Dark Matter Candidates

Pearl Sandick

Old News

Observations

- Galactic Rotation Curves
- Cluster Dynamics, incl. collisions
- Velocity dispersions of galaxies (dark matter extends beyond the visible matter)
- Weak Gravitational Lensing (distribution of dark matter)
- Structure Formation
- "Concordance Model"

Summary

- Some explanation is necessary for observed gravitational phenomena.
- There's a lot of it (Ω_{DM}h²=0.1200±0.0012).
- It's largely non-relativistic/ cold.
- It's stable or very long-lived.
- It's dark ([largely] neutral).
- It's not regular matter (element abundances, structure formation).

Old News

Dark matter is both a *challenge* and an *opportunity* for fundamental physics.

[How] Does it relate to the Standard Model?

Summary

- Some explanation is necessary for observed gravitational phenomena.
 - There's a lot of it $(\Omega_{DM}h^2=0.1200\pm0.0012).$
- It's largely non-relativistic/ cold.
- It's stable or very long-lived.
- It's dark ([largely] neutral).
- It's not regular matter (element abundances, structure formation).

Standard Model

• The Standard Model works.

- verified by collider experiments

• The Standard Model is not complete.

- does not include dark matter
- does not include dark energy
- does not include neutrino masses
- does not include gravity
- cannot explain the matter-antimatter asymmetry
- does include a Hierarchy Problem
- and more...

Standard Model

• The Standard Model works.

- verified by collider experiments

• The Standard Model is not complete.

- does not include dark matter
- does not include dark energy (?)
- does not include neutrino masses
- does not include gravity
- cannot explain the matter-antimatter asymmetry
- *does* have a Hierarchy Problem
- and more...

Many of these could or should be addressed within the context of a theory that includes new heavy particles.

SM-DM Connection?

- Dark Matter could be embedded in a framework that addresses other open questions in particle physics
 - E.g. Hierarchy Problem, Strong-CP Problem, Neutrino Masses and Mixings
 - Principles: naturalness*, elegance/idealism
 - Typically "top-down"

SM-DM Connection?

- Dark Matter could be embedded in a framework that addresses other open questions in particle physics
 - E.g. Hierarchy Problem, Strong-CP Problem, Neutrino Masses and Mixings
 - Principles: naturalness*, elegance/idealism
 - Typically "top-down" embed the SM in a larger framework

DM Properties

- **Type**: Fundamental particle, composite particle, wave, condensate, PBH, multi-component...?
- **Mass**: ~90 orders of magnitude!
- **Temperature**: Cold, warm, (hot)
- Interactions: gravitational, w/ self, w/ "portal", w/ extended new physics sector
- Production: thermal or non-thermal, freeze-out, freeze-in, cannibalization, number-changing processes, asymmetry, decays, gravitational production, PBH evaporation ...

Consequences for cosmological, astrophysical, and galactic dynamics **Katarina Kraljic Florent Renaud** simulations **Patrick Hennebelle** Arturo Nuñez-Castiñevra **Eric Jullo** lensing & **Natalie Hogg** structure **Giulia Despali** formation **Pier-Stefano Corasanit Philippe Amram** MW **Benoit Famaey** dynamics **Yassin Rany Khalil**

Candidates

Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

- Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy Dark Matter (FDM)
- FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++
- Sterile neutrinos
- Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)
- Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles
- Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
- Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons
- Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions
- Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM (large abundance from thermal freeze out) but strongly coupled to itself; abundance decreases via 3-2 or 4-2 scattering
- WIMPzilla: super-heavy ($\gtrsim 10^8$ GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
- MACHOs: massive compact halo objects (anything dark enough black holes, neutron stars, brown dwarfs...)***
- Primordial Black Hole (PBH)

WIMP Relic Abundance

The **Boltzmann Equation** describes the evolution of the dark matter number density.

Expansion and annihilation compete to determine the number density: $\frac{dn_{\chi}}{dt} = -3Hn_{\chi} - \langle \sigma v_{rel} \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$

Equilibrium Number Density: $(T \ll m_{\chi})$

$$n_{\chi}^{eq} = g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-(m_{\chi}-\mu_{\chi})/T}$$

When $\Gamma = n_{\chi}^{eq} \langle \sigma v_{rel} \rangle < H$ the annihilations that maintain equilibrium can't keep up with expansion. WIMPs can't find each other to annihilate.

WMPR & Goi Abidedaece

The **Boltzmann Equation** describes the evolution of the dark matter number density.

WIMPless, too!

The **Boltzmann Equation** describes the evolution of the dark matter number density.

WIMPs and Non-WIMPs

~GeV+ WIMP

- Supersymmetric (LSP) Neutralino, Sneutrino
- Lightest KK Particle (LKP) from Universal Extra Dimensions
- Lightest T-odd Particle (LTP) from Little Higgs Models
- "WIMPless"

. . .

Ad hoc or simplified models

GeV+ Non-WIMP

- Sneutrino
- WIMPless DM
- Sterile Neutrinos
- SIMP

۲

...

- Asymmetric DM
- WIMPzilla
- Ad hoc or simplified models

Sub-GeV

- WIMPless DM
- Sterile Neutrinos
- SIMP
- SIDM
- Dark Photon DM
- Axions/ALPs
- Ad hoc or simplified models

• ...

Commonalities in mass, interaction characteristics \leftrightarrow **Commonalities in detection techniques**

WIMP(+) Hunting

Goal: determine WIMP mass, spin, and couplings to SM particles.

Candidates

Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

- Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy Dark Matter (FDM)
- FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++
- Sterile neutrinos
- Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)
- Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles
- Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
- Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons
- Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions
- Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to itself; abundance via 3-2 or 4-2 scattering
- WIMPzilla: super-heavy ($\gtrsim 10^8$ GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
- MACHOs: massive compact halo objects (anything dark enough black holes, neutron stars, brown dwarfs...)***
- Primordial Black Hole (PBH)

Axions

• Strong CP Problem: CP violating operators are allowed in the QCD Lagrangian, but no CP violation has been observed.

•
$$L_{\rm QCD} \supset L_{\theta} = -\theta \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$
 violates CP. Limit from neutron EDMs: $\theta \lesssim 10^{-10}$.

- Peccei Quinn Mechanism (1977): Allows theta to be ~zero by promoting it to a field $(\theta \rightarrow a(\mathbf{x})/f_a)$ with a new global (PQ) symmetry spontaneously broken at the scale f_a .
- Weinberg (1978) & Wilczek (1978): spontaneously broken symmetry means there must be a Goldstone boson! Axion.

• QCD vacuum effects:
$$m_a \approx f_\pi m_\pi / f_a \rightarrow m_a \approx 5.7 \left(\frac{10^9 \,\text{GeV}}{f_a}\right) \,\text{meV}$$

- Small mass??? Thermal production would result in hot axions, but several nonthermal production mechanisms (e.g. misalignment) yield cold axions that form a condensate.
 - Coherent/wave-like behavior → impact on astrophysical structure and dynamics

Jens Niemeyer Raquel Galazo-Garcia Marco Gorghetto Tanja Rindler-Daller Rodrigo Vicente

Axions, ALPS, and FDM.. Oh my!

- **QCD Axion** (or just "axion") solves the strong CP problem.
 - DFSZ and KSVZ are two examples, but there are many more possibilities, covering a lot of parameter space.
- Axion Like Particles (ALPs) are scalars that behave similarly to the QCD axion, but might not solve the strong CP or DM problems.
- Ultra-Light Dark Matter (ULDM) can be as light as 10⁻²² eV.
- **Fuzzy Dark Matter (FDM)** is a sort of generic term for ULAs/ALPs that contribute to DM. Preferred mass is near 10⁻²² eV, which has galaxy-scale deBroglie wavelength and therefore explains the cored profiles of galaxies.

Some ways to detect ALPs

Fabrice Hubaut's talk

• Primakoff Effect

Note: for QCD axions, mass and coupling are not independent! But for generic ALP, they can be.

astrophysics!

- Light through walls (e.g. ALPS)
 - Laser light is shined at a wall. Magnetic field: some photons converted to axions. Axions travel through wall. Magnetic field: some convert back to photons.
- Microwave cavity searches (e.g. ADMX)
 - Axions passing through cavity + magnetic field. Some convert to photons.
- Solar axion searches (e.g. CAST)
 - Photon converts to axion in sun, travels to Earth. Magnetic field: axion converts back to photon.
- ALP decays: CMB, BBN, JWST and other integral field spectrographs
- ALP conversion in astrophysical magnetic fields (constrains high-mass)
- Stellar evolution (cooling from ALP production inside stars)

Axion Search Prospects

Candidates

- Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++
- Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy Dark Matter (FDM)
- FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++
- Sterile neutrinos
- Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)
- Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles
- Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
- Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons
- Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions
- Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to itself; abundance via 3-2 or 4-2 scattering
- WIMPzilla: super-heavy ($\gtrsim 10^8$ GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
- MACHOs: massive compact halo objects (anything dark enough black holes, neutron stars, brown dwarfs...)***
- Primordial Black Hole (PBH)

E-WIMPs/Super-WIMPs/FIMPs

- Tiny interactions with SM particles
- Interaction scale with ordinary matter suppressed by a large mass scale.
 - gravitino: M_{Pl}~10¹⁹ GeV
 - axino: f_a~10¹¹ GeV

- Other candidates: KK graviton, sterile neutrinos...
- Production: typically freeze-in (or similar)

Freeze-In

- Collisional processes and/or decays lead to production of out-of-equilibrium FIMPs.
 FIMPs could be DM themselves, or decay to DM. Extremely weak interactions, so once DM is produced, it sticks around.
- 1. Bath of SM particles at high T
- 2. SM particle interactions produce FIMPs
- 3. Universe cools such that SM particles no longer have enough energy to produce heavier FIMPs. (If FIMPs are unstable, they decay to DM.)
 - DM abundance is "frozen-in"
- Some differences from Freeze-out:
 - Small initial thermal population
 - Larger coupling \rightarrow more DM produced
 - Works down to ~keV (depending on model)
 - Most models include a metastable particle

Detecting the FIMP Scenario

- Detection is challenging due to very weak interactions with SM, but there are still many (model-dependent) possibilities!
- Decays could impact BBN and CMB... \rightarrow constraints on metastable particles.
- Collider search for long-lived particles (eg. NLSP), anomalous scattering at fixed-target experiments, anomalous decays.
- Indirect signals from decay, or annihilation to an unstable light mediator
 (χχ → φφ) that decays to SM particles
- Could be probed by low-threshold direct dark matter searches in the keV-MeV mass range (very large abundance, so some hope?)
- Stellar (≤ 100 keV) and supernovae (~ MeV) constraints from cooling

Candidates

- Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++
- Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

- Sterile neutrinos
- Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)
- Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles
- Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
- Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons
- Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions
- Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to itself; abundance via 3-2 or 4-2 scattering
- WIMPzilla: super-heavy ($\gtrsim 10^8$ GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
- MACHOs: massive compact halo objects (anything dark enough black holes, neutron stars, brown dwarfs...)***
- Primordial Black Hole (PBH)

Sterile Neutrinos?

- SM (L-handed) neutrinos have masses. No R-handed neutrinos in the SM → no consistent way
 to write a term that gives them mass.
- [Minimal Type 1 Seesaw] Solution: add R-handed neutrinos as gauge singlet fermions with Majorana mass M_{RH} . Interactions with LH neutrinos through a Yukawa term with coupling y_{ν} . L-R mixing \rightarrow for M_{RH} large enough, the light states get a mass eigenvalue of $m_{\nu} = y_{\nu}^2 v_0^2 / M_{RH}$
 - Typical M_{RH} values are 10¹⁵ 10¹⁶ GeV, but there are ways to get it much smaller.

- There are other solutions besides this one. Point is that adding RH neutrinos is reasonable.
- If RH (sterile) neutrinos are light (keV mass range) and not too strongly mixed with LH (active) neutrinos, they can be the DM.

Sterile Neutrino DM

- Sterile does not mean *completely* sterile interactions with SM particles happen via mixing with active neutrinos, or may arise through new gauge interactions at high energies.
 - Sterile neutrinos have extremely weak interactions, so were never in thermal equilibrium in the early Universe.
 - Possible production mechanisms: Freeze-in, oscillate-in (Dodelson-Widrow or Fuller-Shi), decays of heavy bosons... (all model-dependent)
- Not stable, but very long-lived (related to active-sterile mixing) - can have lifetimes longer than the age of the Universe.
- O(keV) masses are viable, though if sterile neutrinos are more decoupled from the SM then they can be much heavier. Neutrino experiments allow a large range of masses and couplings.

Light Sterile Neutrinos

Model independent:

- \bullet Main decay mode is $N \to 3 \nu$
- More important (for observations) decay mode is $N \rightarrow \nu \gamma$
 - Monochromatic photon line signal at $E_{\gamma} \approx m_N/2$ (x-ray constraints)
- Cosmological production: $\ell^+\ell^- \rightarrow N\nu$ (thermal overproduction bound)
- Large number density in dSphs would violate Pauli Exclusion (phase space bound)

Model dependent:

 Dashed contours are constraints/sensitivity that depend on the production mechanism (and other model characteristics)

Candidates

- Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++
- Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy Dark Matter (FDM)
- FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++
- Sterile neutrinos
- Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)
- Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles
- Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
- Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons
- Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions
- Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to itself; abundance via 3-2 or 4-2 scattering
- WIMPzilla: super-heavy ($\gtrsim 10^8$ GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
- MACHOs: massive compact halo objects (anything dark enough black holes, neutron stars, brown dwarfs...)***
- Primordial Black Hole (PBH)

Primordial Black Holes (PBHs)

- Proposed in the 60's, studied extensively by Hawking and others in the 70s
- Primordial Black Holes (PBHs) formed in the very early universe - before BBN
- Various mechanisms:
 - collapse of large density perturbations
 - collapse of cosmic string loops
 - bubble collisions
 ... Pasquale Serpico's talk
- Can happen during a radiation- or (early) matter-dominated era
- Possible that PBHs themselves come to dominate the energy density of the universe

Formation requires increased energy density at early times → connection between PBH mass and horizon mass at formation

$$M \sim \frac{c^3 t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \text{s}}\right) \text{g}$$

- Planck time $\rightarrow 10^{-5}$ g (Planck mass)
- 1 second $\rightarrow 10^5 M_{\odot}$
- Range of masses at formation? Formation over some time period, or power spectrum of inhomogeneities spans some spatial scales.

• Hawking Radiation and Evaporation

PBH Evaporation and Constraints

- Black Holes evaporate through continuous emission of degrees of freedom, losing mass and angular momentum.
 - Lifetime = time required to evaporate
- Low Mass range: 10⁻⁵ g 10⁻¹ g 10⁹ g
 - Mass range defined by CMB and BBN. These are *probably* not dark matter, but they may be important to the dark matter story.
 - Note: "memory burden effect" (Dvali et al.) could halt evaporation, leaving remnant PBHs
- High Mass range: ~10¹⁶ g (asteroid mass) ~10²³ g (sublunar)
 - DM candidates?
- Picture changes (somewhat) for non-monochromatic mass function
- Interesting interplay of PBHs and particle particle dark matter (PDM)
 - PDM production from PBH evaporation e.g. Gondolo, Sandick, Shams es Haghi (2020)
 - PDM (spikes) around PBHs Pierre Salati's talk
- Search strategies from astrophysics and cosmology.

Fig: Green (2024), w/

- There are currently a huge number of viable dark matter candidates spanning ~90 orders of magnitude in mass.
- The WIMP paradigm has been a primary guide for many years. Still possible, but many other candidates are now being taken more seriously.
- Astrophysical and cosmological observations:
 - Indirect detection remains a critical technique.
 - Studying cosmic structures, stellar physics and evolution presents exciting new opportunities to probe the nature of dark matter.