

🚫 IP PARIS

EICROC ASIC: status and plans

EIC France 10 oct 2024

AGH

F. Bouyjou, S. Conforti, E. Delagnes, JJ Dormard, F. Dulucq, M. Firlej, T. Fiutowski,, F. Guilloux, M. Idzik, B.-Y. Ki, C. de La Taille, P. LeDortz, J. Moron, D. Marchand, C. Munoz, Arzoo Sharma, N. Seguin-Moreau, L. Serin, K. Swientek, D. Thienpont, A. Verplancke

Organization for Micro-Electronics desiGn and Applications

From S. Nanda : https://indico.cern.ch/event/1232761/contributions/5321425/

4D Trackers

	Area (m ²)	Channel size (mm²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10.9	0.5*10 (strips)	2.4M	30 ps	30 μm in φ	0.01 X0
Forward TOF	2.22	0.5*0.5 (pixels)	8.8M	25 ps	$30 \ \mu m$ in x and y	0.08 X0
B0 tracker	0.07	0.5*0.5 (pixels)	0.28M	30 ps	20 μm in x and y	0.05 X0
RPs/OMD	0.14/0.08	0.5*0.5 (pixels)	0.56M/0.32M	30 ps	140 <i>µm</i> in x and y	no strict req.

mega

DC LGAD and **AC LGAD**

- MIP timing detectors (HGTD, ETL) use DC LGAD sensors
 - ~10 fC/MIP
 - Area : (1.3 mm)²
 - Good timing resolution : 30-50 ps
 - Poor position resolution : ~400 µm
 - « dead zone » between pixels
- AC LGADs for EIC
 - Resistive layer to get signal sharing
 - Area (500 μm)²
 - Good position resolution : < 50 µm
 - No dead area
 - Good timing resolution (as DC LGAD)

AC LGAD performance

mega

- Here for strips : 500 µm x 5 mm
 - ~30-35 ps timing resolution
 - ~10 µm position resolution
 - Oscilloscope readout
 - Still preliminary results and improvements underway on gain uniformity
 - Chosen as baseline for several EIC detectors
- New and promising detector

2016

2017

Altiroc0 2 x 2 mm2 2 x 2 pixels PA + discri

> Altiroc0 and 1: No digital, To validate the FE part at system level (= ASIC bumpbonded onto a sensor)

2019

ALTIROC2:

First full size chip with 15 x 15 channels – 2 x 2 cm2 To demonstrate the functionality/performance of the ASIC (time resolution + luminosity counting) alone and bumpbonded onto a sensor But NOT to be fully radiation hard (against SEE)

ALTIROC3:

Last full chip prototype before pre-production Same as Altiroc2 but fully triplicated

Laboratoire de Physique

des 2 Infini

MEGA

Omega

- Shrink into 500 x 500 µm
- Analog frontend similar to ALTIROC
- Need ADC instead of ToT for charge measurement 8-bit 40 MHz from AGH Krakow
- TDC taken from HGCROC by CEA Saclay
- I²C configuration
- Simple digital readout

EICROC0 : 4x4 pixels

- EICROC0 : 4x4 test chip for (500µm)² pixels
 - Readout : TDC data and 8 ADC values
 - Performance : see talk by Arzoo

mega

- EICROC1 : 8x32 = 256 pixels or 32x32 = 1024
 - Layout complete. DRC/LVS OK
 - Still EICROC0 digital architecture and Readout
 - 2/8 data outputs : 1 for 128 pixels (4x32)
 - Looking to increase R/O speed. Possibility to skip pixels by SC
 - Looking to improve testability.
 - Verifications in progress (~2 months)
 - 32x32 would allow tests with final sensor
- EICROC1 addresses floorplan issues
 - Power drops along column, threshold uniformity
 - TDC uniformity and dependance on number of channels triggering
- Variants of EICROC0 will also be submitted
 - Lower power in the ADC branch (100 $\mu W)$

EIC reticle 2024

- TSMC now requires to fully populate the reticle of 24x32
 - Cost ~300 k€
- For EIC we would have
 - EICROC1
 - 2 or 3 EICROC0/A/B
 - 2 CALOROC1A/1B
 - ~60% of reticle area
- Possible additionnal partners
 - ~20% of reticle area
 - Still space available (if ready in time !)

- EICROC2 needs to address EIC digital architecture
 - Auto-trigger
 - Data driven zero-suppressed readout
 - Only readout hit channels and neighbours
 - Will depend a lot on the (low?) occupancy
 - Triplication and SEE tolerance
 - 200 MHz clock and fast commands
- Several EIC functions will be tested in CALOROC (see talk by F Dulucq)
 - Sparse readout
 - Output links 160-1280 Mb/s
- Possible submission Q3-Q4 2026

nega

- Little impact on analog/digital performance
 - Analog similar in 65/130
 - Possibly more significant on TDC
 - Digital much simpler than LHC chips
- Update of digital part
 - Little space available => main reason for 65 !
- sizeable cost impact : ER 700 k\$ vs 300 k\$
 But possibly more partners (but EICROC 50% of reticle)
- Prepare for design in 65 nm
 - Make an EICROC0/65n to test analog part and TDC

nega

AoT vs DoT

- HGCROC/CALOROC designed Analog on Top (1D chip)
 - Analog inputs on one side / digital outputs on the other side
 - All digital data re-synchronized when transferred to digital blocks
- ALTIROC was designed Digital on Top (2D chip)
 - Powerful tools to verify digital part functionnality/timings in all corners on all the chip area
 - But needs more manpower for digital design (RTL, P&R, IRD, TB, UVM...)
 - Possible help from colleagues at Clermont
- Choice will depend on complexity (occupancy) and manpower availability

Conclusion

- mega
- EICROC is a 1k-channels ASIC to readout AC-LGAD pixels
 - Very promising new family of detectors
 - Combines both good timing and position resolution (30 ps 10 μ m)
 - Targeting 1 mW/ch
 - Re-use of many blocks from ATLAS HGTD and CMS HGCAL
- Still several choices lying ahead
 - Technology choice 65nm / 130nm
 - Analog on Top / Digital on Top
- Importance of module tests