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|dea of this talk

Timeline

Comparison between electron-hadron encounters at EIC & hadron-hadron
encounters at the LHC

- available processes and their kinematics
- experimental conditions
- luminosities

Selected physics synergies between the EIC & the HL-LHC QCD

- Initial state of hadron-hadron collisions
- Parton distribution function of nuclei
- Search for gluon saturation

Focus on (semi)-hard processes: perturbative QCD



Time schedule

LHC
LHC/ATLAS/CMS upgrade "H’rAa'a'fE

ALICE2 2026 2029 ~2033 ~2035 ~2041

LHCb U1 ATLAS + CMS @HL-LHC ATLAS + CMS @HL-LHC

Brand new detectors LHCb U1 + ALICE 2 LHCb U2 + ALICE 3
EIC

) Construction | TTE—
2025/2026 ~2034

LHC and EIC will be running in parallel for 5-10 years



Inclusive hard processes

Hadron-hadron Electron-hadron
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Partons Hadrons

P(P]) \j: ﬁ\j F—’(Pz)

Processes Processes

Drell-Yan, (Di-)Jet production inclusive deep-inelastic scattering, (Di)Jet photo and electroproduction
Single & Two-hadron production Semi-inclusive deep-inelastic scattering: Single & two-hadron production
Heavy-quark hadro-production Heavy-quark photo and electro-production

Quarkonium hadro-production Quarkonium photo and electro production

Theoretical objects Theoretical objects

PDFs, TMDs, Fragmentation functions and more PDFs, TMDs, Fragmentation functions and more
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Exclusive hard particle production

Hadron-hadron collision Electron-hadron collision

DVCS Bethe-Heitler

Processes Processes

- Photoproduction: Vector mesons - Photo and electroproduction: Vector mesons,
- Photoproduction of dijets - Photo and electropdoction of dijets
photon emission

- Continuum dilepton production in Photoproduction
- Continuum dilepton production

In addition: Hadron-hadron: depending on process, photon replaced by other colour neutral propagator (e.g. pomeron)
+  dissociative/incoherent processes with rapidity-gaps
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Kinematics and experimental cgngltlons
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Scales

hadroproduction: mass or transverse momentum:

QCD radiation for both incoming particles

Photoproduction like in e-p/A, but lower rates and
only selected observables
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Scales

Q2 in DIS: scale experimentally accessible

up to radiative QED corrections


https://arxiv.org/abs/2309.11269

Kinematics and experimental andltlons
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Kinematic reach

Very large in particular down to low-x and high Q2,
but S/B and/or instrumentation does not allow to
access equally full plane
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Kinematic reach

Kinematic reach smaller, detector designed to
cover as much as possible of kinematic plane for
inclusive DIS and to provide also instrumentation
for exclusive measurements


https://arxiv.org/abs/2309.11269

Klnematlcs and experimental conditions

RHIC energies, species combinations and luminosities (Run-1 to 16)
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lon-running about 1 month per year

Large flexibility from RHIC preserved for EIC
So far proton, Lead, Xenon, next year Oxygen

Plot from QM 2023, isobar run and Oxygen data

Fixed-target programme of LHCb adding much more not shown

flexibility and high-luminosity at about 100 times lower sqrts

Discussions ongoing for other ions in the future including 0
injector upgrades, see workshop


https://arxiv.org/abs/2309.11269

Kinematics and experimental conditions
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ALICE, ATLAS, CMS, LHCb
EPIC as multi-purpose detector:

Four complementary detectors in terms of acceptance,
resolutions, particle identification large acceptance, particle identification, extended

forward instrumentation
Instantaneous luminosity in proton-proton collisions more
than 3 orders of magnitude different between experiments: Wish for a second detector

Allows for measurements from very soft to very hard



Discuss three independent
but strongly related long-standing questions

EIC & HL-LHC will contribute to both
It is our responsibility to get the most out of it
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What is the initial state of

Modelling of energy-momentum flow in heavy-ion collisions
- Many free parameters for initial state
- Can be seen two-fold
- Infer information on initial state from soft heavy-ion data

- Information accessible also from other sources: precision
limitation

Energy deposition dominated by partonic interactions:

- In principle accessible information via hard particle
production

Uncertainties large:

- Scale uncertainties: small typical scales
- PDF uncertainties: nuclear partons not well known

EIC can provide precision for RHIC kinematics

- Unfortunately not down to as low-x as relevant for most

of energy deposition at the LHC
- However can check reliability of knowledge transfer

Taken from slide by W. van der Schee:

https://indico.cern.ch/event/1341120/contributions/5867064/attachments/2884693/5055513/Talk_Qingdao.pdf
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https://indico.cern.ch/event/1341120/contributions/5867064/attachments/2884693/5055513/Talk_Qingdao.pdf

What are the effects present in nuclear PDFs

Various physical phenomena at play - -
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A possible way for knowledge transfer from nuclear
structure to heavy-ion collisions 14



What are the effects present in nuclear PDFs
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LHC: strong contributor to nuclear PDF precision down to low Bjorken-x
One highlight: sizeable gluon shadowing consistently observed by 3 different global fits

Important to confirm with cleaner measurement (photon/DY/DIS) to exclude confounding effe%s


https://arxiv.org/abs/2311.00450

What are the effects present in nuclear PDFs
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Low-x Low-mass DY: clean constraints _
EIC impact on gluons

LHC: larger luminosity and new channels, see HL-LHC Yellow report WG5
- improve statistically limited channels: Z, W production, beauty production

- Exploitation of new kinematics and/or theoretically cleaner channels: Dijet photoproduction, prompt forward photons
(Focal, LHCb), Drell-Yan forward (LHCb, ALICE muon)

EIC will be able to sample with high precision nuclear PDFs in the provided kinematic range

- check DGLAP evolution within the EIC data and with LHC: very crucial
- Constrain mass dependence 16



Nuclear structure on large length scales from high-energy
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LHC and RHIC: pioneer to explore nuclear structure via correlation measurements
Small nuclei collisions: new access to nuclear structure
EIC: measurements of <E> in fragmentation region sensitive to clustering

- New access to nuclear structure at high-energy
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https://arxiv.org/pdf/2404.08385v1
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Saturation

Saturation:
- Atheoretical prediction since the 8(

Conjectured, but not unambiguously
identified in HERA/LHC data yet

- One of the science drivers of the El
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modified version of graphic in “QCD and
collider physics”, Ellis, Stirling, Webber
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Saturation
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Lower energy@EIC: use nuclear collisions to access saturation regime

- Example for dissociative over coherent vector meson production

- Precision longitudinal structure function: see e.g. https:/arxiv.org/abs/2203.05846
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Future measurements at the LHC down to Bjorken-x to 10° in pPb, gamma-p &gamma-Pb

Conclusive measurements from both facilities should allow to have a final word for the
kinematics accessible

LHC proved to be capable to go beyond past projections (here from the YR WGS5 report):

- t-dependence, incoherent production & dissociative production shown to be feasible in

UPC

- Important for LHC & EIC: develop theory with uncertainty bars as for structure functions
- steps ongoing for exclusive quarkonium production using GPDs and low-x resummation: 20
https://arxiv.org/pdf/2409.05738



https://arxiv.org/pdf/2409.05738

An uncomplete discussion

High precision proton PDF and TMD constraints

- LHC Drell-Yan, high-pt Jet and top production measurements already now contributing:
precise will improve and will contribute

- arxiv:1902.04070

- EIC will push precision at x with low-Q2, see e.g. at: arxiv:2309.11269

TMD physics with spin

- vast programme with observables only available with polarised beams at EIC
- LHC spin as a possible complement with polarized target project for late 2020ies for
LHCDb fixed-target

Generalised Parton distribution functions

- GPD physics at the core of the EIC programme: gravitational form factors and spin
decomposition
- LHC UPC programme only starts to be seen as GPD playground
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An uncomplete discussion

Energy loss
- Cold energy loss programme at EIC and at LHC
Collectivity: the limits of the hydrodynamic regime

- EIC allows to have a point-like initial state with a finite Q2: not available easily in
UPC at the LHC

Important to note that QCD research so far largely data-driven:

Very lucky that LHC and EIC will run at the same time !
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A tentative summary

Correspondence

- Same formalism
Use same event-generator
Use same type of calculations

Complementary

- Test factorisation as function of Q?
- Extend kinematics substantially by combining both facilities
- Different observables

Redundancy

- Importance of phenomena & systematic uncertainties largely different
- Support or falsify strong claims
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Conclusion

QCD programe at EIC and at HL-LHC
Both stand on their own right and with their stand-alone questions

However: their respective potential enlarged by each other

Correspondence
Complementarity m Mutual empowerment

Redundancy

We should reach out to each other to learn more about nature

- often exchange/combinations/collaboration existing, starting in other cases
- We should make an effort for consensus building on common topics: priorities, falsification
strategies, conclusions 24



