Jets at the EIC

Paul Caucal

SUBATECH, Nantes Université

Workshop EIC France - Orsay - Oct 11, 2024

[Defining jets in DIS](#page-2-0) [T](#page-11-0)[M](#page-12-0)[D](#page-13-0) [a](#page-15-0)[nd](#page-16-0) small x [physics with jets](#page-11-0) [Conclusion](#page-17-0)

Outline of this presentation

• Jet definitions in DIS.

Physics opportunities with jets at the EIC (selected topics).

Jets in DIS

- Jets result from successive collinear/soft emissions from a virtual parton. $\mathcal{O}(10)$ particles/jet with $p_t > 250$ MeV in average for $10 - 40$ GeV jets. Page, Chu, Aschenauer, 1911.00657
- Clean environment in DIS. Ex: precise α_s extraction at HERA.
- In practice, one needs an IRC safe jet definition, to be used both in experimental measurements and in theory calculations.

Jet sequential recombination algorithms

- Popular jet definitions nowadays use sequential recombination algorithms. (Unlike cone-based jet definitions)
- Example with jets in e^+e^- : JADE, k_t algorithms,...

JADE, Z.Phys.C 33 (1986), Catani, Dokshitzer, Olsson, Turnock, Webber, PLB 269, 432 (1991)

- \bullet Distance measure d_{ii} between particles i, j. Ex: $d_{ij} = M_{ij}^2/Q^2$ for JADE def.
- Sequential clustering of particles.
	- \rightarrow For each pair of particles (i, j) , work out the distance d_{ik} .
	- \rightarrow Find the minimum of all d_{ii} .
	- \rightarrow If the min is $\lt d_{\rm cut}$, recombine *i* and *j* and repeat from step 1. Otherwise, terminate the iteration.

Jet algorithms in hadronic collisions

- Problem: initial state soft/collinear radiations. Need to distinguish between the beam remnant and high p_t jets.
- **Idea:** introduce particle-beam distance, d_{iB} , in addition to d_{ii} .

Catani, Dokshitzer, Webber, PLB 285, 291 (1992)

 \bullet Sequential recombination algorithms widely used at the LHC: "generalized- k_t " algorithms.

$$
d_{ij} = \min(p_{t,i}^{2k}, p_{t,j}^{2k}) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = p_{t,i}^{2k}
$$

Catani, Dokshitzer, M.H. Seymour, Webber, NPB, 406 (1993), Cacciari, Salam, Soyez, JHEP 0804:063,2008

- The distance measure is longitudinally invariant $\Delta R_{ij}^2 = \Delta y_{ij}^2 + \Delta \phi_{ij}^2.$
- **•** Same algorithm, but it stops when d_{iB} is the minimum among all d_{ii} , d_{iB} .

What about DIS?

- Jet definitions designed to ensure factorisation of inclusive jet cross sections in terms of universal pdf.
- Lorentz-invariant definition by Webber, J. Phys. G 19, 1567 (1993) similar to JADE.

$$
d_{ij} = \frac{M_{ij}^2}{Q^2 R^2}, \quad d_{iB} = 2x_{\text{Bj}} \frac{k_i \cdot P}{Q^2}
$$

 e^+e^- spherically invariant jet definitions in the Breit frame.

$$
d_{ij} = \min(E_i^{2k}, E_j^{2k}) \frac{1 - \cos(\theta_{ij})}{1 - \cos(R)}, \quad d_{iB} = E_i^{2k}
$$

 \bullet Many jet analysis at HERA chose longitudinally invariant k_t algorithm in the Breit frame. Ex: α , determination from jet cross-sections with ZEUS, PLB 547 (2002), H1 PLB 653, 134 (2007), ...

[Defining jets in DIS](#page-2-0) [T](#page-11-0)[M](#page-12-0)[D](#page-13-0) [a](#page-15-0)[nd](#page-16-0) small x [physics with jets](#page-11-0) [Conclusion](#page-17-0)

Issues with previous options

- JADE-like algorithms have undesirable features. Soft particles get recombined in the early stage, even if widely separated in angles.
- **•** Spherically invariant jet definitions in the Breit frame are not boost invariant.

 \Rightarrow Hard to distinguish beam remnant from forward jets.

Longitudinally invariant jet definitions in Breit frame fail to cluster hadrons in the backward region.

Fig. from Arratia, Makris, Neill, Ringer, Sato, 2006.10751

[Defining jets in DIS](#page-2-0) [T](#page-11-0)[M](#page-12-0)[D](#page-13-0) [a](#page-15-0)[nd](#page-16-0) small x [physics with jets](#page-11-0) [Conclusion](#page-17-0)

Recent developments: asymmetric jet clustering

Centauro algorithm Arratia, Makris, Neill, Ringer, Sato, 2006.10751.

$$
d_{ij} = (\Delta \bar{\eta}_{ij}^2 + 2\bar{\eta}_i \bar{\eta}_j (1 - \cos(\Delta \phi_{ij}))) / R^2, \quad d_{iB} = 1
$$

with $\bar{\eta}_i = -\frac{2Q}{\bar{n}\cdot q} \frac{p_{\perp,i}}{n \cdot p_i}$ $\frac{p_{\perp,i}}{n\!\cdot\!p_i}$.

Recent proposal from PC, Iancu, Mueller, Yuan 2408.03129,

$$
d_{ij}=\frac{M_{ij}^2}{z_iz_jQ^2R^2}, \quad d_{iB}=1, \quad z_i=\frac{p_i\cdot P}{P\cdot q}
$$

- **•** Boost invariant and properly cluster the forward region.
- Most importantly, they ensure TMD factorisation for SIDIS with jets in the limit $P_1 \ll Q$. 2408.03129

Single inclusive jet production in DIS

 \Rightarrow Measure **jets** in DIS events and bin in terms of P_⊥ measured in Breit of dipole frame:

 $d\sigma^{e+A\rightarrow e'+jet+X}$ dx $_{\rm Bj}$ d Q^2 d P_\perp

Related studies with TMD jet functions: Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi, PRL 121, 162001 (2018)

- ⇒ In the case of a hadron measurement, TMD factorisation theorem for $Q^2 \gg P_{\perp,h}^2$. Accesses the quark TMD, see Valerio's talk on Wednesday.
- What about jets, in particular for $x_{\rm Bi} \ll 1$? [PC, Iancu, Mueller, Yuan, 2408.03129]

d

Jet definition and Sudakov logarithms

NLO Sudakov logs $L = \ln(Q^2/P_{\perp}^2)$ depend on the jet definition!

For LI generalised k_t alg.,

$$
\frac{d\sigma^{\gamma_{\rm T}^* + A \to j + X}}{d^2 \mathbf{P}_{\perp}}\Big|_{\rm NLO} = \frac{d\sigma^{\gamma_{\rm T}^* + A \to j + X}}{d^2 \mathbf{P}_{\perp}}\Big|_{\rm LO} \times \frac{\alpha_s C_F}{\pi} \left[-\frac{3}{4} L^2 + \left(\frac{3}{4} - \ln(R)\right) L + \mathcal{O}(1) \right]
$$
\nwhile for SI generalised k_t alg. ($\beta = 2$) or asymmetric jet definition ($\beta = 0$)\n
$$
\frac{d\sigma^{\gamma_{\rm T}^* + A \to j(B) + X}}{d^2 \mathbf{P}_{\perp}}\Big|_{\rm NLO} = \frac{d\sigma^{\gamma_{\rm T}^* + A \to j + X}}{d^2 \mathbf{P}_{\perp}}\Big|_{\rm LO} \times \frac{\alpha_s C_F}{\pi} \left[-\frac{1}{4} L^2 + \left(\frac{3(1 - \beta/2)}{4} + \ln(R)\right) L + \mathcal{O}(1) \right]
$$

• From CSS evolution of the quark TMD alone, we expect the log structure

$$
\frac{\alpha_s C_F}{\pi} \left[-\frac{1}{4} L^2 + \frac{3}{4} L \right]
$$

 \Rightarrow TMD factorisation implies $\beta = 0$. New LI jet definition in DIS suitable for TMD factorisation with jets.

Physical interpretation in the dipole frame

• Angle of the jet set by its virtuality rather by its transverse momentum. (Naively, $\theta_{\rm jet} \sim \frac{P_{\perp}}{z q^+}$.)

• Soft gluons contributing to Sudakov must have $\theta_{\rm g} \gg \theta_{\rm jet}$. \Rightarrow stronger constraint than $\theta_{\mathcal{g}} \gg \frac{P_{\perp}}{zq^+}!$

• Jet from the antiquark is forward in the Breit frame. Must be distinguished from the beam remnant.

Aligned jet configuration in dipole frame.

Lepton-jet correlation: probe of quark TMD

- [Liu, Ringer, Vogelsang, Yuan, PRL 122 (2019)]
- **•** Back to the lab frame. Measure the imbalance between outgoing lepton and jet.
- **•** Probes quark TMD. No need for fragmentation function (less model dependence).
- **•** Sensitivity to cold nuclear matter transport coefficient.
- **•** Sensitivity to **Sivers effect** for polarized nucleon.

FIG. 1. The lepton-jet correlation in deep-inelastic scattering with a nucleon or nucleus at the EIC or HERA.

Lepton-jet correlation for saturation physics

- \bullet In particular, at small x, sensitivity to sea quarks and saturation scale.
- New opportunities with large nuclei! Plot below for gold nucleus.
- Harmonic coefficient as a function of the lepton-jet transverse momentum imbalance.

[Tong, Xiao, Zhang, PRL 130 (2023)] 13/21

Back-to-back di-jets in DIS

- \Rightarrow probe of the saturated regime of QCD
- \Rightarrow access to the Weizsäcker-Williams gluon TMD in the back-to-back limit.

Zheng, Aschenauer, Lee, Xiao, 1403.2413

 $k_{\perp,2}$

 $\frac{q_{\perp}}{q}$ -

 $2P_\perp$

LO: common language between small-x and TMD communities

• Def:
$$
|\mathbf{P}_{\perp}| = |z_2 \mathbf{k}_{\perp,1} - z_1 \mathbf{k}_{\perp,2}| \gg |\mathbf{q}_{\perp}| = |\mathbf{k}_{\perp,1} + \mathbf{k}_{\perp,2}|
$$

. LO in photon-gluon fusion channel: TMD factorization Dominguez, Marquet, Xiao, Yuan, 1101.0715

$$
\left. \frac{\mathrm{d}\sigma^{\gamma^* \to q\bar{q} + X}}{\mathrm{d}^2 \boldsymbol{\rho}_{\perp} \mathrm{d}^2 \boldsymbol{q}_{\perp}} \right|_{\text{LO}} \propto \mathcal{H}^{ij}(\boldsymbol{\mathit{P}}_{\perp}) G^{\mathit{ij}}_{\gamma}(\boldsymbol{q}_{\perp}) + \mathcal{O}\left(\frac{\boldsymbol{q}_{\perp}}{\boldsymbol{\mathit{P}}_{\perp}}\right) + \mathcal{O}\left(\frac{\boldsymbol{Q}_{\mathrm{s}}}{\boldsymbol{\mathit{P}}_{\perp}}\right)
$$

 $k_{\perp,1}$

See also del Castillo, Echevarria, Makris, Scimemi, 2008.07531

 $G_Y(\mathbf{q}_\perp)$: WW gluon TMD

$$
G_{Y=\ln(1/x)}^{ij}(\boldsymbol{q}_{\perp}) = 2 \int \frac{\mathrm{d}\xi^{-} \mathrm{d}^{2} \boldsymbol{\xi}_{\perp}}{(2\pi)^{3} P^{+}} e^{i x P^{+} \xi^{-} - i q_{\perp} \xi_{\perp}} \left\langle P \left| F^{+i}(\xi^{-}, \boldsymbol{\xi}_{\perp}) U_{\xi}^{[+]\dagger} F^{+j}(0) U_{\xi}^{[+]} \right| P \right\rangle \text{ TMD}
$$

$$
= \frac{-2}{\alpha_{s}} \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\perp} \mathrm{d}^{2} \boldsymbol{b}_{\perp}'}{(2\pi)^{4}} e^{-i q_{\perp} \cdot r_{bb'}} \left\langle \text{Tr} \left[\partial^{i} V^{\dagger}(\boldsymbol{b}_{\perp}) V(\boldsymbol{b}_{\perp}) \partial^{j} V^{\dagger}(\boldsymbol{b}_{\perp}) V(\boldsymbol{b}_{\perp}) \right] \right\rangle_{Y} \text{ CGC}
$$

[Defining jets in DIS](#page-2-0) [Conclusion](#page-17-0)
 \overline{D} \overline{D} \overline{D} [T](#page-11-0)[M](#page-12-0)D [a](#page-15-0)[nd](#page-16-0) small x [physics with jets](#page-11-0) Conclusion
 \overline{D} Conclusion
 \overline{D} Conclusion

NLO results at small x

[PC, Salazar, Schenke, Stebel, Venugopalan, PRL 132 (8), 081902]

$$
\langle \mathrm{d}\sigma_{\mathrm{NLO}}^{\lambda} \rangle_{x_f} = \mathcal{H}_{\mathrm{LO}}^{\lambda, ii} \int \frac{\mathrm{d}^2 \mathbf{r}_{bb'}}{(2\pi)^4} e^{-i\mathbf{q}_{\perp} \cdot \mathbf{r}_{bb'}} \hat{G}^0(x_f, \mathbf{r}_{bb'})
$$

$$
\times \left\{ 1 + \frac{\alpha_s(\mu_R)}{\pi} \left[-\frac{N_c}{4} \ln^2 \left(\frac{\mathbf{P}_{\perp}^2 \mathbf{r}_{bb'}^2}{c_0^2} \right) - s_L \ln \left(\frac{\mathbf{P}_{\perp}^2 \mathbf{r}_{bb'}^2}{c_0^2} \right) \right. \right.
$$

$$
+ \beta_0 \ln \left(\frac{\mu_R^2 \mathbf{r}_{bb'}}{c_0^2} \right) + \mathcal{C}^{\lambda} (Q/M_{q\bar{q}}, z_1, R, x_f/x_g) \right] \bigg\}
$$

 \bullet x_f dependence of the gluon TMD obtained from high energy evolution with collinear improvement.

See also Taels, Altinoluk, Beuf, Marquet, JHEP 10 (2022) 184

• First line is exponentiated à la CSS to resum large double and single Sudakov logs.

•
$$
s_L = -C_F \ln(z_1 z_2) + N_c \ln(1 + Q^2/M_{q\bar{q}}^2) - C_F \ln(R^2)
$$

⇒ agreement with [Hatta, Xiao, Yuan, Zhou, PRD 104 (2021) 5]

Nuclear modification factor probes non-linear evolution effects

- \bullet In R_{eA} ratio, "vacuum" physics largely cancels.
- High energy resummation gives a strong suppression.
- These results depends on the initial condition: need to fit the WW TMD at small x.

Conclusion

- Importance of the choice of jet definitions in DIS, depending on the goal of the measurement (ex: α_s , pdf or TMD extraction).
- In the case of TMD measurement with jet final states, additional studies should be performed to design optimal jet reconstruction algorithms.
- **•** Selected jet observables that will benefit from the EIC capabilities: lepton-jet and dijet correlations.
- Many things that I have not covered, in particular recent progresses in the Monte-Carlo simulation of jets in DIS, van Beekveld, Ferrario Ravasio, JHEP 02 (2024) 001, PanScales NLL accurate parton showers, etc
- o or jets in diffractive processes probing diffractive TMDs, Iancu, Mueller, Triantafyllopoulos, PRL 128 (2022), Hatta, Xiao, Yuan, PRD 106 (2022)

Back-up slides

[Defining jets in DIS](#page-2-0) [T](#page-11-0)[M](#page-12-0)[D](#page-13-0) [a](#page-15-0)[nd](#page-16-0) small x [physics with jets](#page-11-0) [Conclusion](#page-17-0)

Sivers effect in lepton-jet correlation

 $\begin{array}{cc}\n\text{Defining jets in DIS} \\
\text{Onclusion on the image of the image of the image is a 200000} \\
\text{OnOOS on the image of the image is a 300000} \\
\text{OnOOS on the image is a 30$ $\begin{array}{cc}\n\text{Defining jets in DIS} \\
\text{Onclusion on the image of the image of the image is a 200000} \\
\text{OnOOS on the image of the image is a 300000} \\
\text{OnOOS on the image is a 30$ $\begin{array}{cc}\n\text{Defining jets in DIS} \\
\text{Onclusion on the image of the image of the image is a 200000} \\
\text{OnOOS on the image of the image is a 300000} \\
\text{OnOOS on the image is a 30$ $\begin{array}{cc}\n\text{Defining jets in DIS} \\
\text{Onclusion on the image of the image of the image is a 200000} \\
\text{OnOOS on the image of the image is a 300000} \\
\text{OnOOS on the image is a 30$ $\begin{array}{cc}\n\text{Defining jets in DIS} \\
\text{Onclusion on the image of the image of the image is a 200000} \\
\text{OnOOS on the image of the image is a 300000} \\
\text{OnOOS on the image is a 30$

Rapidity factorization scale dependence at EIC kinematics

- \bullet x_f variation around a central value to gauge the sensitivity to missing N²LO corrections.
- **•** Scale variations shrink from LO to NLO.
- One expects thinner NLO bands when $\alpha_s \ln(x_0/x_f) = O(1)$.