

The Allen heterogeneous software framework
and possible applications in ePIC

Dorothea vom Bruch
CPPM, Aix-Marseille Université, Marseille, CNRS/IN2P3

ePIC France Workshop
October 10th 2024

2

LHCb experiment

By

General purpose detector in the forward region specialized in beauty and charm hadrons

3

LHCb trigger challenge

A.
 C

er
ri

- U
n i

v e
rs

ity
 o

f S
u s

s e
x

10-2 100 102 104 106 108

H

Production rate [Hz]

tt Z W bb cc

L = 2x1034 cm-2s-1 (ATLAS/CMS) sqrt(s) = 13.6 TeV

L = 2x1033 cm-2s-1 (LHCb)

Key signature is a secondary vertex with significant transverse momentum and displacement from the pp collision
→ Charged particle reconstruction at 30 MHz in full detector is necessary

4

LHCb: Software-only real-time analysis since 2022

5

LHCb: Software-only real-time analysis since 2022

High Level Trigger 1 (HLT1)
● 30 MHz input
● Not latency bound
● 125k lines of code
● O(100) algorithms to maintain

by O(10) developers
● Processed by Allen software
● On O(300) GPUs

6

LHCb: Software-only real-time analysis since 2022

High Level Trigger 2 (HLT2)
● 1 MHz input
● Not latency bound
● 2 million lines of code
● O(2000) algorithms to maintain

by O(100) developers
● Processed by Moore software

7

LHCb: Software-only real-time analysis since 2022

Alignment & calibration
Determine detector position
based on reconstructed quantities
up to tens of micrometers

8

LHCb: Software-only real-time analysis since 2022

Run our own custom data center

9

LHCb’s trigger performance in 2024

B -> Dπ

LHCb-Figure-2024-014 LHCb-Figure-2024-007

B -> Kee

https://cds.cern.ch/record/2898828/files/LHCb-FIGURE-2024-014.pdf
https://cds.cern.ch/record/2898806/files/LHCb-FIGURE-2024-007.pdf

10

What do we reconstruct at LHCb?
Tracks

Electrons
MuonsCherenkov rings

Vertices

By

μ

11

How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs

Intrinsically parallel problem:
 - Run events in parallel
 - Reconstruct tracks in parallel

Good for
 - Data-intensive parallelizable applications
 - High throughput applications

Huge compute load Many TFLOPS

Full data stream from all detectors is read out
→ no stringent latency requirements

Higher latency than CPUs, not as predictable as FPGAs

Small raw event data (~100 kB) Connection via PCIe → limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory

12

Allen design principles
● Do all work on the GPU

• Minimize copies to/from GPU

● Parallelize on multiple levels
● Maximize (GPU) algorithm performance
● Implement performant reconstruction algorithms

• significantly faster/$ than on CPU

● Execution on multiple compute architectures possible
● Simple event model

• Avoid dynamic allocations

• Mostly SoA containers

Raw data

Selection
decisions

��� � ��� ��� ��� ���
�

��

��

�

��

 ��

�

3

Intra collision: tracks, vertices,... Proton collisions Collision batches

13

Allen software framework

● Named after Frances E. Allen

● Hosted on gitlab: gitlab.cern.ch/lhcb/Allen
● C++17 (soon 20), CUDA (12.X), HIP (5.X)

• Algorithms implemented in CUDA

● Built with CMake and runs on CPU and GPU (NVIDIA and AMD)
● Standalone build and integrated with LHCb software stack
● Single precision everywhere (have not yet identified cases where double precision is needed, significant

performance impact)
● Portability between architectures provided by macros and few simple guide lines

• Allow dispatching to architecture-specific function implementations where needed for extra performance

● Custom memory manager
● Multi-event manager
● Algorithms configurable from python
● Geometry loaded from DD4Hep, converted to simple structs easily usable on GPU

https://en.wikipedia.org/wiki/Frances_E._Allen
http://gitlab.cern.ch/lhcb/Allen

14

Memory manager

● Memory allocations on the GPU are very slow
● Allocate chunk of memory at start of application
● Strong preference for “Count First, Write Later”
● Sequence uses data dependencies to track lifetime

• Device Memory is released as soon as possible

● Host memory done analogously, but not released
until after data is output from the application

15

Multi-event scheduler

● For efficient GPU execution, every algorithm processes many events
● Multi-Event Scheduler generates sequence of algorithms to be executed, considering all possible branching

paths
● Running many events in parallel requires extending the “success” or “failure” of an algorithm execution to a

vector
• Implemented as vector of active elements, referred to as “mask”

• May eg. look like: [0, 1, 4, 3] (event 2 is inactive)

● Masks are picked up by the scheduler and are required for the control flow
● Masks live on the device, or alternatively both host and device

16

Python configuration

● Database of algorithms, inputs, outputs and properties built using code parsing with libclang
● Allow configuration of the sequence of algorithms/kernels
● Allow properties of algorithms to be set
● Multiple instances of an algorithm with separate inputs and outputs
● Configuration in Python using LHCb’s PyConf package

17

Monitoring
● Ntuple writing for algorithm development

• Supported only in CPU compilation

• Any variable can be written to an Ntuple for further offline studies

• Used for example to tune search windows for pattern recognition

● Histogram filling for monitoring during data-taking
• Class provided that makes filling of histograms on the GPU easy

• Mutliple instances of each algorithm are running → monitor aggregator merges all counters & histograms
• Interfaced with LHCb’s monitoring infrastructure “Monet”

LHCb-Figure-2024-013

https://cds.cern.ch/record/2898824/files/LHCb-FIGURE-2024-013.pdf

18

Future developments

● Future upgrade: process 25 TB/s
● Computing challenge will move from HLT1 to HLT2
● HLT2 algorithms are executed on CPU architecture as of now
● Only viable slution is to re-design HLT2 reconstruction

algorithms for parallel architectures

● Evolve Gaudi and Allen software frameworks to combine best
features of each

• Gaudi: Framework used by LHCb & ATLAS

• Medium throughput, CPUs only

● Separate LHCb-specific code from core framework code
● Explore processing on remote data centers

A.
 C

er
ri

- U
n i

v e
rs

ity
 o

f S
us

s e
x

CERN Courier 03/2023

https://cerncourier.com/a/lhcb-looks-forward-to-the-2030s/

19

Possible use-case in ePIC

● Similarities between LHCb and ePIC DAQ (described in T. Wenaus’ presentation at the ePIC Software &
Computing meeting):

• “All particles count” → reconstruct all particles w/o pre-selection in hardware

• Full detector data available in counting room / at computing infrastructure
• Data emerges from DAQ in “time frames” containing all subdetector data for hundreds of events

→ ideal for parallel processing

● Data-rate produced by ePIC comparable to LHCb in 2024
• Allen could already cope with the processing with O(hundreds) of GPUs

● Allen provides
• Core infrastructure for highly performant reconstruction code
• Infrastructure for monitoring and development tools

• Easy user interface via python

https://indico.cern.ch/event/1343984/contributions/5908861/attachments/2844550/4973231/ePIC%20comp%20model%20overview.pdf

20

Development experience with Allen

● Allen was built with a core team of 1 postdoc, 1 SW engineer, 1 PhD student (computer science), one senior
and several early career researchers contributing from time to time

● Took 4 years from nothing to a working system including the majority of LHCb’s track reconstruction, vertex
finding, HLT1 selections and some PID

● Systematic experience from LHCb:
• 1-2 motivated PhD students can write a performant algorithm in ~6 months (with some support from core developers)

• Takes another ~6 months to commission the algorithm for data-taking

● Seems plausible that Allen can be adapted for EIC reconstruction in a few years
● Happy to provide support on core Allen functionality if a demonstrator for the ePIC DAQ was to be tested

21

Resources

● Allen documentation: https://allen-doc.docs.cern.ch/index.html
● Allen publication: https://doi.org/10.1007/s41781-020-00039-7
● GPU High Level Trigger TDR: https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
● Comparison of CPU and GPU implementations of LHCb Run 3 trigger: http://arxiv.org/pdf/2105.04031
● Evolution of the energy efficiency of LHCb’s real-time processing:

https://cds.cern.ch/record/2773126?ln=en
● Workshop organized in 11/2023 for future software framework developments:

https://indico.cern.ch/event/1327907/overview

https://allen-doc.docs.cern.ch/index.html
https://doi.org/10.1007/s41781-020-00039-7
https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
http://arxiv.org/pdf/2105.04031
https://cds.cern.ch/record/2773126?ln=en
https://indico.cern.ch/event/1327907/overview

22

Backup

23

By

LHCb’s first level real-time analysis: HLT1

High Level Trigger 1 (HLT1) tasks
● Decode binary payload of sub-detectors
● Reconstruct charged particle trajectories
● Identify electron and muon particles
● Reconstruct particle decay vertices
● Select proton-proton bunch collisions to store

24

By

LHCb’s second level real-time analysis: HLT2

High Level Trigger 2 (HLT2) tasks
● Reconstruct charged particle trajectories with

highest possible efficiency
● Fit particle trajectories with highest possible

precision
● Identify electron and muon particles
● Identify hadron particles: pions, kaons, protons
● Reconstruct particle decay vertices
● Exclusively select particle decays of interest for

offline analysis (around 1000 selections)
● Save only high-level objects for offline analysis

25

Projet IN2P3 proposé

26

GPU HLT1 within data acquisition system

27

Example algorithm: “Triplet” finder

● Build “triplets” of three measurements on consecutive layers → parallelization
● Choose them based on alignment in phi
● Hits sorted by phi → memory accesses as contiguous as possible: data locality
● Extend triplets to next layer → parallelization

Seeding Forwarding Seeding Forwarding

D. Campora et al, “Search by triplet: An efficient local track reconstruction algorithm on parallel architectures”, Journal of Computational Science 54, 101422 (2021)

https://www.sciencedirect.com/science/article/abs/pii/S1877750321001071

28

GPU HLT1 within data acquisition system

The converged architecture
significantly reduces the cost of the

full system

29

History: HLT1 architecture choice
Proposal in TDR (2014)
 CERN-LHCC-2014-016

Updated strategy (as of 5/2020)
● Developed two solutions simultaneously
● Both the multi-threaded CPU & the GPU HLT1

fulfilled the requirements from the 2014 TDR
● Detailed cost benefit analysis

(arXiv:2105.04031)
● GPU solution leads to cost savings on

processors and the network
● Throughput headroom for additional features
● Decision: A GPU-based software trigger will

allow LHCb to expand its physics reach in Run
3 and beyond.

CERN-LHCC-2020-006

pp collisions

Server farm

HLT1

HLT2

storage

event building170 servers

30 MHz

30 MHz

buffer on disk
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

Server farm

HLT2

storage

HLT1

event building170 servers

buffer on disk
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

See also arXiv:2106.07701 on
LHCb’s energy efficiency with a
CPU and GPU HLT1

https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en

30

Overview of GPU usage in various HEP experiments
Experiment Main tasks

processed on GPU
Event / data rate Number of GPUs Deployment date

Mu3e Track- & vertex
reconstruction

20 MHz /
32 Gbit/s

O(10) 2023

CMS Decoding,
clustering, pattern
recognition in pixel

detector

100 kHz 2022 (tbc)

ALICE Track reconstruction
in three sub-

detectors

50 kHz Pb-Pb or < 5
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding,
clustering, track
reconstruction in

three sub-detectors,
vertex

reconstruction,
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf

31

Allen software analysis
● Code analysis with SCC tool, using the cocomo model
● Source code written in CUDA, counted as “C” in table below

https://github.com/boyter/scc#cocomo
https://en.wikipedia.org/wiki/COCOMO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

