QCD & Heavy-lon physics at the Future Circular Collider

QCD&HI workshop Comm. Workshop (EU HEP Strategy Update) Orsay, 19th Sept 2024

David d'Enterria CERN

LHC

Particle physics: World context

- Apart from the Higgs discovery, all fundamental questions that motivated the LHC still remain open! DM, matter-antimatter asymm., EW-Planck hierarchy, nu masses, strong CP problem, DE, cosmol.const, inflation,...
- World priority is a high-precision Higgs factory to precisely probe the crucial scalar sector of the SM:
- Model-indep. Higgs couplings down to 0.1%: Indirect BSM up to $\Lambda \approx 7$ (70) TeV (+EW observ.)
- Higgs Yukawa couplings to lightest fermions (u,d,s,e,nu?)
 Flavor-violating H → qq' decays?
- Followed by energy-frontier hadron collider (FCC-hh): H selfcoupling + direct BSM searches up to $\Lambda \approx 100$ TeV

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

 the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

CERN Future Circular Collider (FCC)

- 90.7 km tunnel
- 4 experimental sites
- Deepest shaft 400 m, average 240 m

Two stages

- FCC-ee (~15 years)
- FCC-hh (>20 years)

"I believe FCC is the best project for CERN's future, we need to work together to make it happen" - <u>Fabiola Gianotti, FCC Week London, 5th June 2023</u>

Exploit world-class international community, facilities, and sci-tech *savoir-faire* accumulated at CERN over the last 70 years!

Impressive FCC-ee luminosities

QCD is at the core of FCC-ee physics

Though QCD is not per se the driving force for FCC-ee, it is crucial for a huge range of studies:

70–80% of H, Z, W boson decays have fully hadronic final states!

- 1. Precise α_s determination is needed to accurately & precisely predict all SM x-sections & decay rates (Higgs, top, EWPOs,...)
- 2. Higher-order (NⁿLO, NⁿLL) calculations crucial to gain precise control over hadronic final states & jet dynamics.
- 3. Heavy/light quark & gluon separation (flavour tagging, substructure,...) is key for multiple SM measurements (H Yukawas,...) and BSM searches (X → jj decays,...).
- 4. Non-perturbative QCD (hadronisation, colour reconnection,...) impacts studies with hadronic final states: $e^+e^- \rightarrow WW$,ttbar (\rightarrow jets), m_{W} , m_{top} extractions.

Precision QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

Advantages compared to p-p collisions:
1) QED initial-state with known kinematics
2) Controlled QCD radiation (only in final-state)
3) Well-defined heavy-Q, quark, gluon jets
4) Smaller non-pQCD uncertainties: no PDFs, no QCD "underlying event",... Direct clean parton fragmentation & hadroniz.

Plus QCD physics in $\gamma\gamma$ (EPA) collisions:

Precision QCD in e⁺e⁻ collisions (FCC-ee)

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to probe very precisely q,g dynamics:

QCD&HI Comm.Workshop, Orsay, Sept 2024

Very rich QCD physics at FCC-ee

Very rich QCD at FCC-ee. Examples:

Example: QCD coupling α_s

Z,W hadronic widths provide the most precise (0.1%) α_s extraction:

Reduced parametric uncertainties: Higgs, EWPO, top... x-sections & decays

Summary of future parametric uncertainties:

					_ Summary .		parametric uncert	
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	Quantity	FCC-ee	future param.und	c. Main source
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9	$R_b \ [10^{-5}]$	6	< 1	$\delta \alpha_s$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c	R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$
$H \rightarrow c\bar{c}$	126	\pm 7.1	$\pm 0.1\%$ =	$\pm 2.3 \%$	Msbar mass erro	or budget (from	threshold scan)	\frown
	104				$(\delta M_t^{ m SD-low})^{ m exp}$	$\delta M_t^{\rm SD-l}$	$(\delta \overline{m}_t(\overline{m}_t))^{\mathrm{conversion}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t) \right)^{\alpha_s} \right)$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ =	$\pm 0 \%$	40 MeV	50 MeV	7 – 23 MeV	70 MeV
					⇒ improveme	nt in α_{2} cruci	ial	$\delta \alpha (M) = 0.001$

Very rich QCD at FCC-ee. Examples:

Gluon jets are badly known today

MC LL parton showers differ vastly on gluon jet substructure properties:

Example: High-precision g & q jet studies

Exploit FCC-ee H(gg) as a "pure gluon" factory: H → gg provides O(150.000) extra-clean digluon events.

Compare to Z \rightarrow qq(g): Multiple handles to study g rad./jet properties:

- Gluon vs. quark via $H \rightarrow gg$ vs. $Z \rightarrow qq$ (Profit from excellent g,b separation)
- Gluon vs. quark via Z → bbg vs. Z → qq(g)
 (g in one hemisphere recoiling against 2-b-jets in the other).
- Vary E_{jet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
- Vary jet radius: small-R down to calo resol
- Multiple high-precision analyses at hand
- Jet tagging: ML training on <u>pure</u> samples: Improve q/g/Q discrimination
- pQCD: Improve/retune NNLL parton showers, Lund Plane, jet substructure...
- non-pQCD: Improved gluon hadronization: Leading η 's ? Baryon junctions ? Octet neutralization? Colour reconnection? Glueballs ?

QCD&HI Comm.Workshop, Orsay, Sept 2024

00000000

t

0000

Η

Very rich QCD at FCC-ee. Examples:

Non-pQCD example: Colour reconnection

- Colour reconnection among partons is source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states. Especially in pp (MPI cross-talk).
- CR "string drag" effect impacts all FCC-ee multi-jet

final-states: $e^+e^- \rightarrow WW(4j)$, H(2j,4j), ttbar,...

- Shifted masses & angular correlations (CP studies).
- Combined LEP $e^+e^- \rightarrow WW(4j)$ data best described with 49% CR, 2.2 σ away from no-CR.

Exploit huge stat WW at rest (×10⁴ LEP) to measure

 $\rm m_w$ leptonically & hadronically and constrain CR:

"Recent" PYTHIA option: QCD-inspired CR (QCDCR) (1505.01681):

 \otimes kinematics

 $\mathcal{O}(1)$

Triple-junction also in HERWIG cluster model. (1710.10906)

 $\Gamma_W \gg \Lambda_{\rm OCD}$

Non-pQCD example: Vacuum hadronization

- Precision low- p_T PID hadrons in $10^{12} e^+e^- \rightarrow Z \rightarrow (10^{14} hadrons)$ for studies:
 - Baryon & strangeness prod. Colour string dynamics
 - Final-state correlations: space-time, spin (BE, FD)
 - Exotic BR(10⁻¹²) bound-states: Onia, multi-quark states, glueballs, ...

 Understand breakdown of universality of parton hadronization with system size observed at LHC.

ā

Baseline vacuum e⁺e⁻ studies for high-density QCD in small & large systems.

Also e.g. impact ultra-high-energy cosmic-ray MCs (muon puzzle)

Summary (1): High-precision QCD at FCC-ee

 The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
 Unique QCD precision studies accessible at FCC-ee:

Heavy-ions at the FCC energy frontier

Central (hadronic) heavy-ion collisions:

- 1) ONLY way known to experimentally study the thermodynamics & phase transitions of a non-Abelian quantum-field theory. Collective ✔ QCD, ★ EWK in the lab.
- □ QGP = Least viscous fluid known. Test-bed for string theory applications via AdS/CFT duality.
- Understand early Universe "bath" (~1 μs): WIMP decoupling, axion mass, imprints on gravitational wave spectrum? ...

- Ultraperipheral (electromagnetic) heavy-ion collisions:
 Strongest electromagnetic fields in the Universe (~10¹⁵ T).
 - 2) Unique SM & BSM studies via photon-photon collisions: light-by-light, axion-like particles, magn. monopoles, Higgs,...

<u>Note</u>: Likely, no other place in Universe produces Pb-Pb collisions at multi-TeV c.m. energies (heaviest cosmic-rays colls.: Fe-Air up to $\sqrt{s_{max}} \approx 400$ TeV).

Ha

Heavy-ion collisions at the FCC-hh

CM energy $\sqrt{s} = 100$ TeV for pp means: $\sqrt{s_{NN}} = \sqrt{s}\sqrt{Z_1Z_2/A_1A_2}$ for A-A colls. PbPb: $\sqrt{s_{NN}} = 39 \text{ TeV}$, $\mathcal{L}_{int} = 110 \text{ nb}^{-1}/\text{month} \sqrt{s_{NN}}$: ×7 larger than LHC pPb: $\sqrt{s_{NN}} = 63 \text{ TeV}, \mathcal{L}_{int} = 29 \text{ pb}^{-1}/\text{month}$ $\mathcal{L}_{int} : \times 10-30 \text{ larger than LHC}$

Huge increase in pQCD cross sections (yields) to probe QGP:

PbPb(39 TeV): Bulk QGP properties

Quantity	Pb-Pb 2.76 TeV	Pb–Pb 5.5 TeV	Pb-Pb 39 TeV
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600
Total N _{ch}	17000	23000	50000
$\mathrm{d} E_{\mathrm{T}}/\mathrm{d} \eta$ at $\eta=0$	1.8–2.0 TeV	2.3–2.6 TeV	5.2–5.8 TeV
Homogeneity volume	5000 fm ³	6200 fm ³	11000 fm ³
Decoupling time	10 fm/c	11 fm/c	13 fm/c
ε at $\tau = 1$ fm/c	12–13 GeV/fm ³	16–17 GeV/fm ³	35–40 GeV/fm ³

Fig. 2: Left: space-time profile at freeze-out from hydrodynamical calculations for central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV and 39 TeV. Right: time evolution of the QGP temperature as estimated on the basis of the Bjorken relation and the Stefan-Boltzmann equation (see text for details).

×2–2.5 larger particle & energy densities (~40 GeV/fm³) than LHC

PbPb(39 TeV): Thermalized charm in QGP

Expect abundant secondary production of $c\overline{c}$ pairs in the medium from $gg \rightarrow c\overline{c}, q\overline{q} \rightarrow c\overline{c} + \text{NLO} \dots$ (~500 $c\overline{c}$ pairs!)

Up to 50-100% "enhancement" wrt primary charm
 Sensitive to QGP properties: T vs τ, and τ₀ (active ndof in QCD EoS)

×3 larger charm-anticharm densities than at the LHC

pPb(63 TeV): Triple-parton scatterings

plus "pocket formula" and p-A Glauber:

At $\sqrt{s_{NN}}$ = 63 TeV: σ (triple-charm) \approx 8.6 b, σ (triple-J/ ψ), σ (triple-bb) \approx 1,10 mb

PbPb(39 TeV): QQ melting & recombination in QGP

- FCC (T_0 ~1GeV) can probe QGP temperature through Y(1S) "melting" expected by lattice-QCD at T = 4–5 T_c
- Melting compensated
 by b-b recombination?
 Density of bottom pairs
 large enough for Y(1S)
 recombination?

[A.Andronic, et al., JPG38 (2011) 124081]

PbPb(39 TeV): Boosted-top quark in QGP

■ Top-quark decays (t~0.1 fm/c) before hadronization into W+b. But, boosted t→W→ qq' traverses QGP:

t → b + 2jets (66%) ttbar → bbar + 2jets + 1 ℓ + MET(n) (45%)

- \rightarrow Colour reconnection of decay b,q,q'?
- \rightarrow Enhanced gluon radiation in QGP?
- → Boosted t-tbar = Color-singlets probe medium opacity at diff. time scales:
- Reconstructed m_w(qq) vs p_T(t) provides space-time QGP tomography:

PbPb(39 TeV): $H \rightarrow \gamma \gamma$ in the QGP

PbPb(39 TeV): $H \rightarrow \gamma \gamma$ in the QGP

g

QCD&HI Comm. workshop, Orsay, Sept

Analysis based on NNLO MCFM cross sections. Pseudo-data for $H(\gamma\gamma)$ and $\gamma\gamma$ backgrounds after typical CMS/ATLAS cuts

Higgs boson (τ~50 fm) final-state interaction in QGP?

[Ghiglieri & Wiedemann, arXiv:1901.04503] $\delta\Gamma_{H\to gg} = -\Gamma_{H\to gg}^{\text{vac}} \alpha_{\text{s}} \frac{T^4}{M_H^4} \frac{112 \,\pi^3}{45} \left(8 - n_f^T\right)$ for *H*-decay in the plasma rest frame.

Negligible modification of Higgs decay width in QGP ~ (T/m_H)⁴~10⁻⁶...

nPDF (anti)shadowing via Higgs boson

EPS09 nuclear PDFs modify slightly x-sections wrt. pp PDFs:

QCD&HI Comm.Workshop, Orsay, Sept 2024

pPb(63 TeV): Nuclear parton distrib. functions

QCD&HI Comm.Workshop, Orsay, Sept 2024

28/34

pPb(63 TeV): Nuclear parton distrib. functions

QCD&HI Comm.Workshop, Orsay, Sept 2024

29/34

PbPb(39 TeV): SM & BSM via γγ collisions

Ultraperipheral interactions: Nuclei survive.

• Unique SM & BSM γ - γ processes acessible without pileup:

QCD&HI Comm.Workshop, Orsay, Sept 2024

PbPb(39 TeV): SM & BSM via yy collisions

QCD&HI Comm.Workshop, Orsay, Sept 2024

31/34

PbPb(39 TeV): Higgs boson via $\gamma\gamma \rightarrow H \rightarrow bb$

Expected exclusive Higgs over bb background after cuts:

System No.			ominal runs			Upgraded pA scenario				
	$\frac{\mathcal{L}_{AB}}{(\mathrm{cm}^{-2}\mathrm{s}^{-1})}$	Δt (s)	$\langle N_{\rm pileup} \rangle$	$\begin{array}{c} N_{\rm Higgs} \\ {\rm total} \; (H \rightarrow b\bar{b}) \end{array}$		$\frac{\mathcal{L}_{AB}}{(\mathrm{cm}^{-2}\mathrm{s}^{-1})}$	Δt (s)	$\langle N_{\rm pileup} \rangle$	$\frac{N_{\text{Higgs}}}{\text{total } (H \to b\bar{b})}$	
<i>pp</i> (14 TeV)	10 ³⁴	107	25	77 (55)		10 ³⁴	107	25	77 (55)	
<i>p</i> Pb (8.8 TeV) PbPb (5.5 TeV)	$\frac{1.5 \cdot 10^{29}}{5 \cdot 10^{26}}$	10^{6} 10^{6}	$0.05 \\ 5 \cdot 10^{-4}$	0.050 (0.035) 0.009 (0.007)		$1 \cdot 10^{31} \\ 5 \cdot 10^{26}$	10^{7} 10^{7}	$\frac{1}{5\cdot 10^{-4}}$	34 (25) 0.15 (0.1)	
PbPb at $\sqrt{s_{NN}} = 39 \text{ TeV}$			cross section			visible cross section		1	$N_{ m evts}$	
		(b	-jet (mis)ta	ag efficiency)	aft	er $p_T^j, \cos \theta_{jj}, a$	m_{jj} cuts	$(\mathcal{L}_{int} =$	110 nb^{-1})	
$\gamma \gamma ightarrow { m H} ightarrow b ar{b}$			1.02 nb (0.50 nb)		0.19 nb			2	21.1	
$\gamma \gamma ightarrow b ar{b} \ [\mathrm{m_{bar{b}}} = 100 - 150 \ \mathrm{GeV}]$			24.3 nb (11.9 nb)			0.23 nb			25.7	
$\gamma \gamma ightarrow c \overline{c}$ [m	$n_{c\bar{c}} = 100 - 150 \text{ G}$	525 nb (1.31 nb)		0.02 nb			2.3			
$\gamma \gamma \rightarrow q \bar{q} \ [m_{q \bar{q}} = 100 - 150 \text{ GeV}]$			590 nb (0.13 nb)			0.002 nb			0.25	

5 σ significance in first PbPb (pPb) month (year):

QCD&HI Comm.Workshop, Orsay, Sept 2024

Н

32/34

PbPb(39 TeV): BSM searches (e.g. magnetic mopoles)

Heavy-ion collisions at the LHC generate the largest B-fields in the universe B~10¹⁶ T, i.e. x10⁵ magnetar fields (albeit over ~10 fm for ~1 fm/c):

Summary (2): Unique heavy-ion physics at FCC-hh

• Unparalleled HI physics with $\times 7$, $\times 10$ larger \sqrt{s} and \mathcal{L}_{int} than LHC:

Back-up slides

$\textbf{Higgs} \rightarrow \textbf{gg} \ \textbf{decay} \ \textbf{and} \ \textbf{BSM}$

H \rightarrow gg partial width known today theoretically at N⁴LO (approx) accuracy

Percent deviations on Higgs-gluon coupling in BSM models:

Table 5: Deviations from the Standard Model predictions for the Higgs boson couplings in %

	Model	$b\overline{b}$	$c\overline{c}$	<u>gg</u>	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$	_
1	MSSM [40]	+4.8	-0.8	-0.8	-0.2	+0.4	-0.5	+0.1	+0.3	_
2	Type II 2HD $[42]$	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8	
3	Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8	[T. Barklow et al.
4	Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2	arXiv:1708.08912]
5	Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4	
6	Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0	
7	Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8	
8	Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5	
9	Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	

Higgs decays widths & QCD coupling

• $H \rightarrow gg$ partial width known today theoretically at N⁴LO (approx) accuracy

Uncertainties: O(3%) TH + O(4%) parametric from $\alpha_s(m_z)=0.118\pm1\%$ (today):

Partial width	intr. QCD	intr. electroweak	total	para. m_q	para. α_s
$H ightarrow b ar{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	1.4%	0.4%
$H \to c \bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	4.0%	0.4%
$H \rightarrow gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$	< 0.2%	3.7%

FCC-ee will need a much more precise $\alpha_s(m_z)$ to constrain κ_g at ±0.7% (exp

Strange-quark jet tagging at FCC-ee

FCC-ee will produce O(400) H \rightarrow ssbar decays. Can we measure y_s? ParticleNet jet tagger exploiting hadron PID (via dE/dx, ToF, RICH):

Tagger exploits directly full list of jet constituents (ReconstructedParticles):

[O(50) properties/particle]

 \times [~50-100 particles/jet]

~ O(1000) inputs/jet

Analysis $e^+e^- \rightarrow HZ$, $H \rightarrow qq$ with N=2j exclusive jet algorithm: Backgds: WW/ZZ/Z, qqH, HWW, HZZ Combined jj (Hbb, Hcc, Hss, Hbb) fit yields: $H \rightarrow ss$ with O(80%) uncertainty D. d'Enterria (CERN)

Separating H \rightarrow ss and H $\rightarrow~gg$

20

40

60

Q[GeV]

80

10⁻²

For m_{jj}>100 GeV: Dalitz ssg decays are no bottleneck to the y_s extraction (high mass resum. needed)

[M.Spira; G. Salam]

Need also NNLL parton showers (matched to NNLO) and accurate/precise s, g (string, cluster) hadronization:

High-precision hadron data (FCC-ee, Bfactories?) needed to reliably distinguish leading s, u,d,g fragmentation hadrons

100

120

Flavor-violating Higgs decays at FCC-ee

D. d'Enterria (CERN)

QCD coupling at FCC-ee (Tera-Z)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{ ext{had}}_{ ext{W,Z}}(Q) = \Gamma^{ ext{Born}}_{ ext{W,Z}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\rm Z}^{\rm had} = rac{12\pi}{m_{\rm Z}} \cdot rac{\Gamma_{\rm Z}^{\rm e}\Gamma_{\rm Z}^{\rm had}}{(\Gamma_{\rm Z}^{
m tot})^2}$$

Note: Sensitivity to $\alpha_s(m_Z)$ from O(4%) virtual corrs.

[DdE, Jacobsen: arXiv:2005.04545]

- FCC-ee will reach 0.1% precision on $\alpha_s(m_z)$ (×20 better than LEP results):
 - Huge Z pole stats. ($\times 10^5$ LEP):
 - Exquisite syst./parametric precision:

$$\begin{split} \Delta \mathbf{R}_{\mathbf{Z}} &= 10^{-3}, \quad \mathbf{R}_{\mathbf{Z}} = 20.7500 \pm 0.0010 \\ \Delta \Gamma_{\mathbf{Z}}^{\text{tot}} &= 0.1 \text{ MeV}, \quad \Gamma_{\mathbf{Z}}^{\text{tot}} = 2495.2 \pm 0.1 \text{ MeV} \\ \underline{\Delta \sigma_{\mathbf{Z}}^{\text{had}}} &= 4.0 \text{ pb}, \quad \sigma_{\mathbf{Z}}^{\text{had}} = 41\,494 \pm 4 \text{ pb} \\ \overline{\Delta m_{\mathbf{Z}}} &= 0.1 \text{ MeV}, \quad m_{\mathbf{Z}} = 91.18760 \pm 0.00001 \text{ GeV} \\ \Delta \alpha &= 3 \cdot 10^{-5}, \quad \Delta \alpha_{\text{had}}^{(5)}(m_{\mathbf{Z}}) = 0.0275300 \pm 0.0000009 \end{split}$$

– TH uncertainty to be reduced by $\times 4$

from missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms QCD&HI Comm.Workshop, Orsay, Sept 2024 41/34

QCD coupling at FCC-ee (Oku-W)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{
m had}_{
m W,Z}(Q) = \Gamma^{
m Born}_{
m W,Z} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{
m EW} + \delta_{
m mix} + \delta_{
m np}
ight) ~,$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

W/Z **P** Z/W **q**

Note: Sensitivity to $\alpha_s(m_z)$ from O(4%) virtual corrs.

[DdE, Jacobsen: arXiv:2005.04545]

- FCC-ee will reach 0.2% precision on $\alpha_s(m_w)$ (×300 better than LEP results):
 - Huge W pole stats. ($\times 10^4$ LEP-2).
 - Exquisite syst./parametric precision:

 $\Gamma_{\rm W}^{\rm tot}=2088.0\pm1.2~{\rm MeV}$

 $\rm R_W = 2.08000 \pm 0.00008$

 $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

 $|V_{cs}| = 0.97359 \pm 0.00010 \quad \leftarrow O(10^{12}) D \text{ mesons}$

- TH uncertainty to be reduced by $\times 10$ from missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s^2$ terms QCD&HI Comm.Workshop, Orsay, Sept 2024 42/34

$H\to\gamma\gamma$ counts after cuts

Analysis based on NNLO MCFM v.8.0 pseudo-data for $H(\gamma\gamma)$ plus $\gamma\gamma$ backgrounds after typical CMS/ATLAS cuts

System	$\sqrt{S_{_{ m NN}}}$	$\mathcal{L}_{ ext{int}}$	Н	$\rightarrow \gamma \gamma$	$\to \operatorname{Z}\operatorname{Z}^*(4\ell)$
	(TeV)		$\sigma_{ m tot}$	yields	yields
PbPb	5.5	10 nb ⁻¹	500 nb	6	0.3
pPb	8.8	1 pb^{-1}	6.0 nb	7	0.4
PbPb	39	33 nb ⁻¹	11.5 μb	450	25
pPb	63	8 pb^{-1}	115 nb	950	50

LHC (nominal L_{int}): ~2 Higgs bosons/month in Pb-Pb
 HE-LHC (nominal L_{int}): ~10 Higgs bosons/month in Pb-Pb
 FCC (nominal L_{int}): ~500 H bosons/month in Pb-Pb

$H \rightarrow \gamma \gamma$ observation in Pb-Pb (LHC, FCC)

QCD&HI Comm.Workshop, Orsay, Sept 2024

^{44/34}

$H \rightarrow \gamma \gamma$ observation in p-Pb (LHC, FCC)

→ LHC (8.8 TeV, 1 pb⁻¹): Nominal lumi: $S/\sqrt{B}\sim 0.4$ (0.6, adding 4*l*) L_{int}= 40 pb⁻¹: 3s evidence 4.2s combined with H(4l)→ FCC (63 TeV, 8 pb⁻¹): Nominal lumi: $S/\sqrt{B} \sim 7.7s$ observation p-Pb @ 63 TeV (L_{int}= 8 pb⁻¹) ∕6000 55500 pPb \rightarrow H \rightarrow $\gamma\gamma$, 63 TeV, L_{int}=8.0 pb⁻¹ Pseudodata Ъ Д5000 Fitted S+B γγ background 4500 4000 3500 3000 ⊢ MCFM, NLO PDF: CT10, nPDF=EPS09 2500 135 140 130 110 115 120 125

D. d'Enterria (CERN)

m_{γγ} (GeV)