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LHCb experiment

By

General purpose detector in the forward region specialized in beauty and charm hadrons



3

LHCb trigger challenge
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L = 2x1034 cm-2s-1 (ATLAS/CMS) sqrt(s) = 13.6 TeV

L = 2x1033 cm-2s-1 (LHCb)

Key signature is a secondary vertex with significant transverse momentum and displacement from the pp collision 
→ Charged particle reconstruction at 30 MHz in full detector is necessary 
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LHCb: Software-only real-time analysis since 2022
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LHCb: Software-only real-time analysis since 2022

High Level Trigger 1 (HLT1)
● 30 MHz input 
● Not latency bound
● 125k lines of code
● O(100) algorithms to maintain 

by O(10) developers
● Processed by Allen software
● On O(300) GPUs
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LHCb: Software-only real-time analysis since 2022

High Level Trigger 2 (HLT2)
● 1 MHz input 
● Not latency bound
● 2 million lines of code
● O(2000) algorithms to maintain 

by O(100) developers
● Processed by Moore software
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LHCb: Software-only real-time analysis since 2022

Alignment & calibration
Determine detector position 
based on reconstructed quantities
up to tens of micrometers
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LHCb: Software-only real-time analysis since 2022

Run our own custom data center
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LHCb’s trigger performance in 2024

B -> Dπ

LHCb-Figure-2024-014 LHCb-Figure-2024-007

B -> Kee

https://cds.cern.ch/record/2898828/files/LHCb-FIGURE-2024-014.pdf
https://cds.cern.ch/record/2898806/files/LHCb-FIGURE-2024-007.pdf
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What do we reconstruct at LHCb?
Tracks

Electrons
MuonsCherenkov rings

Vertices

By

μ
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How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs

Intrinsically parallel problem:
  - Run events in parallel
  - Reconstruct tracks in parallel

Good for 
  - Data-intensive parallelizable applications 
  - High throughput applications

Huge compute load Many TFLOPS

Full data stream from all detectors is read out 
→ no stringent latency requirements

Higher latency than CPUs, not as predictable as FPGAs

Small raw event data (~100 kB) Connection via PCIe → limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory



12

Allen design principles
● Do all work on the GPU

• Minimize copies to/from GPU

● Parallelize on multiple levels
● Maximize (GPU) algorithm performance
● Implement performant reconstruction algorithms

• significantly faster/$ than on CPU

● Execution on multiple compute architectures possible
● Simple event model

• Avoid dynamic allocations

• Mostly SoA containers

Raw data

Selection
decisions
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Intra collision: tracks, vertices,... Proton collisions Collision batches
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Allen software framework

● Named after Frances E. Allen

● Hosted on gitlab: gitlab.cern.ch/lhcb/Allen
● C++17 (soon 20), CUDA (12.X), HIP (5.X)

• Algorithms implemented in CUDA

● Built with CMake and runs on CPU and GPU (NVIDIA and AMD)
● Standalone build and integrated with LHCb software stack
● Single precision everywhere (have not yet identified cases where double precision is needed, significant 

performance impact)
● Portability between architectures provided by macros and few simple guide lines

• Allow dispatching to architecture-specific function implementations where needed for extra performance

● Custom memory manager
● Multi-event manager
● Algorithms configurable from python
● Geometry loaded from DD4Hep, converted to simple structs easily usable on GPU

https://en.wikipedia.org/wiki/Frances_E._Allen
http://gitlab.cern.ch/lhcb/Allen
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Memory manager

● Memory allocations on the GPU are very slow
● Allocate chunk of memory at start of application
● Strong preference for “Count First, Write Later”
● Sequence uses data dependencies to track lifetime

• Device Memory is released as soon as possible

● Host memory done analogously, but not released 
until after data is output from the application
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Multi-event scheduler

● For efficient GPU execution, every algorithm processes many events
● Multi-Event Scheduler generates sequence of algorithms to be executed, considering all possible branching 

paths
● Running many events in parallel requires extending the “success” or “failure” of an algorithm execution to a 

vector
• Implemented as vector of active elements, referred to as “mask” 

• May eg. look like: [0, 1, 4, 3] (event 2 is inactive)

● Masks are picked up by the scheduler and are required for the control flow
● Masks live on the device, or alternatively both host and device
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Python configuration

● Database of algorithms, inputs, outputs and properties built using code parsing with libclang
● Allow configuration of the sequence of algorithms/kernels
● Allow properties of algorithms to be set
● Multiple instances of an algorithm with separate inputs and outputs
● Configuration in Python using LHCb’s PyConf package
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Monitoring
● Ntuple writing for algorithm development

• Supported only in CPU compilation

• Any variable can be written to an Ntuple for further offline studies

• Used for example to tune search windows for pattern recognition

● Histogram filling for monitoring during data-taking
• Class provided that makes filling of histograms on the GPU easy

• Mutliple instances of each algorithm are running → monitor aggregator merges all counters & histograms
• Interfaced with LHCb’s monitoring infrastructure “Monet”

LHCb-Figure-2024-013

https://cds.cern.ch/record/2898824/files/LHCb-FIGURE-2024-013.pdf
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Future developments

● Future upgrade: process 25 TB/s
● Computing challenge will move from HLT1 to HLT2
● HLT2 algorithms are executed on CPU architecture as of now
● Only viable slution is to re-design HLT2 reconstruction 

algorithms for parallel architectures

● Evolve Gaudi and Allen software frameworks to combine best 
features of each

• Gaudi: Framework used by LHCb & ATLAS

• Medium throughput, CPUs only

● Separate LHCb-specific code from core framework code
● Explore processing on remote data centers
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CERN Courier 03/2023

https://cerncourier.com/a/lhcb-looks-forward-to-the-2030s/
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Possible use-case in ePIC

● Similarities between LHCb and ePIC DAQ (described in T. Wenaus’ presentation at the ePIC Software & 
Computing meeting):

• “All particles count” → reconstruct all particles w/o pre-selection in hardware

• Full detector data available in counting room / at computing infrastructure
• Data emerges from DAQ in “time frames” containing all subdetector data for hundreds of events 

→ ideal for parallel processing

● Data-rate produced by ePIC comparable to LHCb in 2024
• Allen could already cope with the processing with O(hundreds) of GPUs

● Allen provides 
• Core infrastructure for highly performant reconstruction code
• Infrastructure for monitoring and development tools

• Easy user interface via python

https://indico.cern.ch/event/1343984/contributions/5908861/attachments/2844550/4973231/ePIC%20comp%20model%20overview.pdf
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Development experience with Allen

● Allen was built with a core team of 1 postdoc, 1 SW engineer, 1 PhD student (computer science), one senior 
and several early career researchers contributing from time to time

● Took 4 years from nothing to a working system including the majority of LHCb’s track reconstruction, vertex 
finding, HLT1 selections and some PID

● Systematic experience from LHCb: 
• 1-2 motivated PhD students can write a performant algorithm in ~6 months (with some support from core developers)

• Takes another ~6 months to commission the algorithm for data-taking

● Seems plausible that Allen can be adapted for EIC reconstruction in a few years
● Happy to provide support on core Allen functionality if a demonstrator for the ePIC DAQ was to be tested



21

Resources

● Allen documentation: https://allen-doc.docs.cern.ch/index.html
● Allen publication:  https://doi.org/10.1007/s41781-020-00039-7  
● GPU High Level Trigger TDR: https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
● Comparison of CPU and GPU implementations of LHCb Run 3 trigger: http://arxiv.org/pdf/2105.04031
● Evolution of the energy efficiency of LHCb’s real-time processing: 

https://cds.cern.ch/record/2773126?ln=en
● Workshop organized in 11/2023 for future software framework developments:  

https://indico.cern.ch/event/1327907/overview 

https://allen-doc.docs.cern.ch/index.html
https://doi.org/10.1007/s41781-020-00039-7
https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
http://arxiv.org/pdf/2105.04031
https://cds.cern.ch/record/2773126?ln=en
https://indico.cern.ch/event/1327907/overview
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Backup
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LHCb’s first level real-time analysis: HLT1

High Level Trigger 1 (HLT1) tasks
● Decode binary payload of sub-detectors
● Reconstruct charged particle trajectories
● Identify electron and muon particles
● Reconstruct particle decay vertices
● Select proton-proton bunch collisions to store
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LHCb’s second level real-time analysis: HLT2

High Level Trigger 2 (HLT2) tasks
● Reconstruct charged particle trajectories with 

highest possible efficiency
● Fit particle trajectories with highest possible 

precision
● Identify electron and muon particles
● Identify hadron particles: pions, kaons, protons
● Reconstruct particle decay vertices
● Exclusively select particle decays of interest for 

offline analysis (around 1000 selections)
● Save only high-level objects for offline analysis
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Projet IN2P3 proposé
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GPU HLT1 within data acquisition system
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Example algorithm: “Triplet” finder

● Build “triplets” of three measurements on consecutive layers → parallelization
● Choose them based on alignment in phi
● Hits sorted by phi → memory accesses as contiguous as possible: data locality
● Extend triplets to next layer → parallelization

Seeding Forwarding Seeding Forwarding

D. Campora et al, “Search by triplet: An efficient local track reconstruction algorithm on parallel architectures”, Journal of Computational Science 54, 101422 (2021)

https://www.sciencedirect.com/science/article/abs/pii/S1877750321001071
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GPU HLT1 within data acquisition system

The converged architecture 
significantly reduces the cost of the 

full system
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History: HLT1 architecture choice
Proposal in TDR (2014)
 CERN-LHCC-2014-016

Updated strategy (as of 5/2020)
● Developed two solutions simultaneously
● Both the multi-threaded CPU & the GPU HLT1 

fulfilled the requirements from the 2014 TDR
● Detailed cost benefit analysis 

(arXiv:2105.04031)
● GPU solution leads to cost savings on 

processors and the network
● Throughput headroom for additional features
● Decision: A GPU-based software trigger will 

allow LHCb to expand its physics reach in Run 
3 and beyond.

CERN-LHCC-2020-006

pp collisions

Server farm

HLT1

HLT2

storage

event building170 servers

30 MHz

30 MHz

buffer on disk 
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

Server farm

HLT2

storage

HLT1

event building170 servers

buffer on disk 
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

See also arXiv:2106.07701 on 
LHCb’s energy efficiency with a 
CPU and GPU HLT1

https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

Mu3e Track- & vertex 
reconstruction

20 MHz /
32 Gbit/s

O(10) 2023

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz 2022 (tbc)

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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Allen software analysis
● Code analysis with SCC tool, using the cocomo model
● Source code written in CUDA, counted as “C” in table below

https://github.com/boyter/scc#cocomo
https://en.wikipedia.org/wiki/COCOMO
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