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Outline of this presentation

@ Jet definitions in DIS.

@ Physics opportunities with jets at the EIC (selected topics).
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Defining jets in DIS
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Jets in DIS

@ Jets result from successive collinear/soft emissions from a virtual parton.
0O(10) particles/jet with p; > 250 MeV in average for 10 — 40 GeV jets.

@ Clean environment in DIS. Ex: precise a extraction at HERA.

@ In practice, one needs an IRC safe jet definition, to be used both in experimental
measurements and in theory calculations.
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Defining jets in DIS
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Jet sequential recombination algorithms

@ Popular jet definitions nowadays use sequential recombination algorithms.
(Unlike cone-based jet definitions)
@ Example with jets in eTe™: JADE, k; algorithms,..

@ Distance measure dj; between particles /, j.
Ex: djj = MZ/Q2 for JADE def.

Sequential clustering of particles.

— For each pair of particles (i, ), work out the distance dj.

— Find the minimum of all dj;.

— If the min is < d;,t, recombine / and j and repeat from step 1.
Otherwise, terminate the iteration.
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Defining jets in DIS
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Jet algorithms in hadronic collisions

@ Problem: initial state soft/collinear radiations. Need to distinguish between the beam
remnant and high p; jets.

@ lIdea: introduce particle-beam distance, djg, in addition to dj;.

@ Sequential recombination algorithms widely used at the LHC: " generalized-k;" algorithms.

2
Rj
R2

_ s 2k 2k _ 2k
dij = mm(pt,iapt,j) dig = Pt.i

® The distance measure is longitudinally invariant ARZ = Ay + A¢r.
@ Same algorithm, but it stops when djg is the minimum among all dj;, diz.
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Defining jets in DIS
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What about DIS?

@ Jet definitions designed to ensure factorisation of inclusive jet cross sections in terms of
universal pdf.

@ Lorentz-invariant definition by similar to JADE.
M; ki-P
d,'j QZR2 s d 2XBJ Q2
@ e'e™ spherically invariant jet definitions in the Breit frame.
0;)
dii — E2K, E2k — cos( dn — E2K
i = min( ) 1—cos(R)’ B !

@ Many jet analysis at HERA chose longitudinally invariant k; algorithm in the Breit frame.
Ex: as determination from jet cross-sections with
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Defining jets in DIS
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Issues with previous options

@ JADE-like algorithms have undesirable features.
Soft particles get recombined in the early stage, even if widely
separated in angles.

@ Spherically invariant jet definitions in the Breit frame are not
boost invariant.
= Hard to distinguish beam remnant from forward jets.

@ Longitudinally invariant jet definitions in Breit frame fail to
cluster hadrons in the backward region.
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Defining jets in DIS
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Recent developments: asymmetric jet clustering

@ Centauro algorithm

Centauro
dy = (AT + 277(1 — cos(B6;))) /R, dig = 1 LS NN
) S e ! ERNETERN
with 7 = 32251 A N
@ Recent proposal from : /ﬁi::/’i@( i e
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@ Boost invariant and properly cluster the forward region.

@ Most importantly, they ensure TMD factorisation for SIDIS
with jets in the limit P} < Q.
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Defining jets in DIS
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Single inclusive jet production in DIS

= Measure jets in DIS events and bin in terms of P, measured in Breit of dipole frame:
dO_e+AHe’+jet+X
dXBde2dPJ_

= In the case of a hadron measurement, TMD factorisation theorem for Q2 > Pf_)h.
Accesses the quark TMD, see Valerio’s talk on Wednesday.

@ What about jets, in particular for xg; <17
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Defining jets in DIS
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Jet definition and Sudakov logarithms

@ NLO Sudakov logs L = In(Q?/P?) depend on the jet definition!

For LI generalised k; alg.,
do 7T HA—+X

d Yr+A—j+X sC
“er__— | =% w L=F {38 + (3 - In(R)> L+(9(1)]
d°Py NLO d°Py LO ™ 4 4

while for S| generalised k; alg. (58 = 2) or asymmetric jet definition (5 = 0)

« sCr {18 + <3(145/2) + In(R)) L+ 0(1)]

do YT tA—=+X

dg i HA=I(B)+X
do@ -
NLO d°P,

P,

LO ™

@ From CSS evolution of the quark TMD alone, we expect the log structure

CVSCF

1 3
124+
U [ 4 + 4 }
= TMD factorisation implies 5 = 0.
New LI jet definition in DIS suitable for TMD factorisation with jets.
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Defining jets in DIS
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Physical interpretation in the dipole frame

@ Angle of the jet set by its virtuality rather by its
transverse momentum. (Naively, 8¢y ~ Z—i.)

@ Soft gluons contributing to Sudakov must have
Og > gjct-
= stronger constraint than 6, >> ;—ﬁ!

@ Jet from the antiquark is forward in the Breit frame.

Must be distinguished from the beam remnant.

Aligned jet configuration in dipole frame.

11/21



TMD and small x physics with jets
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Lepton-jet correlation: probe of quark TMD

dN/dAg

Lepton+Jet at EIC

@ Back to the lab frame. Measure the imbalance between

8 Lepton Pr=10GeV L=0Gev?
outgoing lepton and jet. of N T deozcer
@ Probes quark TMD. No need for fragmentation function N
(less model dependence). 2
0 : : : : S A¢
@ Sensitivity to cold nuclear matter transport coefficient. or 020304 08

@ Sensitivity to Sivers effect for polarized nucleon.
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FIG. 1. The lepton-jet correlation in deep-inelastic scattering
with a nucleon or nucleus at the EIC or HERA.
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TMD and small x physics with jets

Lepton-jet correlation for saturation physics

o New OppOl’tUnitieS with |arge nuclei! Piot below for gold nucleus.

@ In particular, at small x, sensitivity to sea quarks and saturation scale.
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@ Harmonic coefficient as a function of the lepton-jet transverse momentum imbalance.
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TMD and small x physics with jets
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Back-to-back di-jets in DIS

= probe of the saturated regime of QCD

= access to the Weizsacker-Williams gluon TMD in the back-to-back limit.
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TMD and small x physics with jets
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LO: common language between small-x and TMD communities

@ Def: |PJ_| = ‘Z2kJ_71 —ZlkL,z

> |qu| = ki + kLo

@ LO in photon-gluon fusion channel: TMD factorization
do —aatX

d2p,d3q.

x HI(PL)GY(qL) +O (%) +o (PT)

LO

@ Gy(q.): WW gluon TMD

— 32
Gl (@) =2 [ B LEL rre e [plprige ¢, U FH(0)U] PY) TAID
Y=In(1/x) q. (277)3P+ »§L) Ve € B\

N 2/d2de2b’

= 2n) Lo (Tr [0"VI(bL ) V(B )Y V(B )V(bL)]), CGC

Y
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TMD and small x physics with jets
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NLO results at small x

NIt d r —iqy ry A~
<daf\\ILO>X 7—[)‘ o b)b4 9Lt GO(xp, oy )
2,2 2 .2
X {1 + as(iir) [—NC In? (PLQ"") —5.In (PLgbbl>
™ 4 G S
+0o In (MRC bb/) —i—C)‘(Q/qu,Zh R Xf/Xg)] }
0

x¢ dependence of the gluon TMD obtained from high energy
evolution with collinear improvement.

@ First line is exponentiated a la CSS to resum large double and
single Sudakov logs.
o 5. = —Crln(z125) + Nc In(1 4+ Q*/MZ;) — CrIn(R?)
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TMD and small x physics with jets
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Nuclear modification factor probes non-linear evolution effects

25 .
Lo
NLO (Sudakov only) -------
2.0t NLO (full) 777 - " ,
@ In Rea ratio, "vacuum” physics largely cancels.
%‘%ﬁ 15} Q% ,=0.6 GeV? |
ﬁl!? @ High energy resummation gives a strong
I A suppression.
W77
05f
0%=4GeV?, x5 =5.5x 107, V5 =90 GeV @ These results depends on the initial condition:
P, =4GeV, z; =2,=1/2, anti-ky(R=0.4) .
0.0 TaTeT A . need to fit the WW TMD at small x.
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Conclusion
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Conclusion

@ Importance of the choice of jet definitions in DIS, depending on the goal of the
measurement (ex: as, pdf or TMD extraction).

@ In the case of TMD measurement with jet final states, additional studies should be
performed to design optimal jet reconstruction algorithms.

@ Selected jet observables that will benefit from the EIC capabilities: lepton-jet and dijet
correlations.

@ Many things that | have not covered, in particular recent progresses in the Monte-Carlo
simulation of jets in DIS,

@ or jets in diffractive processes probing diffractive TMDs,

THANKS! 18/21



Back-up slides
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Conclusion
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Sivers effect in lepton-jet correlation

dN/dAg

20/21



Conclusion
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Rapidity factorization scale dependence at EIC kinematics
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@ Xxr variation around a central value to gauge the sensitivity to missing N2LO corrections.
@ Scale variations shrink from LO to NLO.
@ One expects thinner NLO bands when a5 In(xp/x¢) = O(1).
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