

Synergy between Electron-Ion collider & the LHC

Physics

Michael Winn

EIC France workshop

Idea of this talk

Timeline

Comparison between electron-hadron encounters at EIC & hadron-hadron encounters at the LHC

- available processes and their kinematics
- experimental conditions
- luminosities

Selected physics synergies between the EIC & the HL-LHC QCD

- Initial state of hadron-hadron collisions
- Parton distribution function of nuclei
- Search for gluon saturation

Focus on (semi)-hard processes: perturbative QCD

Time schedule

LHC

LHC and EIC will be running in parallel for 5-10 years

Inclusive hard processes

Hadron-hadron

Processes

Drell-Yan, (Di-)Jet production

Single & Two-hadron production

Heavy-quark hadro-production

Quarkonium hadro-production

Theoretical objects

PDFs, TMDs, Fragmentation functions and more

Electron-hadron

Processes

inclusive deep-inelastic scattering, (Di)Jet photo and electroproduction Semi-inclusive deep-inelastic scattering: Single & two-hadron production Heavy-quark photo and electro-production Quarkonium photo and electro production

Theoretical objects

PDFs, TMDs, Fragmentation functions and more

Inclusive hard processes

Hadron-hadron

Processes

Drell-Yan, (Di-)Jet production

Single & Two-hadron production

Heavy-guark hadro-production

Quarkonium hadro-production

Theoretical objects

PDFs, TMDs, Fragmentation functions and more

Electron-hadron

Processes

Close correspondence inclusive deep-inelastic scattering, (Di)Jet photo and electroproduction Semi-inclusive deep-inelastic scattering: Single & two-hadron production

Heavy-guark photo and electro-production

Quarkonium photo and electro production

Theoretical objects

PDFs, TMDs, Fragmentation functions and more

Exclusive hard particle production

Processes

- Photoproduction: Vector mesons
- Photoproduction of dijets
- Continuum dilepton production in Photoproduction

Electron-hadron collision

Processes

- Photo and electroproduction: Vector mesons,
- Photo and electropdoction of dijets
- photon emission
- Continuum dilepton production

In addition: Hadron-hadron: depending on process, photon replaced by other colour neutral propagator (e.g. pomeron)

+ dissociative/incoherent processes with rapidity-gaps

Exclusive hard particle production

In addition: Hadron-hadron: depending on process, photon replaced by other colour neutral propagator (e.g. pomeron)

+ dissociative/incoherent processes with rapidity-gaps

Scales

hadroproduction: mass or transverse momentum: QCD radiation for both incoming particles

Photoproduction like in e-p/A, but lower rates and only selected observables

Scales

Q2 in DIS: scale experimentally accessible

up to radiative QED corrections

Kinematic reach

Very large in particular down to low-x and high Q2, but S/B and/or instrumentation does not allow to access equally full plane

Kinematic reach

Kinematic reach smaller, detector designed to cover as much as possible of kinematic plane for inclusive DIS and to provide also instrumentation for exclusive measurements

Targets

Ion-running about 1 month per year

So far proton, Lead, Xenon, next year Oxygen

Fixed-target programme of LHCb adding much more flexibility and high-luminosity at about 100 times lower sqrts

Discussions ongoing for other ions in the future including injector upgrades, see workshop

RHIC energies, species combinations and luminosities (Run-1 to 16)

Large flexibility from RHIC preserved for EIC

Plot from QM 2023, isobar run and Oxygen data not shown

Instrumentation

ALICE, ATLAS, CMS, LHCb

Four complementary detectors in terms of acceptance, resolutions, particle identification

Instantaneous luminosity in proton-proton collisions more than 3 orders of magnitude different between experiments:

Allows for measurements from very soft to very hard

nplementation

EPIC as multi-purpose detector:

large acceptance, particle identification, extended forward instrumentation

Wish for a second detector

Discuss three independent but strongly related long-standing questions

EIC & HL-LHC will contribute to both It is our responsibility to get the most out of it

What is the initial state of hadron-hadron collisions?

Modelling of energy-momentum flow in heavy-ion collisions

- Many free parameters for initial state
- Can be seen two-fold
 - Infer information on initial state from soft heavy-ion data
 - Information accessible also from other sources: precision limitation

Energy deposition dominated by partonic interactions:

- In principle accessible information via hard particle production

Uncertainties large:

- Scale uncertainties: small typical scales
- PDF uncertainties: nuclear partons not well known

EIC can provide precision for RHIC kinematics

- Unfortunately not down to as low-x as relevant for most of energy deposition at the LHC
- However can check reliability of knowledge transfer

Taken from slide by W. van der Schee:

https://indico.cern.ch/event/1341120/contributions/5867064/attachments/2884693/5055513/Talk_Qingdao.pdf

What are the effects present in nuclear PDFs

Various physical phenomena at play

application of collinear parton distribution functions: a conjecture

not tested to the same level of precision as for the proton

- Need to check DGLAP-applicability with precision

- Need to establish baseline for saturation searches for nuclei

What are the effects present in nuclear PDFs

LHC: strong contributor to nuclear PDF precision down to low Bjorken-x

One highlight: sizeable gluon shadowing consistently observed by 3 different global fits

Important to confirm with cleaner measurement (photon/DY/DIS) to exclude confounding effects

What are the effects present in nuclear PDFs

EIC impact on gluons

LHC: larger luminosity and new channels, see HL-LHC Yellow report WG5

- improve statistically limited channels: Z, W production, beauty production
- Exploitation of new kinematics and/or theoretically cleaner channels: Dijet photoproduction, prompt forward photons (Focal, LHCb), Drell-Yan forward (LHCb, ALICE muon)

EIC will be able to sample with high precision nuclear PDFs in the provided kinematic range

- check DGLAP evolution within the EIC data and with LHC: very crucial
- Constrain mass dependence

Nuclear structure on large length scales from high-energy

LHC and RHIC: pioneer to explore nuclear structure via correlation measurements

Small nuclei collisions: new access to nuclear structure

EIC: measurements of <E> in fragmentation region sensitive to clustering

New access to nuclear structure at high-energy

Saturation

Saturation:

- A theoretical prediction since the 80

Conjectured, but not unambiguously identified in HERA/LHC data yet

- One of the science drivers of the EI

modified version of graphic in "QCD and collider physics", Ellis, Stirling, Webber

Saturation

Lower energy@EIC: use nuclear collisions to access saturation regime

- Example for dissociative over coherent vector meson production
- Precision longitudinal structure function: see e.g. https://arxiv.org/abs/2203.05846

Saturation

Future measurements at the LHC down to Bjorken-x to 10⁻⁶ in pPb, gamma-p &gamma-Pb

Conclusive measurements from both facilities should allow to have a final word for the kinematics accessible

LHC proved to be capable to go beyond past projections (here from the YR WG5 report):

- t dependence, incoherent production & dissociative production shown to be feasible in UPC
- Important for LHC & EIC: develop theory with uncertainty bars as for structure functions
 - steps ongoing for exclusive quarkonium production using GPDs and low-x resummation: <u>https://arxiv.org/pdf/2409.05738</u>

An uncomplete discussion

High precision proton PDF and TMD constraints

- LHC Drell-Yan, high-pt Jet and top production measurements already now contributing: precise will improve and will contribute
- arxiv:1902.04070
- EIC will push precision at x with low-Q2, see e.g. at: arxiv:2309.11269

TMD physics with spin

- vast programme with observables only available with polarised beams at EIC
- LHC spin as a possible complement with polarized target project for late 2020ies for LHCb fixed-target

Generalised Parton distribution functions

- GPD physics at the core of the EIC programme: gravitational form factors and spin decomposition
- LHC UPC programme only starts to be seen as GPD playground

An uncomplete discussion

Energy loss

- Cold energy loss programme at EIC and at LHC

Collectivity: the limits of the hydrodynamic regime

- EIC allows to have a point-like initial state with a finite Q2: not available easily in UPC at the LHC

Important to note that QCD research so far largely data-driven:

Very lucky that LHC and EIC will run at the same time !

A tentative summary

Correspondence

- Same formalism
 - Use same event-generator
 - Use same type of calculations

Complementary

- Test factorisation as function of Q²
- Extend kinematics substantially by combining both facilities
- Different observables

Redundancy

- Importance of phenomena & systematic uncertainties largely different
- Support or falsify strong claims

QCD programe at EIC and at HL-LHC

Both stand on their own right and with their stand-alone questions

However: their respective potential enlarged by each other

We should reach out to each other to learn more about nature

- often exchange/combinations/collaboration existing, starting in other cases
- We should make an effort for consensus building on common topics: priorities, falsification strategies, conclusions