Matthew Nguyen EIC-France October 9th 2024

Backward EMCal in ePIC

The electron-going ECAL (EEEMCal)

Crucial role! Measure:

- Scattered e- from DIS
- Direct γ from DVCS

Needs to:

- distinguish e- from $\pi^{+/-}$
- collect bremsstrahlung γ 's
- reject photons from π^0

Matthew Nguyen (LLR)

Requires excellent energy resolution & low energy threshold for determining event kinematics, particularly for inclusive DIS

Low occupancy & radiation compared to a hadron collider

Project scope

Figure 5: Conceptual design of the ePIC electron endcap electromagnetic calorimeter support, developed by IJCLab.

Design and fabricate an electromagnetic calorimeter (mechanical structure, readout electronics, etc.)

•Endcap: cylindrical geometry

- Located 175cm from interaction point
- •Weight ~ 3 tons w/ support & services

Only a homogenous electromagnetic calorimeter will fulfill the energy resolution requirements

Active material: PWO

Characterics

- Fast
- Compact
- Radiation hard
- Mature technology used by many experiments (CMS, JLab)

- •Detailed investigation of SciGlass, a cheater alternative, were conducted at IJCLab
- •Purchase of crystals assured by the U.S. (\approx 9 million euros)

Matthew Nguyen (LLR)

ePIC specifications

- Dimensions
 - 20 cm depth ~ 22 X0 to minimize shower leakage
 - 2 cm transverse size to match Molière radius
- Fabrication
 - Fabricated by CRYTUR (Czechia)
 - PWO-II \longrightarrow 50% more p.e. than PWO
- Performance
 - Energy resolution: $\sigma_E/E \approx 2\%/\sqrt{E} \oplus 1\%$
 - Position resolution: 2mm @ 1-3 GeV

Signal Collection: Silicon Photomultipliers

SiPMs have rapidly developed over the last ~15 years All ePIC calorimeters will use SiPMs of various models (size, pitch, etc.)

Essential features

- High gain
- Good photo-detection efficiency
- Insensitive to B fields
- Cost effective

S14160-3015PS

Baseline SiPM version

Package type	Surface mount type
Number of channels	1 ch
Effective photosensitive area / ch	3 × 3 mm
Number of pixels /ch	39984
Pixel size	15 µm
Spectral response range	290 to 900 nm
Peak sensitivity wavelength (typ.)	460 nm
Dark count/ch (typ.)	700 kcps
Terminal capacitance/ch (typ.)	530 pF
Gain (typ.)	3.6×10 ⁵
Measurement condition	Ta=25 °C

Matthew Nguyen (LLR)

Figure 10: PWO crystal readout by an array of 16 Hamamatsu S14160-1315 SiPMs.

For baseline SiPM, each crystal read w/ a 4x4 array If each SiPM read out independently: 48k channels

SiPM characterization

Studies of SiPMs with PWO crystals funded by an IN2P3 R&T project (2022-2024) Various SiPM models were tested by Vincent Chaumat (IR) & Noémie Pilleux (PhD) @ ICJLab

- 3x3 mm² vs 6x6 mm²
- 10 vs 15 micron pitch

 \rightarrow 3x3 mm² w/ 15 micron pitch is current baseline \rightarrow

Figure 9: Left: waveform (top) and integrated signal (bottom) showing single photo-electron signals in Hamamatsu 15 um pixel SiPMs. Signals are produced with a low-intensity LED. Right: Linearity measurement, showing 2% linearity up to 3500 photo-electrons.

Detector simulations

DD4HEP/Geant simulations done at IJCLab Includes full material in front of detector

Figure 7: EEEMCal simulated performance using the ePIC detector framework including all materials. Left: energy resolution as a function of the incident particle energy. Right: pion rejection factor as a function of energy and different values of electron efficiency.

 Energy resolution close to specifications •Pion rejection at about 10³ with reasonably high efficiency Expect 10⁴ when combined with PID detectors

Mechanical design

stacked w/ 0.5 mm-think carbon fiber plates on the front and back of crystals

Figure 8: EEEMCal installation fixtures that allow for installing the detector safely into the ePIC detector barrel.

• Rail-guided mechanical will position the detector • Mechanical structure includes services as well as light monitoring • Airflow based cooling will be used to stabilize temperature

Readout electronics: CaloROC

ASIC designed by OMEGA will be used for nearly all the calorimeters of ePIC Details covered in dedicated talk

Ongoing studies use similar chip designed for CMS (HGCROC)

Figure 11: Signal path block diagram of the proposed front-end.

NB: An alternative solution based on commercial flashADC is also being considered for EEEMCal

Protoboard designed by LFHCal team to read HGCROC

ASIC testing/characterization

- Infrastructure for mass testing of ASICs developed at LLR & Omega for CMS
- Expertise & facilities useful for ePIC
- ASICs for protoboards tested LLR
- In addition to ASIC design/fabrication, we aim to maintain French expertise in testing & characterization

Figure 12: HGCROC robotic testing facility at LLR.

10

Beamtest setup

1st test of complete chain conducted in September @ CERN, jointly with forward HCAL

Figure 17: Beam test setup at CERN SP (September 2024).

5x5 crystal prototype designed at IJCLab Only 4 crystals equipped for 1st test

Figure 15: 5x5 PWO crystal prototype designed and built at IJCLab.

Figure 16: CAD drawing of the interface between the SiPMs and the ASICs.

Backward EMCal

Readout identical to forward HCAL HGCROC protoboard + KCU (FPGA)

Interface card between SiPM & ASIC designed by LLR

11

- Electron data collected at 1-5 GeV
- •Waveforms for each of the 16 SiPMs attached to a single crystal, with independent readout
- •Signal rise time of 25-50 ns followed by a decay of 100 ns, close to expectation for PWO
- •Similar amplitude observed in each SiPM
- •Did not manage to get data for configuration with grouped SiPM \rightarrow currently under investigation on test bench w/ help from OMEGA

Beam-test measurements

Figure 18: Waveforms for a 5-GeV electron in the 16 SiPM of PWO crystal

Thermal studies

Thermal simulations were conducted which indicate that detector meets 0.1C stability requirement

Figure 13: ANSYS simulation of the temperature of crystals. The detector is surrounded by cold (19 °C) plates. Cold plates are also placed in the inner region, around the whole to let the beampipe go through.

Figure 14: Temperature measured as a function of time at different positions across the PWO crystals during the beam-test measurements at CERN with the 5x5 EEEMCal prototype.

Beam test data is being studied to validate simulations

-	-		lan i	HE1	(0)
-	-			14.7	23
-	10.00			107	70
-	1210	18.19	10.0	604	(0)
	1411	**	1.0	618	(4)
-	-			104	(7)
	-			107	
	1411	*		104	50
	1.000				
	-		101	110	

Conclusions

- We are targeting a French contribution to the backward EMCal (EEEMCal) for ePIC
 - Essential detector for all of the physics goals of the EIC program
- France has played a leading role in the EEEMCal design choices in terms of mechanical structure, choice of active materials & signal detection technology
- We are currently in the prototype testing phase
 - We recently collected data with the full chain: crystal-SiPM-HGROC-DAQ
 - Upcoming beam tests at DESY w/ 5x5 prototype will allow us to test different readout configurations
 - Aim for adoption of Omega ASIC for this detector
- Planning for the construction phase of the detector is starting to take shape

14