangian in
Eq. (64). Note that, for each panel, we assume that
the parameter constrained is the only nonvanishing one.
Overall, the limits are in rough agreement with the pro-
jections from Kaplan et al. (2022) and competitive with
laboratory constraints (Hees et al. 2016; Bergé et al.
2018; Kumar Poddar et al. 2019; Dror et al. 2020; Op-
tical Network et al. 2020). The strongest constraints,
relative to laboratory bounds, are for ULDM models
coupled to the electron, de, and muon, dµ, mass terms.
Indeed, relative shifts of the energy levels utilized in
atomic clock experiments are insensitive to the de cou-
pling, since atomic energy levels in di↵erent atoms scale
identically with electron mass, leading to no relative en-
ergy level shifts (Van Tilburg et al. 2015; Kaplan et al.
2022). Such an insensitivity is not a problem for the
PTA observable, though, since the pulsar phase evolu-
tion is not a↵ected in the same way as the atomic energy
levels. The lack of laboratory constraints on dµ is simply
because there is not a large number of muons to study
on Earth, whereas pulsars host a large number of them.
As for the gravitational signal, we can extrapolate the
constraints to lower masses, where we expect them to
scale as d / 1/m� down to m� ⇠ 10�26 eV, where 1/m�

becomes comparable to the interpulsar separation.
In Fig. 15, we show constraints on the gauge coupling

of models where the ULDM is the gauge boson of ei-
ther U(1)B or U(1)B�L. Our constraints are roughly
consistent with those published by the PPTA Collabo-
ration (Porayko et al. 2018). This result is somewhat
expected: while NANOGrav observes more pulsars, the
average observation time is longer in PPTA, so roughly
similar bounds are expected.

The constraints presented in Figs. 14 and 15 assume
that ULDM makes up the entire DM content of the uni-
verse. However, if ULDM is only a subcomponent of
the total DM abundance, these constraints can be easily
rescaled. Indeed, from Table 1, we see that the ampli-

Figure 5. The mass range µ for tensors. Blue data are measured (Table 2), while purple data are
calculated (Table 3).
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Figure 6. The bounds on axion decay constant (self-interaction) in the µ � faxion plane. Rainbow
colors correspond to calculated/predicted AGN spins given in Table 3 and light purple color regions
are result of measured AGNs with conventional methods given in Table 2.

4.1 Bounds on Axion Decay Constant/Self-Interaction from Superradiance

An axion field has a typical potential of the form, neglecting higher harmonics, V = ⇤4(1�
cos �

fa
), where � is the pseudoscalar axion field and fa denotes the axion decay constant, while

the mass is µ ' ⇤2/fa. On top of the mass term, by expanding the potential to higher order

terms, we obtain self-interaction given by ⇤
4

f4
a
�4. Hence, if the self-interaction term is strong

enough, the light degrees of freedom form a condensate and collapse, thus preventing their
exponential production via superradiance. Moreover nonlinear and external interactions can
also prevent superradiance as discussed in [51, 52].
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Figure 7. The constraints on the fraction of dark matter composed of ultra light scalar particles.

here R is scale factor. They all result in [39]

RUltraLight ⌘
⌦UL
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⇠

⇣ µ

10�21 eV

⌘1/2
✓

fa
1017GeV

◆2

. (4.5)

Using the constraints obtained for self-interaction in the previous subsection, we investigate
the fraction of dark matter that can be contributed by ULB particles in Figure 7. We find
that in the range, a few ⇥ 10�21

� 10�19 eV, light particles can be at most 10% of all dark
matter. For higher masses, their energy density is even more constrained. For the range,
10�19

� a few ⇥ 10�17 eV, ULB can be at most 0.01� 1% of dark matter.

5 Summary and Conclusions

In this work we employed the SED of AGNs to infer the BH spin. We improve the previ-
ously established SMFP relation by exchanging X-ray luminosity with the [OIII] line, and
incorporating the relativistic corrections such as Lorentz factor and viewing angle of the jet.
Thanks to the remarkable results obtained, we were able to put lower bounds on the spin
of AGNs and, consequently, probe the properties of hypothetical Ultra-Light Bosons (ULB)
which interact with AGN if their Compton wavelength is comparable with the horizon size.
In result of superradiance instability, part of angular momentum and energy of BH can be
transfered to ULB. We examined the unexplored parts of the parameter space of the ULB
with 9 AGNs whose spins are measured via conventional methods and given in Table 2, and
29 quasars whose minimum spin is inferred via (2.1) and (2.7) and results given in Table 3.
We obtain the following constrains, assuming negligible self/external interactions

• 2.9⇥ 10�21 eV � 1.7⇥ 10�17 eV for scalars (spin-0 particles),

• 6.4⇥ 10�22 eV � 1.7⇥ 10�17 eV for vectors (spin-1 particles),
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Summary:  
Constraints on ULA dark ma;er

• Pure ULA: 

– m > 10-20 eV for fULA = 1 from suppression of linear transfer func,on (Ly-⍺ forest (Rogers 
& Peiris ’21), MW subhalos (Nadler+ ’24)) 

– possible theore,cal uncertainty: use of CDM (small-ε) approxima,on for nonlinear 
tracers, in par,cular the subhalo mass func,on 

– consistent with constraints from wave-like halo structure (strong lensing (Powell+ ’23), 
stellar kinema,cs (Dalal & Kravtsov ’22, Zimmermann+ ’24)) 

– effec,vely closes the high-m window to (non-cosmological but mildly model 
dependent) superradiance constraints (Ünal+ ‘21) 

• Mixed ULA / CDM (natural scenario in string axiverse): 

– fULA < 0.1 for m < 10-23 eV (Planck + HST UVLF +  xHI + HERA (Winch+ ’24, Lazare+ ‘24)) 

– expect improvement from future JWST UVLF and 21cm (but be8er galaxy / SF 
modeling required) 

– consistent with EPTA and NANOGrav pulsar ,ming constraints (Smarra+ ‘23, Afzar+ ‘23) 

– hint for fULA ≈ 0.02 at log(m) = -26…-24 (Planck + eBOSS Ly-⍺ forest (Rogers & Poulin ’23))


