

CC IN2P3 Infrastructure et usage

EIC France

Overview

CC IN2P3 : Context

- Mission
- Organization
- How are CC-IN2P3 involved on a collaboration.

CC IN2P3: Infrastructure and services

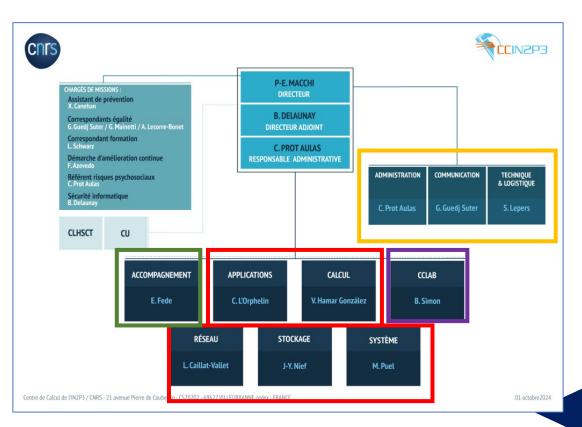
- Infrastructure (computing, storage, network, hosting,...)
- Services (collaboration services, users services, computing and data management services ,..)

How the experiments are using CC-IN2P3 infrastructure and services

- Kind of relationship
- Examples

Summary

CC-IN2P3

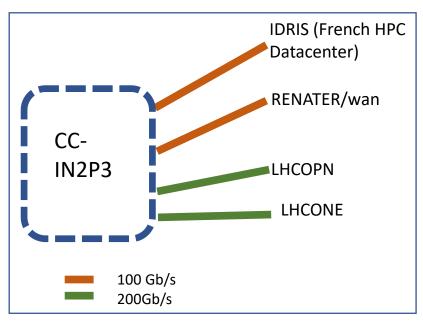


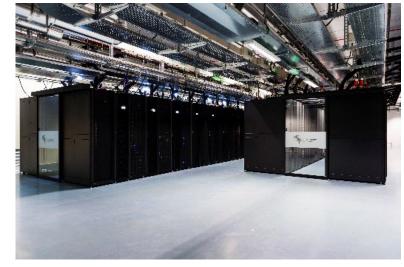
Mission: Providing data processing and services for experiments supported by IN2P3 and IRFU.

- ~85 collaborations supported at CC-IN2P3
 - HEP, Astroparticle physics, Nuclear physics, Cosmology, ...
 - A small fraction < 5% of computing time open to other
 - sciences.
- 84 agents mainly engineers.

Organization:

- Administrative and building technical team
- Research team
- Computing technical and services teams
- Support and contact for collaboration team
 - Computing and data models
 - Resources allocation
 - Collaborations and users support
 - Main contact for collaboration


CC-IN2P3 provide resources/services for different usages


- For IN2P3 users (institutional services)
 - Mail, box, gitlab,.....
- For R&D phases. Small usage a few resources
- Because IN2P3 is involving on the computing aspect of a collaboration
 - Should be validated by DAS (scientific IN2P3 deputy)
 - Annual collect of resources requested (Computing, storage, DB, backup, virtual host,...)
 - Validated or not (mainly depending of the budget)
 - A computing coordinator have to be identified on the collaboration
 - Some collaborations have a identified budget (LHC, LSST, Euclid, ...)
 - Usually a multi year planning on computing resources needs is available

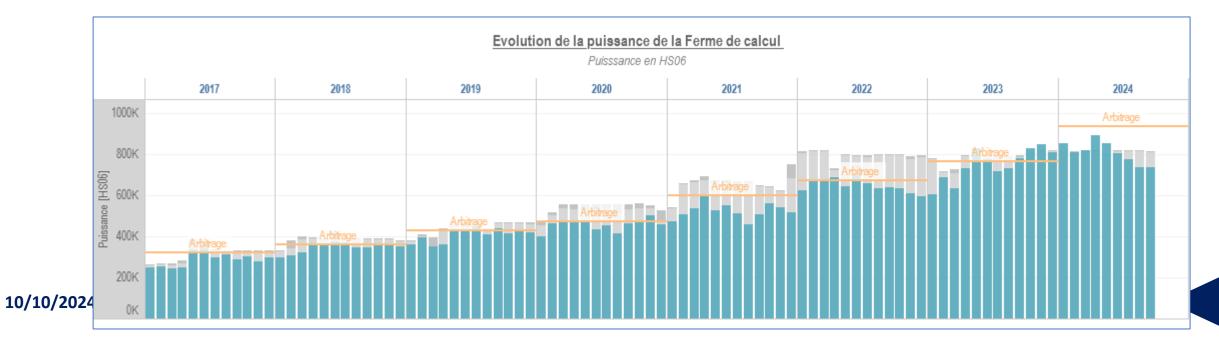
CC-IN2P3: Infrastructure

- 1500 m2 (2*750) of computing room.
 - A new computing room will be available first months of 2026
- Dedicated network links for a subset of collaboration
- ~1.5 MW of electric power
- High availability

CC-IN2P3: WAN NETWORK LINK

CC-IN2P3: Computing

CCIN2P3


Shared facilities

- HTC (High Throughput Computing)
 - Main computing resource
 - ~60 kslot : ~940 000 HS06
 - 35%/65 % Local jobs/grid jobs
- HPC (High Performance Computing)
 - Limited usage
 - 512 cores

- GPU (Graphics Process Unit)
 - 68 GPU V100

Specifics/dedicated facilities

Virtual hosts, dedicated GPU,...

CC-IN2P3: Storage

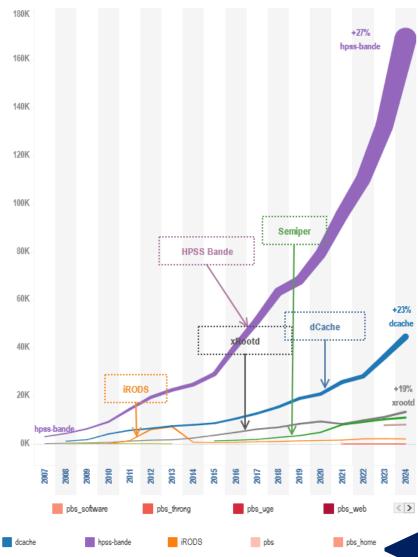
Disk infrastructure

- High capacities ~ 59 PB (dCache, Irods, Xrootd)
- High performance ~ 15 PB (Ceph-FS, Isilon, GPFS)
- Oriented service : Ceph

Tape infrastructure

- ~170 PB of data on tape
- A large set of experiments

Backup infrastructure


- Double copy (~2*4PB)
- Mainly to store IN2P3 laboratories backup and some experiments data.

Other

- Ceph for cloud
- Database: Oracle, MariaDB, postgres, nosql,...

Détail du stockage utilisé par Service

-Espace mensuel maximum utilisé sur la période pour chaque Service-

xrootd

10/10/2024 EIC2024

CC-IN2P3: Services

CC-IN2P3 is providing also a large set of services to the users/collaborations.

Some of them are shared but some of them are dedicated to a collaboration and the main part of the time are a critical services for the collaboration.

Two ways to provide theses services are available:

- CC-IN2P3 provides infrastructure only, services are managed by user/collaboration
 - Mainly via internal cloud infrastructure/ kubernetes cluster.
 - Web, VObox,...
- CC-IN2P3 provide infrastructure and management of services
 - Via dedicated infrastructure or virtual machine on internal cloud
 - Job submission (Dirac), data management tool, Databases, repository (cvmfs stratum 0),....

Providing a service for a collaboration is a strong engagement because:

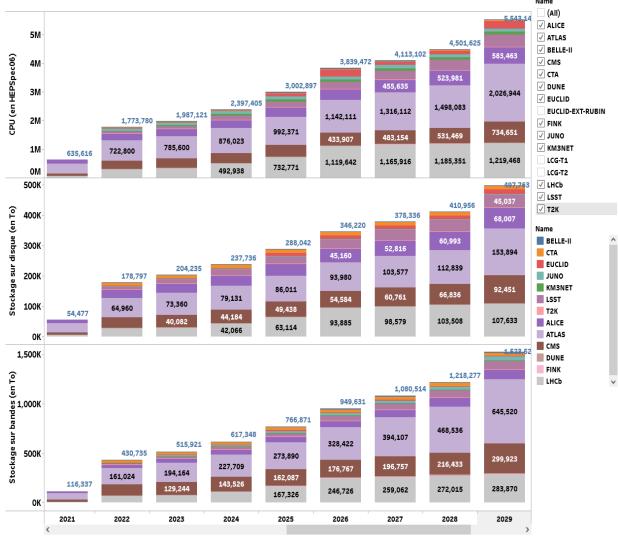
- Long term engagement
- Critical for collaboration
- Service level agreement (SLA) to satisfy

HAVE TO BE CLEARLY IDENTIFIED AND SUPPORTED BY IN2P3 ENGAGEMENTS AND COLLABORATION

Infrastructure growth

We have to consider whole lifetime of the collaboration (sometimes many decade).

 A multi year engagement between IN2P3 and collaborations concerning the computing (MoU) has to be established.


Concerning the budget many aspects have to be considered.

- Investments costs
- Running costs
- Operational costs

New technologies investigation/deployment

More FTE

CC-IN2P3 computing infrastructure for collaborations

Three kinds of usage of our computing infrastructure can be highlighting.

First one: When the computing model of the collaboration is based on the usage of a large scale distributed infrastructure(Grid).

• LHC, JUNO, KM3net, Belle2,... ~all HEP collaborations

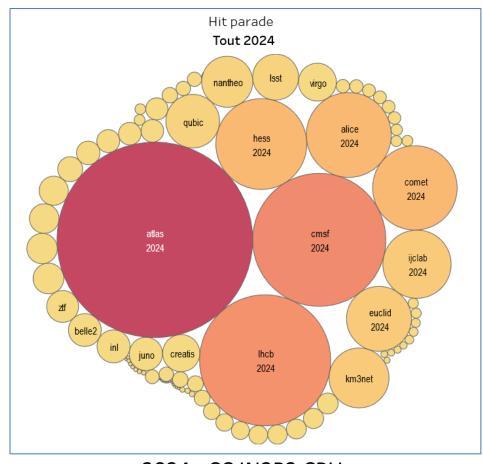
Second one: When the computing model is build around a small set of sites.

• LSST/VR, Virgo, Euclid.....

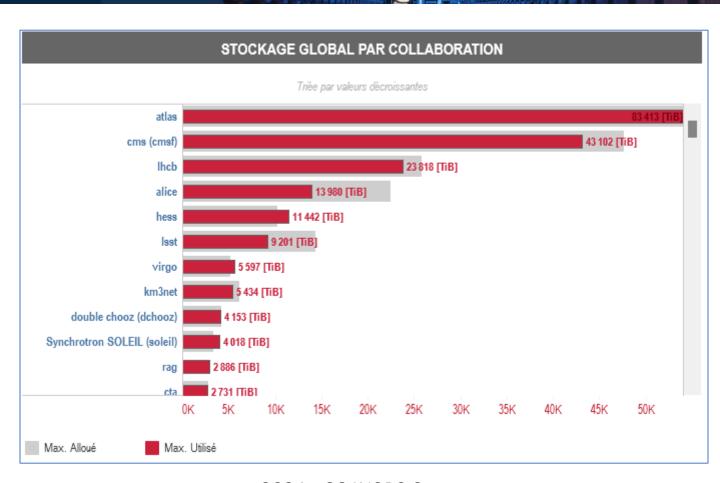
The last: When the usage of the computing is focused on only one site.

- All collaborations on which the computing resource request can be satisfied by one site.
 - Nuclear, theory,...

IN2P3 computing infrastructure for collaborations

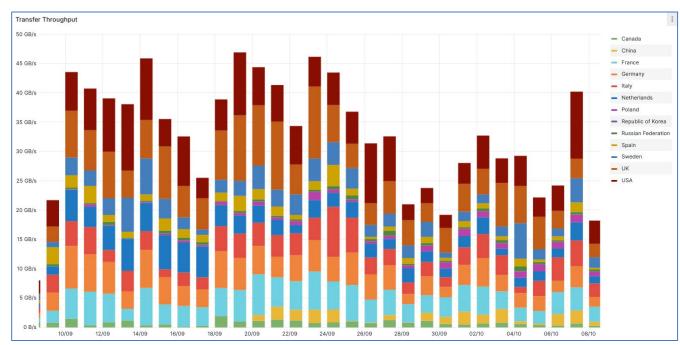


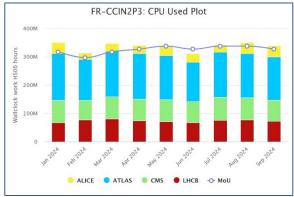
On distributed computing models (worldwide scale): GRID

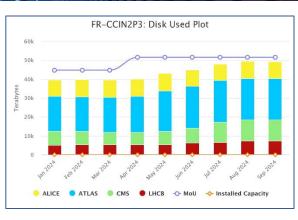

- Commonly a MoU (IN2P3/Collaboration contract) define the computing commitments.
- Collaboration contact person is a team = "computing team"
- IN2P3 (and CC) are often asked to participate to these infrastructures.
- CC-IN2P3 is considered as a stable and performant site.
 - Tier 1 for WLCG: stored a part of the raw data ~10 %
 - 15 % of the Belle2 Raw data at CC IN2P3.
 - Solicited to store a part of the JUNO, KM3NET,... raw data.
 - Involved on simulations and analyses of these collaborations.
 - Providing collaboration main services (Dirac, DB for HyperK,...).

CC-IN2P3 contribution (CC-IN2P3 view)

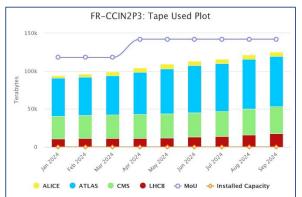
2024 : CC IN2P3 CPU



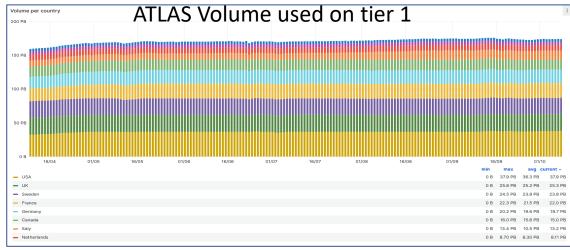

2024 : CC IN2P3 Storage

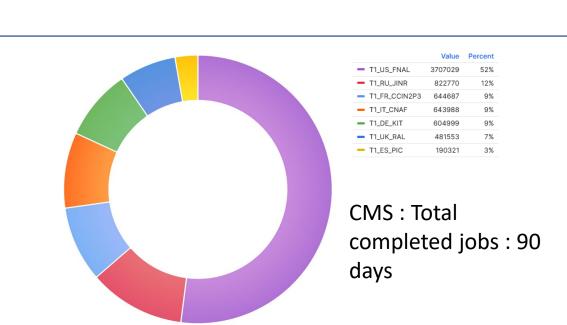

CC-IN2P3 contribution (WLCG View)

13

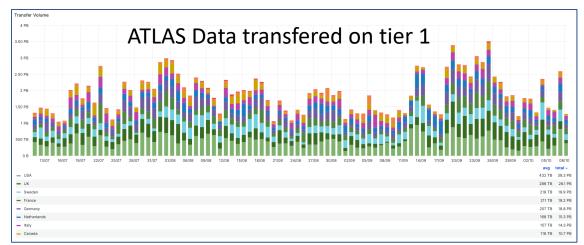


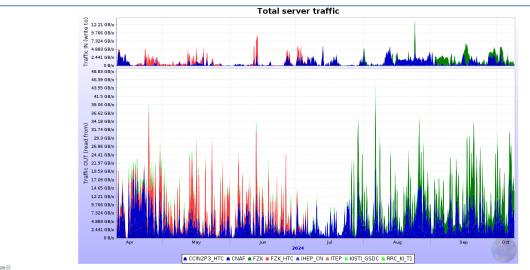
Transfert WLCG vers les Tier1





WLCG availability/reliability last 90 days from Alice/ATLAS/CMS/LHCb

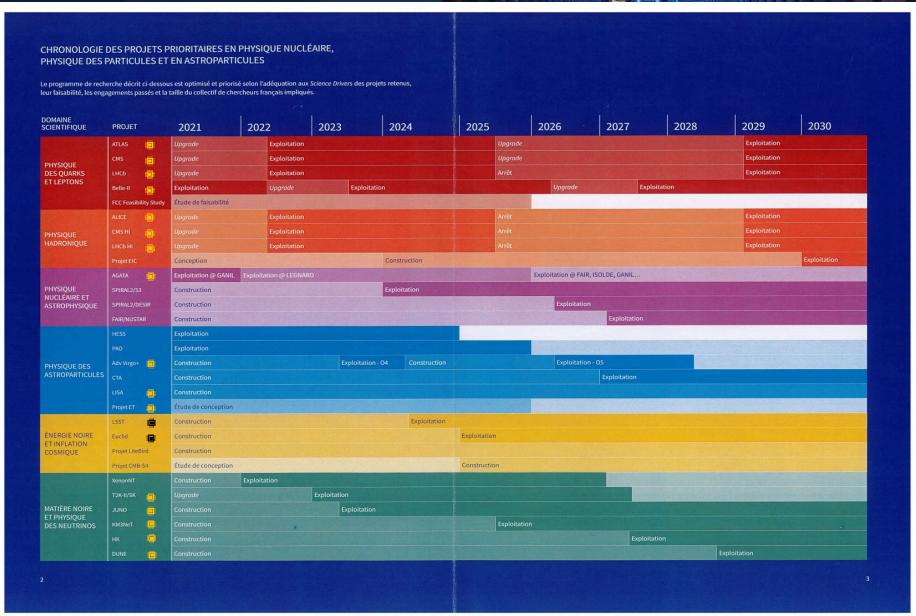

CC-IN2P3 contribution (from experiments)



10/10/2024

			Traffic IN			
	Series	Last value	Min	Avg	Max	Total
1.	CCIN2P3_HTC	2.909 KB/s	0 B/s	479.2 MB/s	34.85 GB/s	7.023 PB
2.	CNAF	220.7 MB/s	0 B/s	444.7 MB/s	21.47 GB/s	6.516 PB
3.	■ FZK	211.5 MB/s	0 B/s	811.9 MB/s	45.94 GB/s	4.916 PB
4.	FZK_HTC	1.417 GB/s	0 B/s	587.4 MB/s	45.43 GB/s	4.136 PB
5.	■ IHEP_CN	18.39 MB/s	0 B/s	14.13 MB/s	2.52 GB/s	49.66 TB
6.	■ ITEP	26.62 KB/s	0 B/s	31.7 KB/s	3.012 MB/s	475.6 GB
7.	KISTI_GSDC	2.911 KB/s	0 B/s	3.167 MB/s	2.52 GB/s	47.53 TB
8.	RRC_KI_T1	0 B/s	0 B/s	4.119 KB/s	28.06 MB/s	61.8 GB
	Total	1.857 GB/s		2.286 GB/s		22.69 PB

Traffic OUT								
	Series	Last value	Min	Avg	Max	Total		
1.	CCIN2P3_HTC	1.24 GB/s	0 B/s	1.725 GB/s	26.85 GB/s	25.88 PB		
2.	CNAF	3.715 GB/s	0 B/s	3.336 GB/s	34.96 GB/s	50.05 PB		
3.	■ FZK	8.47 GB/s	0.642 B/s	5.576 GB/s	64.95 GB/s	34.58 PB		
4.	FZK_HTC	5.194 GB/s	0 B/s	4.043 GB/s	170.9 GB/s	29.15 PB		
5.	■ IHEP_CN	35.75 MB/s	0.233 KB/s	8.421 MB/s	1.8 GB/s	29.6 TB		
6.	■ ITEP	0.555 MB/s	0 B/s	3.846 MB/s	286.3 MB/s	57.71 TB		
7.	KISTI_GSDC	14 MB/s	0 B/s	469.5 MB/s	9.14 GB/s	6.88 PB		
8.	RRC_KI_T1	7.482 MB/s	0 B/s	23.02 MB/s	619.4 MB/s	345.4 TB		
	Total	18.67 GB/s		15.17 GB/s		147 PB		


IN2P3 main experiment timeline

ECINSP3

Dull and pastel colours: prepatories/building/up grade phases.

Bright colours: Data acquisition/running phase

CC-IN2P3 is involved or will be involved or could be involved as computing resources

Summary

CC-IN2P3 computing infrastructure are involving on majority of computing model of our collaborations.

We are engaged with a major role on the computing an data management of collaborations.

- Productions
- R&D and infrastructure evolution.

Skills and technical capability of our teams are recognized.

- Definition of computing and data management models
- Technical aspect
- Resources sizing
- •

As early as possible a contact is establish between a collaboration and CC-IN2P3, better it is.

BACKUP

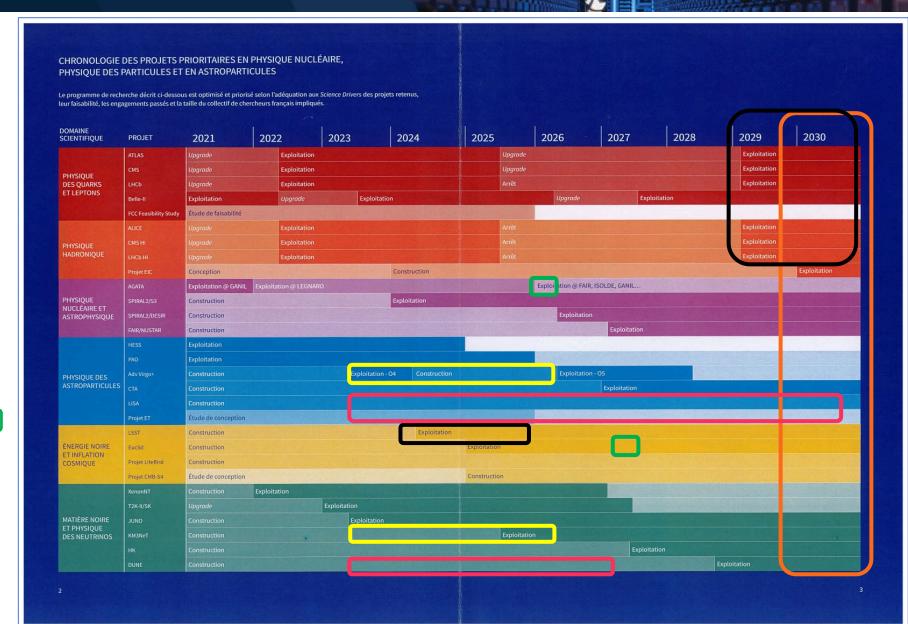
Summary

A strong overlap of experiment on running phase:

Huge capacities to deploy and operate

Commissioning or upgrade

 Strong ramp up on resources to be delivered


Change on computing models

Support and services evolution

Potential change of technologies / new technologies to deploy

 New computing devices, new storage technologies, new infrastructure

Building the computing model

