Dernières découvertes de H.E.S.S. Loïc Rolland CEA-Saclay/DSM/DAPNIA/SPP

- L'astronomie γ
- L'expérience H.E.S.S.
- Résultats récents
 - Sources galactiques
 - Fond IR extragalactique

61 360.5 360 359.5 359 358.5 358 l (deg)

Loïc Rolland

L'astronomie y -Le mystère des rayons cosmiques

Découverte en ballon Victor Hess, 1912

10 ordres de grandeur en énergie 30 ordres de grandeur en flux Origine, composition inconnues Transition galactique/extragalactique

Meilleurs candidats galactiques les restes de supernovae électrons à 100 TeV

Loïc Rolland

L'astronomie γ -

L'origine du rayonnement y

□ Protons ou hadrons de haute énergie □ p + noyau $\rightarrow X \pi^0 \rightarrow X \gamma \gamma$

Electrons de haute énergie

Pertes <u>synchrotron</u>
<u>Bremsstrahlung</u>
Diffusion <u>Inverse-Compton</u>

Annihilation de matière noire

 $\Box \chi \chi \to X \gamma$

The M87 let

Loïc Rolland

nverse Compton

(+Bremsstr.)

M 87 (HST)

L'astronomie y -L'imagerie Cherenkov atmosphérique

L'astronomie γ -

La stéréoscopie

Direction de la source

- Eliminer les muons isolés
- Baisser le seuil
- Améliorer la réjection hadronique
- Améliorer la reconstruction des γ

Loïc Rolland

LE DETECTEUR H.E.S.S.

6

Loïc Rolland

H.E.S.S. : un instrument de 3ème génération

<u>Site</u> : Namibie, 23°16'' S, 16°30'' E, altitude 1800 m

Télescopes

- Réflecteur Davies-Cotton segmenté, 12 m de diamètre
- Focale : 15 m
- PSF du miroir ~ 9' sur axe
- Précision de pointe : 8"

Loïc Rolland

H.E.S.S. : un instrument de 3ème génération

Caméras

- 960 pixels (PMs), diamètre 0,16°
- Champ de vue : 5°
- Electronique rapide
 - Echantillonnage 1 ns
 - Fenêtre de lecture 16 ns
 - Décision de déclenchement ~ 70 ns
- Electronique embarquée
 - (3 câbles vers le sol)
 - Modulaire
 - ~1 tonne

Loïc Rolland

Les performances de H.E.S.S.

- Seuil ~ 100 GeV au zénith
- Résolution angulaire < 6' gerbe à gerbe
- Résolution en énergie ~ 15%
- Détection Nébuleuse du Crabe au zénith :
 - 0,01 Crabe : ~25 h
 - 0,05 Crabe : ~1 h
 - 0,10 Crabe : ~15 min
 - 1,00 Crabe : ~30 s

Loïc Rolland

Le ciel gamma de très haute énergie

Loïc Rolland

Séminaire CPPM, 12 juin 2006

10

SOURCES GALACTIQUES

200 150 100

Loïc Rolland

Scan galactique -

Observations du plan galactique

- Plan galactique : $|\mathbf{b}| < 6^{\circ}$
- Mosaique 2004 : ~ 200h en 400 pointés (4 mois), $|l| < 30^{\circ}$

EGRET

Région observée par H.E.S.S.

Scan galactique -

Nouvelles sources du plan galactique

Galactique : Plérions Plérions (nébuleuses de pulsar)

Nébuleuse synchrotron générée par un pulsar

Vent du pulsar : e-,e+, (hadrons ?). Comment sont-ils accélérés ? Champ B ?

Loïc Rolland

Séminaire CPPM, 12 juin 2006

ndra

Galactique : Plérions

Chandelle standard de l'astronomie γ.
 Première source au TeV (1989), source stable

Detection de gamma du TeV en provenance du Crabe Whipple 1989: 50 h d'observation

HEGRA 1997: 15 min 400 HESS 2004: 30 sec

Loïc Rolland

Galactique : Plérions

Le Crabe en gamma

- Modèle synchrotron (X) + inverse Compton (TeV)
- Spectre de 50 GeV (Celeste) à 80 TeV (HEGRA) Energie de coupure ?
- Position compatible avec le centre de gravité de l'émission X

@VLT

Galactique : Plérions

Autres plérions

Galactique : SNRs Restes de supernovae en coquille

RX J1713.7–3946

RX J0852.0-4622

Particles accélérées juqu'à au moins 100 TeV dans les coquilles... Mais sont-elles des protons/noyaux ou des électrons?

Loïc Rolland

Galactique : Binaires La binaire X LS5039 : le premier micro-quasar détecté au TeV Accretion d'une étoile sur un trou noir de masse stellaire

 \Rightarrow échelle réduite d'AGN dans notre galaxie

- Dynamique de l'accrétion
- Production des jets
- Accélération d'électrons vs. hadrons

Accélération de particles à >10 TeV établie !

Confirmé en 2005

Loïc Rolland

Galactique : Binaires

Première binaire au TeV : PSR B1259-63

Galactique : unid

... un nouveau type de sources ?

rayonsragending XTeV

étendues
spectre dur, Γ≈2
émission stable

Quatre sources : TeV J2032+4130 (HEGRA) HESS J1303–631,HESS J1616–508 HESS J1708-410, More to come...

Qelles sont ces sources ? Accélèrent-elles des hadrons ?

Loïc Rolland

Centre Galactique -

La région du Centre Galactique

publié dans Nature

Loïc Rolland

Séminaire CPPM, 12 juin 2006

22

Loïc Rolland

HESS J1745-290

Chandra GC survey NASA/UMass/D.Wang et al.

CANGAROO (80%) H.E.S.S. (95%) Détecté par MAGIC également

Contours from Hooper et al. 2004

Candidats astrophysiques

- trou noir Sgr A* de 3×10⁶ M_☉
 Chocs dans le disque d'accrétion
- Reste de supernova Sgr A East
 - Ondes de chocs en expansion
 - Découverte récente d'un plérion (X)

Ou annihilation de matière noire ?

Centre Galactique -_

Recherche de matière noire

- Matière noire non baryonique : 23% du contenu de l'Univers
- Prédiction : DM forme des halos liés sous l'effet de la gravité

 $\frac{d\Phi}{dE}(\Delta\Omega, E) = F_0 \times \frac{dN}{dE} \times \frac{\sigma v}{\sigma v_{ref}} \times \left(\frac{1\,TeV}{m_{DM}}\right)$

Annihilation de DM émet des gammas

Flux γ d'annihilation attendu

H.E.S.S. : $\Delta \Omega = 10^{-5} sr$

Modèle de halo

 $\bar{J}(\Delta \Omega) \times \Delta \Omega$

Spectre en énergie

Distribution angulaire

Loïc Rolland

Centre Galactique -

HESS J1745-290 Spectre et matière noire

Données 2004

warf)

Loïc Rolland

Centre Galactique - Variabilité de HESS J1745-290?

Pas de variabilité significative

Loïc Rolland

Centre Galactique -HESS J1745-290 : perspectives

- Total 100 h d'observations (2004+2005)
 50 h supplémentaires en 2006
 - Spectre et variabilité
 - Extension de la source
 - Position de la source

 Etude multi-longueurs d'onde (Chandra, INTEGRAL,...)

Loïc Rolland

Centre Galactique -Emission diffuse au Centre Galactique

publié dans Nature

Loïc Rolland

Séminaire CPPM, 12 juin 2006

28

Centre Galactique -Corrélation avec les nuages moléculaires

Corrélation avec la densité de nuages moléculaires sur ~2° (~150 pc)
 trace la présence de RCs hadroniques !!
 Loïc Rolland Séminaire CPPM, 12 juin 2006

Centre Galactique -Corrélation avec les nuages moléculaires

Loïc Rolland

Centre Galactique - Spectre de l'émission diffuse

Spectre observé :

Ioi de puissance
 indice spectral : Γ ~2.3
 indépendant de la position

Corrélation émission γ/densité massique
 π⁰ → γγ → spectre γ ≈ spectre des protons
 spectre des protons plus dur qu'au voisinage du soleil (Γ ~2.7)

Loïc Rolland

Centre Galactique -Une interprétation possible...

Interaction de protons diffus ?
 spectre de protons plus dur que le spectre local
 → source de RCs proche
 temps de diffusion sur 150 pc ~ 10 000 ans
 → âge du reste de supernova Sgr A Est

Sgr A East, Chandra

 Somme de sources d'électrons ?
 ~100 plérions (taille ~5'), non détectés en X → très improbable !

Loïc Rolland

Fond IR diffus extragalactique

Extragalactique : EBL

dN/dE

Fond IR diffus extragalactique Absorption par (infrared) le fond de lumière (infrarouge) extragalactique (EBL) : $\gamma(\text{TeV}) + \gamma(\text{EBL}) \rightarrow e^+e^-$

dN/dE

Physique des objets compacts accélération/absorption dans les jets,...

Mesures du fond IR (→ Cosmologie)

Ε

Extragalactique : EBL

Facteur d'atténuation

Loïc Rolland

Extragalactique : EBL Spectre intrinsèque de H2356-309

redshift de z = 0.165

- 10σ en 40 h d'observation
- indice spectral mesuré :
 - $\Gamma = 3,06 \pm 0,21$

Autre AGN : 1ES 1101-232z=0.186AGN le plus lointain détecté au TeV !Loïc RollandSéminaire CPPM, 12 juin 2006

Extragalactique : EBL imites sur le fond de lumière extragalactique

 Limites supérieures de H.E.S.S. sont proches des limites inférieures provenant des comptages de galaxies

Loïc Rolland

CONCLUSION

H.E.S.S. : détecteur le plus sensible actuellement !

nombreuses sources détectées, nouveaux types de sources

Première détection indirecte

de RC hadroniques du TeV hors du système solaire !

Pas de contrainte sur la **matière noire** au CG, mais d'autres candidats en cours d'étude

Contraintes sur le fond diffus de lumière extragalactique : l'Univers serait plus transparent aux γ que ce que l'on pensait

Loïc Rolland

D'autres source potentielles ?

Galaxies satellites de la Voie lactée

Loïc Rolland

Matière noire -

Séminaire CPPM, 12 juin 2006

40

Matière noire -

Sensibilité de H.E.S.S.

Flux des galaxies naines proches ~ flux en provenance du Centre Galactique

- Hypothèses
 - profil de halo de NFW
 - spectres DM

Modèle particule	Objet	Exposition	Nγ	Νσ
'Meilleur' MSSM	Sgr A Dwarf	7.5 h	97.5	5.6
Kaluza-Klein	Sgr A Dwarf	7.5 h	6	0.3
'Meilleur' MSSM	Canis Major	5 h	342	24
Kaluza-Klein	Canis Major	5 h	16	1

→ Observations de Sgr A Dwarf et Canis Major en 2006

Loïc Rolland

ANALYSE DES IMAGES

Analyse des images -

Objectifs de l'analyse

Sélection des images de gerbes électromagnétiques

Réjection des images de gerbes hadroniques

Reconstruction des γ

- direction
- énergie

Problématique du fond : ~1 gamma/minute déclenchement de 400 Hz

Loïc Rolland

Séminaire CPPM, 12 juin 2006

Résultats
 position
 morphologie
 spectre

Analyse de Hillas -

Analyse "de Hillas"

Paramètres : moments d'ordre 1 et 2 des images (1984)

- longueur
- largeur
- distance au centre de la caméra
- amplitude

Loïc Rolland

Analyse de Hillas - Paramètres réduits moyens

- Paramètre réduit (HEGRA)
 - Moyenne et dispersion du paramètre P tabulées en fonction de l'amplitude de l'image et du paramètre d'impact reconstruit

$$\mathbf{S}_{\mathbf{w}} = \frac{(\mathbf{w} - \langle \mathbf{w} \rangle)}{\sigma_{\mathbf{w}}}$$

Paramètre réduit moyen : moyenne sur les télescopes

$$MSW = \sum_{tels} S_w / \sqrt{ntel}$$

\rightarrow Prise en compte des fluctuations gerbe à gerbe

Analyse de Hillas -Reconstruction direction/énergie

Direction

Reconstuction géométrique

Energie

 Tabulée en fonction du paramètre d'impact et de l'amplitude de l'image → une valeur par télescope

Moyenne de chaque télescope

Loïc Rolland

Analyse de Hillas -Performances de l'analyse de Hillas

Loïc Rolland

Séminaire CPPM, 12 juin 2006

47

Modèle semi-analytique -

Modèle semi-analytique d'image (CAT, 1996)

Paramètres : énergie, paramètre d'impact, angle zénithal, altitude de 1ère interaction

- Modèle : développement des gerbes électromagnétiques
 - évolution du nombre de particules chargées e⁺e⁻
 - distribution en énergie des e⁺e⁻
 - distribution angulaire des e⁺e⁻
 - distribution spatiale des e⁺e⁻

Développement temporel de l'image dans le plan focal

• Prise en compte des paramètres du détecteur

- efficacité de collection de lumière
- système de déclenchement, fenêtre de lecture
- résolution angulaire

Loïc Rolland

Image dans la caméra : amplitude de chaque pixel Séminaire CPPM, 12 juin 2006

Modèle semi-analytique -

Modèle semi-analytique d'image

- Ajustement des images-modèles sur les images réelles
 - Maximum de vraisemblance
 - Distribution poissonienne du nombre de photo-électrons
 - Bruit du ciel de chaque pixel pris en compte

Paramètre discriminant γ-hadrons
 Qualité de l'ajustement

Paramètre réduit

Prise en compte de fluctuations de gerbe

Loïc Rolland

Séminaire CPPM, 12 juin 2006

49

Modèle semi-analytique -Performances de l'analyse modèle

Analyse d'image -

Eléments de comparaison

Méthode de Hillas

- meilleur pouvoir de réjection
- plus rapide

Modèle semi-analytique
meilleure efficacité à basse énergie
NSB pris en compte
meilleure acceptance hors-axe *information temporelle utilisable*

→ Développement d'analyses combinées en cours

Après sélection :

- ~ 1 gamma/minute
- $\sim 1 \ll$ gamma-like » du fond / minute

Loïc Rolland

Estimation du fond - Définition de θ , estimation du fond

- θ : distance angulaire entre la source et la position reconstruite du γ
 Régions de contrôle du fond hadronique
 - 3 méthodes couramment utilisées

Estimation du fond -

Fond estimé dans des régions OFF

Sélection des événements « gamma-like » dans la région ON et des régions OFF

« Multiple OFF »

Estimation du fond -Régions exclues pour l'estimation du fond

Exclusion des régions contenant des sources de γ

Séminaire CPPM, 12 juin 2006

Loïc Rolland

Analyse des images -

Objectifs de l'analyse

Sélection des images de gerbes électromagnétiques
Réjection des images de gerbes hadroniques

Reconstruction des γ
 direction
 énergie

Résultats
position
morphologie
spectre

Loïc Rolland

Reconstructions spectrale et morphologique

Réponse du détecteur

Surface de collection Résolution en énergie **Résolution angulaire**

Loïc Rolland

1 - Hypothèse

Reconstructions spectrale et morphologique

Forme spectrale

Forme angulaire

Loïc Rolland

Reconstructions spectrale et morphologique

1 - Hypothèse

2 - Convolution

Forme spectrale

Forme angulaire

Surface de collection

Résolution en énergie

Résolution angulaire

Loïc Rolland

Reconstructions spectrale et morphologique

1 - Hypothèse

2 - Convolution

Forme spectrale

Forme angulaire

Surface de collection

Résolution en énergie

Résolution angulaire

-> Distribution attendue dans les données

Loïc Rolland

1 - Hypothèse

2 - Convolution

Reconstructions spectrale et morphologique

Forme spectrale

Forme angulaire

Surface de collection

Résolution en énergie

Résolution angulaire

-> Distribution attendue dans les données

3 - Ajustement par maximum de vraisemblance

Loïc Rolland

Problématiques des sources étendues

Résolution angulaire dépend du spectre de la source

- Résolution en énergie/acceptance dépendent de la morphologie de la source
- Variations spectrales dans les sources étendues

→ Vers un ajustement combiné spectre/morphologie

Loïc Rolland

Analyse des images -

Conclusion sur les méthodes d'analyse

Sélection/Reconstruction méthode de Hillas 2 méthodes par modèles

Caractéristiques des sources spectre morphologie

Comparaison/vérification des résultats Estimation des systématiques

Vers une combinaison

des méthodes

Loïc Rolland

Vers un ajustement combiné spectre/morphologie