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Structure Formation e It's dark ([largely] neutral).

e |t’s not regular matter
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“Concordance Model”




Old News

Dark matter is both a
challenge and an

opportunity for
fundamental physics.

[How] Does it relate to the
Standard Model?

Summary

Some explanation is
necessary for observed
gravitational phenomena.

There’s a lot of it
(Qomh2=0.1200+0.0012).

It’s largely non-relativistic/
cold.

It’s stable or very long-lived.
It’s dark ([largely] neutral).

It’s not regular matter
(element abundances,
structure formation).



Standard Model

e The Standard Model works.

- verified by collider experiments

* The Standard Model is not complete.

- does not include dark matter

- does not include dark energy

- does not include neutrino masses

- does not include gravity
- cannot explain the matter-antimatter asymmetry
- does include a Hierarchy Problem

- and more...
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Standard Model

e The Standard Model works.

- verified by collider experiments

* The Standard Model is not complete.
- does not include dark matter
- does not include dark energy (?)

- does not include neutrino masses

- does not include gravity
- cannot explain the matter-antimatter asymmetry
- does have a Hierarchy Problem

- and more...

Many of these could or should be addressed within the
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SM-DM Connection?

 Dark Matter could be embedded in a framework that addresses other open
questions in particle physics

 E.g. Hierarchy Problem, Strong-CP Problem, Neutrino Masses and
Mixings

* Principles: naturalness®, elegance/idealism

e Typically “top-down”

Faire d’une pierre

deux coups? New Physics
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SM-DM Connection?

 Dark Matter could be embedded in a framework that addresses other open
questions in particle physics

 E.g. Hierarchy Problem, Strong-CP Problem, Neutrino Masses and
Mixings

* Principles: naturalness®, elegance/idealism

e Typically “top-down” - embed the SM in a larger framework



DM Properties

Type: Fundamental particle, composite particle,
wave, condensate, PBH, multi-component...?

Mass: ~90 orders of magnitude!

Temperature: Cold, warm, (hot)

Consequences for
cosmological,
astrophysical, and
galactic dynamics

} simulations
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. Eric Jullo :
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Production: thermal or non-thermal, freeze-out, Pier-Stefano Corasaniti
freeze-in, cannibalization, number-changing Philippe Amram MW
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processgs, asymmetry, de.cays, gravitational Yassin Rany Khalil dynamics
production, PBH evaporation ...
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Candidates

* Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy
Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

Sterile neutrinos

Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)

Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles

Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons

Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions

Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM (large abundance from
thermal freeze out) but strongly coupled to itself; abundance decreases via 3-2 or 4-2 scattering

WIMPzilla: super-heavy ( 2 10% GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
MACHOs: massive compact halo objects (anything dark enough - black holes, neutron stars, brown dwarfs...)***

Primordial Black Hole (PBH)



WIMP Relic Abundance

The Boltzmann Equation describes the evolution of the dark

matter number denSIt),’ Jungman, Kamionkowski & Griest, PR (1996)
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The Boltzmann Equation describes the evolution of the dark

matter number density.
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VWIMPless, too!

The Boltzmann Equation describes the evolution of the dark

matter number denSIt),‘ Jungman, Kamionkowski & Griest, PR (1996)
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WIMPs and Non-WIMPs

GeV+
~GeV+ WIMP Sub-GeV
Non-WIMP
e  Supersymmetric (LSP) e Sneutrino e WIMPless DM
Neutralino, Sneutrino
e WIMPless DM e Sterile Neutrinos
e Lightest KK Particle (LKP)
from Universal Extra e Sterile Neutrinos e SIMP
Dimensions
e SIMP e SIDM
e Lightest T-odd Particle _
(LTP) from Little Higgs e Asymmetric DM e Dark Photon DM
Models .« WIMPzilla +  Axions/ALPs
© “WiMPless e Ad hoc or simplified e Ad hoc or simplified
e Ad hoc or simplified models models
models . .

Commonalities in mass, interaction characteristics << Commonalities in detection techniques



WIMP(+) Hunting

I n d i rect D ete Cti on **Silvia Manconi’s talk on

GC gamma rays

**Nicolas Laporte’s talk on

D M S M JWST early galaxies
Direct @ Astrophysical
Detection Probes
DM SM
———

Collider Searches

Goal: determine WIMP mass, spin, and couplings to SM particles.



Candidates

* Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy
Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

Sterile neutrinos

Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)

Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles

Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons

Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions

Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to
itself; abundance via 3-2 or 4-2 scattering

WIMPzilla: super-heavy ( 2 10% GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
MACHOs: massive compact halo objects (anything dark enough - black holes, neutron stars, brown dwarfs...)***

Primordial Black Hole (PBH)
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Strong CP Problem: CP violating operators are allowed in the QCD
Lagrangian, but no CP violation has been observed.

¢

2
LocpDd Ly=—-0 3§S ZG;’UG“”” violates CP. Limit from neutron EDMs: 6 < 10719,
n

Peccei Quinn Mechanism (1977): Allows theta to be ~zero by promoting it to a field
@ — a(x)/f,) with a new global (PQ) symmetry spontaneously broken at the scale f,.

Weinberg (1978) & Wilczek (1978): spontaneously broken symmetry means there
must be a Goldstone boson! Axion.

10° GeV
QCD vacuum effects: m, ~ fm_If, — m,~5.7 < - ) meV

a

Small mass??? Thermal production would result in hot axions, but several non-
thermal production mechanisms (e.g. misalignment) yield cold axions that form a

condensate.

Jens Niemeyer

. . . . Raquel Galazo-Garcia
e Coherent/wave-like behavior = impact on astrophysical Marco Gorghetto

structure and dynamics Tanja Rindler-Daller
Rodrigo Vicente



Axions, ALPS, and FDM..
Oh my!

QCD Axion (or just “axion”) solves the strong CP problem.

e DFSZ and KSVZ are two examples, but there are many more
possibilities, covering a lot of parameter space.

Axion Like Particles (ALPs) are scalars that behave similarly to the QCD
axion, but might not solve the strong CP or DM problems.

Ultra-Light Dark Matter (ULDM) can be as light as 10-22 eV.

Fuzzy Dark Matter (FDM) is a sort of generic term for ULAs/ALPs that
contribute to DM. Preferred mass is near 10-22 eV, which has galaxy-scale
deBroglie wavelength and therefore explains the cored profiles of galaxies.

(10% ¢V)
10-3eV  107%eV eV keV GeV M, M, Mass
| | | |

___________________ l l
F ] 1 ] = e I >
{ O1npnosite

DE Ultra-light DM “Light” DM WIMP < e Primordial BHs

Not DM Wave Particle Composite / Macroscopic



Some ways to detect ALPs

Fabrice Hubaut’s talk

e Primakoff Effect

/ LR O a(x) - = Note: for QCD axions, mass and
g La;/;/ E-B coupling are not independent!
5 But for generic ALP, they can be.

Yary~y
e Light through walls (e.g. ALPS)

e |aser light is shined at a wall. Magnetic field: some photons converted to
axions. Axions travel through wall. Magnetic field: some convert back to
photons.

e Microwave cavity searches (e.g. ADMX)
e Axions passing through cavity + magnetic field. Some convert to photons.
e Solar axion searches (e.g. CAST)

e Photon converts to axion in sun, travels to Earth. Magnetic field: axion
converts back to photon.

e ALP decays: CMB, BBN, JWST and other integral field spectrographs

So much
e ALP conversion in astrophysical magnetic fields (constrains high-mass) astrophysics!

e Stellar evolution (cooling from ALP production inside stars)



Axion Search Prospects
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Candidates

Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy
Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

Sterile neutrinos

Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)

Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles

Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons

Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions

Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to
itself; abundance via 3-2 or 4-2 scattering

WIMPzilla: super-heavy ( 2 10% GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
MACHOs: massive compact halo objects (anything dark enough - black holes, neutron stars, brown dwarfs...)***

Primordial Black Hole (PBH)



E-WIMPs/Super-WIMPs/FIMPs

Some dark matter candidate particles
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e Tiny interactions with SM particles ]

103 .
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e gravitino: Mpi~101° GeV 0]
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e Other candidates: KK graviton, sterile neutrinos...

* Production: typically freeze-in (or similar)
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Freeze-In

* C(Collisional processes and/or decays lead to production of out-of-equilibrium FIMPs.

FIMPs could be DM themselves, or decay to DM. Extremely weak interactions, so once
DM is produced, it sticks around.

1. Bath of SM particles at high T
2. SM particle interactions produce FIMPs

3. Universe cools such that SM particles no longer have enough energy to produce heavier
FIMPs. (If FIMPs are unstable, they decay to DM.)

e DM abundance is “frozen-in”

Freeze-out DM

e Some differences from Freeze-out: v
e Small initial thermal population
Increasing
e Larger coupling = more DM produced coupling
e i
e Works down to ~keV (depending on model) \;(69??—”" ----------------- —————= =
1072 ™ o —
 Most models include a metastable particle ,,——"" Increasing annihilation
10715 ¢ cross section

1 o 100

Hall, Jedamzic, March-Russell, & West (2009) x=m/T



Detecting the FIMP Scenario

Detection is challenging due to very weak interactions with SM, but there are
still many (model-dependent) possibilities!

Decays could impact BBN and CMB... = constraints on metastable particles.

Collider search for long-lived particles (eg. NLSP), anomalous scattering at
fixed-target experiments, anomalous decays.

Indirect signals from decay, or annihilation to an unstable light mediator
( xx — ¢¢) that decays to SM particles

Could be probed by low-threshold direct dark matter searches in the keV-
MeV mass range (very large abundance, so some hope?)

Stellar ( < 100 keV) and supernovae (~ MeV) constraints from cooling

Bernal et al. (2017)



Candidates

Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy
Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

Sterile neutrinos

Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)

Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles

Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons

Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions

Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to
itself; abundance via 3-2 or 4-2 scattering

WIMPzilla: super-heavy ( 2 10% GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
MACHOs: massive compact halo objects (anything dark enough - black holes, neutron stars, brown dwarfs...)***

Primordial Black Hole (PBH)



Sterile Neutrinos?

SM (L-handed) neutrinos have masses. No R-handed neutrinos in the SM — no consistent way
to write a term that gives them mass.

[Minimal Type 1 Seesaw] Solution: add R-handed neutrinos as gauge singlet fermions with
Majorana mass Mg#. Interactions with LH neutrinos through a Yukawa term with coupling yv.

L-R mixing — for M+~ large enough, the light states get a mass eigenvalue of m,, = yfvg/MRH

e Typical MgrH values are 1015 - 1016 GeV, but there are ways to get it much smaller.
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e There are other solutions besides this one. Point is that adding RH neutrinos is reasonable.

e |f RH (sterile) neutrinos are light (keV mass range) and not too strongly mixed with LH (active)
neutrinos, they can be the DM.



Sterile Neutrino DM

. . . . Image: Shaposhnikov (2024)
Sterile does not mean completely sterile - interactions

with SM particles happen via mixing with active 0.05 eV 1Tev 10" Gev
neutrinos, or may arise through new gauge interactions J] J] J]
at high energies.

10° F

1000 F

e Sterile neutrinos have extremely weak interactions,

(@)
. - . . c
so were never in thermal equilibrium in the early 2 01]l | hol bkt
. -
Universe. S
r;c 10°°
. . . . y/
* Possible production mechanisms: Freeze-in, 2 10} s
oscillate-in (Dodelson-Widrow or Fuller-Shi), g
decays of heavy bosons... (all model-dependent)
. . . 0 Lo 107’ :
Not stable, but very long-lived (related to active-sterile T T T T
mixing) - can have lifetimes longer than the age of the LSND v MSM LHC GUT | see-saw
Universe. Majorana mass, GeV

O(keV) masses are viable, though if sterile neutrinos
are more decoupled from the SM then they can be
much heavier. Neutrino experiments allow a large range
of masses and couplings.

Boyarsky et al. (2018), Shaposhinkov (2024)



Light Sterile Neutrinos

Model independent:

e Main decay mode is N — 3v

* More important (for
observations) decay mode

isN — vy

* Monochromatic photon
line signal at E, & my,/2
(x-ray constraints)

* Cosmological production:

£Y¢~ — Nv (thermal
overproduction bound)

* | arge number density in
dSphs would violate Pauli
Exclusion (phase space
bound)

Model dependent:

* Dashed contours are constraints/sensitivity that depend

10—13 L

on the production mechanism (and other model
characteristics)

Image: Boyarsky et al. (2019)
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Candidates

Weakly Interacting Massive Particles (WIMPs): neutralinos, sneutrinos, LKP, LTP, +++

Light bosons/Wave DM: Axions, Axion-Like Particles (ALPs), Ultra-Light Dark Matter Matter (ULDM), Fuzzy
Dark Matter (FDM)

FIMPs/E-WIMPs/super-WIMPs: gravitino, axino, KK graviton, +++

Sterile neutrinos

Q-Balls: non-topological soliton of supersymmetry (usually made up of squarks and sleptons)

Dynamical Dark Matter (DDM): string-inspired, time-evolving ensemble of dark matter particles

Asymmetric Dark Matter (ADM): DM-antiDM asymmetry which may be related to the baryon-antibaryon asymmetry
Dark Photon Dark Matter: gauge boson of a dark U(1), mixes with SM gauge bosons

Self-Interacting Dark Matter (SIDM): DM interacts with SM and has non-negligible self interactions

Strongly Interacting Massive Particles (SIMPs) and Cannibals: DM is feebly coupled to SM but strongly coupled to
itself; abundance via 3-2 or 4-2 scattering

WIMPzilla: super-heavy ( 2 10% GeV), non-thermally produced DM; e.g. heavy gravitino from inflaton decay
MACHOs: massive compact halo objects (anything dark enough - black holes, neutron stars, brown dwarfs...)***

Primordial Black Hole (PBH)



Primordial Black Holes (PBHSs)

Proposed in the 60’s, studied extensively by «
Hawking and others in the 70s

Primordial Black Holes (PBHs) formed in the
very early universe - before BBN

Various mechanisms:
e collapse of large density perturbations
e collapse of cosmic string loops

e bubble collisions «
'cO’S ‘\.a\

. Pasq\l?"‘e ser®!

Can happen during a radiation- or (early)
matter-dominated era

Possible that PBHs themselves come to

Quantum fluctuations

Throughout space-time,

virtual particle-antiparticle

pairs spontaneously -
arise and then

Formation requires increased energy density at
early times — connection between PBH mass
and horizon mass at formation

c3t {

M 10 10—23s |

«  Planck time = 107> g (Planck mass)

« 1second — 105M®

Range of masses at formation? Formation over
some time period, or power spectrum of
inhomogeneities spans some spatial scales.

Hawking Radiation and Evaporation

Hawking radiation

If a pair arises
close to the horizon
of a black hole, one

particle falls in,

Event horizon
r_‘

’m:m

dominate the energy density of the universe  onnihilate each ol Black hole leaving the other
other. ~8 ¥ fo escape as

“Hawking

e - - radiation.”

&

7

Pair creation

and annihilation

Gravity-warped space-time

Image: Lucy Reading-lkkanda for Quanta Magazine



http://www.lucyreading.com/

PBH Evaporation and Constraints

» Black Holes evaporate through continuous emission of degrees of freedom, losing mass and
angular momentum.

 Lifetime = time required to evaporate
* Low Mass range: 10-1g-10°¢g

* Mass range defined by CMB and BBN. These are probably not dark matter, but they may be
important to the dark matter story.

* Note: “memory burden effect” (Dvali et al.) could halt evaporation, leaving remnant PBHs

* High Mass range: ~1016 g (asteroid mass) - ~1023 g (sublunar) Fig: Green (2024), w/
PBHbounds (Kavanagh)
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Summary

* There are currently a huge number of viable dark matter candidates
spanning ~90 orders of magnitude in mass.

e The WIMP paradigm has been a primary guide for many years. Still
possible, but many other candidates are now being taken more
seriously.

e Astrophysical and cosmological observations:
* |ndirect detection remains a critical technigue.

e Studying cosmic structures, stellar physics and evolution presents
exciting new opportunities to probe the nature of dark matter.



