Direct search for dark matter axions - First MADMAX results

Fabrice Hubaut (hubaut@in2p3.fr)

Aix-Marseille Université, CNRS/IN2P3, CPPM (Marseille, France)

https://madmax.mpp.mpg.de/

- On behalf of the MADMAX collaboration
- 1. Theoretical motivations
- 2. Status of direct searches for DM axions
- 3. Dark matter searches with MADMAX prototypes
- 4. Conclusions

News from the dark 2024, November 13-15 2024

(Very short) Theoretical motivations

CP violation in strong interaction? (observed since 1964 in weak interactions)

- CP-violating term in QCD Lagrangian (controlled by Θ) is allowed and **should exist**
- ... but $|\Theta| < 10^{-10}$ is measured from neutron electric dipole moment

\rightarrow Strong CP Problem = naturalness problem. Why is $|\Theta|$ so small ?

(Very short) Theoretical motivations

CP violation in strong interaction? (observed since 1964 in weak interactions)

- CP-violating term in QCD Lagrangian (controlled by Θ) is allowed and should exist
- ... but $|\Theta| < 10^{-10}$ is measured from neutron electric dipole moment

\rightarrow Strong CP Problem = naturalness problem. Why is $|\Theta|$ so small ?

□ Solution to Strong CP problem → Axion

- Mechanism: new global U(1) symmetry (Peccei-Quinn, 1977) spont. broken at scale f_a
 → Can occur before or after inflation → cosmological implications
- Consequence: pseudo-Goldstone boson of the theory = axion (Weinberg-Wilczek, 1978)
 - Properties are all known given the scale of symmetry breaking f_a [f_a >> f_{Ew}]
 - → Tiny mass $[\mathbf{m}_{\mathbf{a}} \approx \mathbf{m}_{\pi} \mathbf{f}_{\pi} / \mathbf{f}_{\mathbf{a}} << eV]$, very weakly interacting [suppressed by $\mathbf{f}_{\mathbf{a}}$] and $\tau_{\text{axion}} > t_{\text{Universe}}$
- Cold dark matter: non-thermal massive axion at $T \sim \Lambda_{QCD}$

→ Axion = DM candidate motivated by particle physics since 40 years

Remark: ALP (Axion Like Particle) = pseudo-scalar not solving strong CP problem but potential DM candidate

Axion/ALP direct searches

→ Complementarity of 3 experimental approaches (e.g. DESY axion hub)

DM axion search: status / prospects

□ Haloscopes = main way to search for Dark Matter axion

- Only very few experiments currently probe a (very small) part of the QCD axion phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search

Rising interest (techno improvements + LHC/WIMP results) : next decade promising

DM axion search: how?

Experimental challenges for haloscopes

- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10T})$ V/m] \rightarrow high B_{field} [B >> 1T]
- Boost E_{field} [up to detectable P~10⁻²² W] → resonant set-up or large area
- Scan over range of axion mass
 tunable set-up [precision mechanics]

→ MADMAX can probe the favored post-inflationary range $m_a \sim O(100) \mu eV^*$

F. Hubaut (CPPM)

Direct search for dark matter axions - First MADMAX results

Nat. Com. 13 (2022) 1, 1049 : 40 < m_a [μeV] <180

MADMAX (1/2)

White Paper [EPJC 79 (2019) 186, 1901.07401]

□ A novel experimental concept: dielectric haloscope

Constructive interference of coherent EM waves emitted at dielectric layer surfaces
 + resonant enhancement (~leaky resonant cavities) : boost (β²) signal wrt mirror only

• Axion mass scan : move discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

→ MADMAX exploits a novel exp. approach to cover an uncharted phase space

F. Hubaut (CPPM)

MADMAX (1/2)

White Paper [EPJC 79 (2019) 186, 1901.07401]

□ A novel experimental concept: dielectric haloscope

Constructive interference of coherent EM waves emitted at dielectric layer surfaces
 + resonant enhancement (~leaky resonant cavities) : boost (β²) signal wrt mirror only

Axion mass scan : move discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

→ MADMAX exploits a novel exp. approach to cover an uncharted phase space

F. Hubaut (CPPM)

MADMAX (2/2)

Formed in 2017. 11 institutes: French (3), German (6), Spanish (1) and US (1) \rightarrow ~50 people

➔ Start with prototyping phase to validate concept: cutting-edge R&D

Prototyping phase strategy

Address the two main challenges to develop booster concept

- Understand Radio Frequency (RF) response in O(10) GHz regime
- Move the disks at µm level precision at cold and under high B-field

	Name	Goal	Booster	Disks	Test	
	CB100	RF studies +	Closed	3, fixed φ = 100 mm	<u>2022, 23, 24</u>	
	CB200	First ALP searches	Closed	3, fixed φ = 200 mm	<u>24</u>	Room Temp. Cold (10 K)
	OB300v1	Scan DP* @ 80 μeV	Open	3, fixed φ = 300 mm	23-24	<u>Bfield</u> Prospects
	OB200	Piezo-motor + mechanics	Open	1, moveable φ = 200 mm	<u>2022</u> , 22	
	OB300v2 (in prep.)	Scan ALP @ 80 μeV	Open	3-20, moveable $\phi = 300 \text{ mm}$	<u>26-28</u>	

*Dark Photon

Gradually build the final booster design + do physics

MadMax search for ALP (1/4)

- Booster peak tuned at 2 frequencies ~18.5 and 19.2 GHz [manual change of disk distances by ~0.5 mm with separation rings]
- O(10 MHz) variations around them
 [O(10 µm) mirror move through tuning rod]
- 14.5 days of data at B=1 to 1.6 T

MadMax search for ALP (2/4)

Computing the boost factor

- Booster & receiver noise model through fits of reflectivity and noise measurements
- Boost factor curves $\beta^2(v)$ determined with ~15% systematics
 - → $\beta^2_{\text{peak}} \approx O(2000)$ and scan 100 MHz with β^2 >500

Demonstrating the scanning capacity of MADMAX booster

MadMax search for ALP (3/4)

Full power spectrum data analysis

- Build the normalized power excess spectrum (HAYSTACK procedure, PRD 96 (2017) 123008):
 - (Savitsky-Golay -- SG) filter of the calibrated power spectra
 - ✓ Residuals divided by σ_{Noise} (\propto T_{sys}) → Normalized power excess vs frequency
 - Combine spectra by optimising SNR (+ cross-correlation with axion lineshape)
- No excess \rightarrow limits on axion-photon coupling $|g_{av}|$ for each bin

 σ_{Noise}

O(25) kHz

Frequency

F. Hubaut (CPPM)

MadMax search for ALP (4/4)

- Limits on axion-photon coupling g_{ay} better than existing constraints by up to factor 3
- Modest system (few small disks in reduced magnetic field) with only 2 weeks data
 Confirm substantial potential of MadMax concept

F. Hubaut (CPPM)

MadMax search for Dark Photon (1/3)

MadMax search for Dark Photon (2/3)

 \rightarrow Developed bead-pull method to measure β^2 and its uncertainties

F. Hubaut (CPPM)

Direct search for dark matter axions - **First MADMAX results**

MadMax search for Dark Photon (3/3)

- Boost factor $\beta^2(v)$ measured with ~15% errors $\rightarrow \beta^2_{peak}$ ~640 extending on 1.3 GHz
- No signal of unknown origin \rightarrow limits on kinetic mixing κ between photon and DP
- Limits better than existing limits in m_{DP} [78.6, 84.0] μeV by up to factor 1000
- Modest system (few small disks) with only 12 days of data
 - → confirm substantial potential of MadMax concept (resonant and broadband)

First dark matter DP search with MadMax prototype

arXiv:2408.02368 (submitted to PRL)

F. Hubaut (CPPM)

Tuneable setup: move the disk

Tuneable setup: move the disk

→ Precisely move the disk at cold and in B-field

→ Validate booster mechanics

JINST 19 (2024) T11002 (arXiv:2407.10716)

Final prototype

Long runs at cold with moving disks in 2026-28 \rightarrow scan ALP masses

F. Hubaut (CPPM)

MADMAX timescale

Conclusions

DM axion direct search: rising interest, next decade promising

- Axion = DM candidate motivated by particle physics since 40 years
- Resonant cavity sensitivity starts to scratch the QCD axion phase space (~1 μeV)
- Will be extended to most of the interesting mass range (1-1000 μeV) with novel experiments

□ MADMAX = novel exp. approach to cover theory-favored phase space

- MADMAX can probe the favored post-inflationary range $m_a \sim O(100) \ \mu eV$
- Prototyping phase at CERN 2021-2028 to validate the dielectric haloscope concept

MADMAX & France

- CEA-IRFU innovation partner for the magnet, Institut Néel (INP) involved in LNA (TWPA)
- IN2P3: CPPM MADMAX member (>2019), IJCLab associate MADMAX member since (>2023)
- + CNRS IRL "DMLab" @ DESY (with Helmholtz centers) → MADMAX is a central project

□ Main IN2P3 contributions to MADMAX

- Mechanics:
 - Disk planarity measurements (<10 μm),
 - Precision mechanics for the prototype boosters
 - Design of RF absorbers
 - Equipment for tests at CERN
- Coordination of prototype tests at CERN
- Simulation / data analysis

Pioneering experimental work at IN2P3 on DM axion search

BACKUP (MADMAX)

Collab Week at CPPM (Apr 2023)

F. Hubaut (CPPM) Direct search for dark i

Direct search for dark matter axions - First MADMAX results

Axion scales

APPEC Committee Report

Rept. Prog. Phys., 85(5):056201, 2022, 2104.07634

Axion phenomenology

- Some phenomenology depends on the "axion model", e.g.
 - KSVZ axions are "hadronic axions" (no coupling with leptons at tree level)
 - DFSZ axions couple to electrons

Cosmological axions

Axion realignment (initial misalignment angle?)

But also... topological defects (inflation can wipe them out if it happens afterwards)

Note: thermal production of axions (as neutrinos) gives hot DM (upper limit ma~1 eV)

ESSP Granada, 14-May-2019

Igor G. Irastorza

arXiv:2403.17697

https://cajohare.github.io/AxionLimits/docs/am.html

Post-inflationary scenario predicts $m_a \approx O(100) \mu eV$

Closed vs open booster

Closed booster

- Booster enclosed in cylindrical waveguide, ensuring fixed boundary conditions
- ➢ Fundamental mode (cylindrical TE11 mode) dominant and coupled to receiver (lens)
 → simplifies RF response modelling
- > 1D model enough to extract boost factor, with $1D \rightarrow 3D$ correction (field overlap with axion field)
- Difficult to insert bead for boost factor measurement with bead-pull method

Open booster

- Free space outside disks
- Higher-order transverse modes wrt fundamental Gaussian mode can propagate and resonate
- Easy to insert bead for boost factor measurement with bead-pull method

Boost factor

Tuning of sensitive frequency range by adjusting disc spacing Area law: $\beta^2 \Delta v_\beta \sim \text{const.}$ \rightarrow broad-band scan for search \rightarrow parrow-band to confirm possible signal.

Direct determination of boost factor (1/3) JCAP 04 (2023) 064

- Lorentz reciprocity theorem relates EM fields of 2 different sources
 - J_a = axion effective current density in B-field, sourcing axion-induced fields E_a, H_a
 - J_R = current density from external injected signal, sourcing reflectioninduced fields E_R, H_R
- Allows to express haloscope sensitivity to axions from its response to reflection measurement

$$P_{\rm sig} = \frac{g_{a\gamma}^2}{16P_{\rm in}} \left| \int_{V_a} \mathrm{d}V \mathbf{E}_R \cdot \dot{a} \mathbf{B}_e \right|^2 \quad \propto \mu$$

Direct determination of boost factor (2/3)

Boost factor determined using Bead Pull Method (non-resonant perturbation theory) + Lorentz reciprocity theorem JCAP 04 (2023) 064

Direct determination of boost factor (3/3)

JCAP 04 (2024) 004

Test with a single disk and non-optimized set-up

[time gating allows to filter out antenna-booster resonances]

MadMax sensitivity

\Box ALP-photon coupling, $g_{a\gamma}$

$$\begin{aligned} |g_{a\gamma}| &= 4 \times 10^{-11} \,\mathrm{GeV}^{-1} \sqrt{\frac{2 \times 10^3}{\beta^2}} \sqrt{\frac{T_{\mathrm{sys}}}{300 \,\mathrm{K}}} \\ &\times \left(\frac{0.1 \,\mathrm{m}}{r}\right) \left(\frac{1 \,\mathrm{T}}{B_e}\right) \left(\frac{1.3 \,\mathrm{days}}{\Delta t}\right)^{1/4} \sqrt{\frac{\mathrm{SNR}}{5}} \\ &\times \left(\frac{m_a}{80 \,\mathrm{\mu eV}}\right)^{5/4} \sqrt{\frac{0.3 \,\mathrm{GeV/cm^3}}{\rho_a}} \,, \end{aligned}$$

Dark Photon kinetic mixing angle with photon, χ

Assuming unpolarized Dark Photon:

$$\begin{split} \chi &= 1.0 \times 10^{-13} \left(\frac{640}{\beta^2}\right)^{1/2} \left(\frac{707 \,\mathrm{cm}^2}{A}\right)^{1/2} \\ &\times \left(\frac{T_{\mathrm{sys}}}{240 \,\mathrm{K}}\right)^{1/2} \left(\frac{11.7 \,\mathrm{d}}{\Delta t}\right)^{1/4} \left(\frac{\mathrm{SNR}}{5}\right)^{1/2} \\ &\times \left(\frac{0.3 \,\mathrm{GeV/cm}^3}{\rho_{\chi}}\right)^{1/2} \left(\frac{\Delta \nu_{\chi}}{20 \,\mathrm{kHz}}\right)^{1/4}, \end{split}$$

Raw system power spectra (one 15' physics run for each configuration)

- > Booster reflectivity measurements \rightarrow fit 1D booster model (with uncertainties)
- 3D effects taken into account and corrected for
- > Receiver reflectivity + standard calibration measurements \rightarrow fit receiver model (with unc.)
- System noise (thermal radiations) measurements in 18-20 GHz → fit combined (booster & receiver) model (impedance mismatch between booster and 1st LNA, with unc.)
- > Extract the boost factor curve $\beta^2(v)$ (with uncertainties)

→ Sensitive to ALP signal power of O(10⁻²¹ W)

F. Hubaut (CPPM)

Systematics on $|g_{a\gamma}|$ (configuration dependent)

Effect	Uncertainty in $ g_{a\gamma} $
Y-factor power calibration	3% to $5%$
Receiver chain power stability	$\leq 2 \%$
Axion field – TE_{11} overlap	6%
Boost factor determination	< 5 %
Frequency stability of TE_{11} mode	< 2 %
Total	5% to $10%$

MadMax search for ALP (at cold)

Name	Booster	Disks	Test @CERN
CB100	Closed	3, fixed φ = 100 mm	<u>2024</u>

Developed low-cost cryostat in G10 with CERN cryolab: O(20) hours below 10 K

Established and validated receiver chain calibration procedure at cold

→ First operation of a dielectric haloscope at cold under B field [3 papers in preparation]

F. Hubaut (CPPM)

Direct search for dark matter axions - First MADMAX results

MadMax search for ALP (at cold)

Name	Booster	Disks	Test @CERN
CB100	Closed	3, fixed φ = 100 mm	<u>2024</u>

Developed low-cost cryostat in G10 with CERN cryolab: O(20) hours below 10 K

Established and validated receiver chain calibration procedure at cold

F. Hubaut (CPPM)

MadMax search for Dark Photon

MadMax search for Dark Photon

→ Sensitive to dark photon signal power of $O(10^{-21} \text{ W})$

MadMax search for Dark Photon

Systematics on χ

Effect	Uncertainty on χ	
Bead-pull measurements	2 to 17%	(frequency dependent)
Bead pull finite domain correction	5%	
Receiver chain impedance mismatch	$<\!1\%$	
Y-factor calibration	$\overline{4\%}$	
Power stability	3%	
 Frequency stability	2%	
Line shape discretization	4%	
Total	9 to 19%	

Systematics from boost factor measurement

Towards final MADMAX

Magnet

 Design completed: 2x9 skateboard coils with novel copper CICC conductor

[NbTi with Cu jacket @ 1.8K]

- Demonstrated that coils will be safe in terms of quench protection IEEETAS 33 (2023) 1
- Budget secured for a demonstrator coil
 → expected in 2027

Receiver Chain

- For now use classic low noise amplifier HEMT (G=33 dB, 4K added noise) below 40 GHz
- Josephson Junction being developed to further minimize noise (quantum limit)

TWPA prototype with G>20 dB and 1K added noise at 10 GHz

Next: >40 GHz technology to be developed

MADMAX & France

Outside IN2P3: Institut Néel (INP, in MadMax) & CEA-IRFU (innovation partner)

Final ultra-low noise amplifier

At IN2P3:

- CPPM joined MADMAX in 2020 (recommendations from CPPM scientific council)
- IJCLab: joined MADMAX end 2023 as associate member.
- Remark: CNRS IRL "DMLab" (with Helmholtz centers) → MADMAX is a central project

➔ Pioneering experimental work at IN2P3 on DM axion search

MADMAX & IN2P3

- Precision mechanics for the prototype boosters
- Design of RF absorbers
- Coordination of prototype tests at CERN in Morpurgo magnet
- Simulation / data analysis

Disk planarity

(arXiv:2407.10716)

MADMAX team

Directionality with MADMAX

1707.04266 1806.05927

Search / Discovery » mode = MADMAX with 80 disks

As DM is highly non-relativistic ($v_a \sim 10^{-3}$), the associated De Broglie wavelength is large, i.e. larger than the detector with 80 disks

$$\lambda_{\rm dB} = \frac{2\pi}{m_a v_a} = 12.4 \text{ m} \left(\frac{100 \ \mu \text{eV}}{m_a}\right) \left(\frac{10^{-3}}{v_a}\right)$$

- Velocity effects only important for haloscopes with a size >~20% of de Broglie wavelength
- > Can be safely neglected for setup with 80 disks \rightarrow Good (no model dependence of boost factor)
- Annual modulations could be detected for sufficiently long measurements
- « Axion telescope » mode → directionally sensitive to axion velocity
 - → Effects come from axion velocity in direction perpendicular to the disks (→ change in phase over the haloscope)
 - → need increased length of the device: O(1) effect if haloscope length similar to De Broglie wavelength
 - → Use the same disks but increase separation between disks: from $\lambda/2 \rightarrow 3\lambda/2$, $5\lambda/2$
 - → Increase the number of disks