

CyMBaL Micromegas for EIC

Dylan Neff CEA Saclay

F. Bossù, A. Bonenfant, A. Francisco, C. Goblin, F. Jeanneau, C. Libourel, V. Maâch, I. Mandjavidze, D. Neyret, S. Polcher Rafael, M. Vandenbroucke

10/10/2024

EIC France 2024

Cylindrical Micromegas Barrel Layer (CyMBaL)

- Tracking System (Barrel)
 - Silicon Vertex Trackers (SVT)
 - CyMBaL
 - Barrel Time of Flight (BTOF)
 - µRWELL-BOT
- What will CyMBaL do?
 - Fast tracklets for track seeding
 - Full hermetic coverage
 - Reliable redundancy
- CyMBaL Requirements
 - \circ Spatial Resolution: ~150µm
 - Timing Resolution: ~10ns
 - Low Material Budget: ~0.5%X0

- Reconstruct tracklets with fast outer tracking detectors
 - CyMBal
 - BTOF
 - µRWELL-BOT
- Use these tracklets to seed tracks for the slower Silicon Vertex Tracker (SVT)
 - \circ SVT integration time of 2-5µs
 - \circ Events every ~2µs, expect some pile-up
 - Fast tracklets matched to SVT tracks give precise time information
- Micromegas lower in noise than silicon, provide reliable hits for track reconstruction

- Reconstruct tracklets with fast outer tracking detectors
 - CyMBal
 - BTOF
 - µRWELL-BOT
- Use these tracklets to seed tracks for the slower Silicon Vertex Tracker (SVT)
 - \circ SVT integration time of 2-5µs
 - \circ Events every ~2µs, expect some pile-up
 - Fast tracklets matched to SVT tracks give precise time information
- Micromegas lower in noise than silicon, provide reliable hits for track reconstruction

- Reconstruct tracklets with fast outer tracking detectors
 - CyMBal
 - BTOF
 - µRWELL-BOT
- Use these tracklets to seed tracks for the slower Silicon Vertex Tracker (SVT)
 - \circ SVT integration time of 2-5µs
 - \circ Events every ~2µs, expect some pile-up
 - Fast tracklets matched to SVT tracks give precise time information
- Micromegas lower in noise than silicon, provide reliable hits for track reconstruction

- Reconstruct tracklets with fast outer tracking detectors
 - CyMBal
 - BTOF
 - µRWELL-BOT
- Use these tracklets to seed tracks for the slower Silicon Vertex Tracker (SVT)
 - \circ SVT integration time of 2-5µs
 - \circ Events every ~2µs, expect some pile-up
 - Fast tracklets matched to SVT tracks give precise time information
- Micromegas lower in noise than silicon, provide reliable hits for track reconstruction

- Reconstruct tracklets with fast outer tracking detectors
 - CyMBal
 - BTOF
 - µRWELL-BOT
- Use these tracklets to seed tracks for the slower Silicon Vertex Tracker (SVT)
 - \circ SVT integration time of 2-5µs
 - \circ Events every ~2µs, expect some pile-up
 - Fast tracklets matched to SVT tracks give precise time information
- Micromegas lower in noise than silicon, provide reliable hits for track reconstruction

CyMBaL: Gap Coverage

- Silicon Vertex Tracker has a gap in rapidity between barrel and forward disks, as low as 3 hits max at $\eta=1$
- CyMBaL and BTOF cover this gap, bringing tracking back to 5 hits

CyMBaL: Layout

- Fully hermetic: Overlap in phi and z
- Two curvature radii
 - Central cylinders: 50 cm
 - Forward cylinders: 55 cm
- 32 modules
 - 4 along z, 8 around azimuth
 - $\circ \quad 1024 \ readout \ channels/module \rightarrow 32k \ total$

CyMBaL: Module

- Single module design with two curvature radii simplifies production and reduces cost
- Front end boards based on SALSA ASIC at edges of detector to reduce material budget
 - 50cm micro-coaxial cables connecting central modules
- 2D readout strips with pitch ~1 mm

CyMBaL: Micromegas Design

CyMBaL Requirements

- Cylindrical shape
- ~2T magnetic field
- 5cm radial keeping zone \rightarrow tight space!
- Low material budget

CyMBaL Design

CyMBaL: Micromegas Design

CyMBaL Requirements

- Cylindrical shape
- ~2T magnetic field
- 5cm radial keeping zone \rightarrow tight space!
- Low material budget

CyMBaL Design

Saclay has experience building a detector that meets these requirements

Cylindrical Micromegas built for the CLAS12 experiment at Jefferson National Lab

- Operates in 5T magnetic field
- Cylindrical shape
- Compact and light

CLAS12 Cylindrical Micromegas

CyMBaL: Micromegas Design

CyMBaL Requirements

- Cylindrical shape
- ~2T magnetic field
- 5cm radial keeping zone \rightarrow tight space!
- Low material budget

CyMBaL Design

Saclay has experience building a detector that meets these requirements

Cylindrical Micromegas built for the CLAS12 experiment at Jefferson National Lab

- Operates in 5T magnetic field
- Cylindrical shape
- Compact and light

CLAS12 Cylindrical Micromegas

Key Difference:

Upgrade necessary for readout **1D** CLAS12 \rightarrow **2D** CyMBaL

Electrons drift to mesh Avalanche in amplification gap Charge spreads on resistive layer -Signal is induced on readout strips

Gas ionized by incident particle Electrons drift to mesh Avalanche in amplification gap Charge spreads on resistive layer Signal is induced on readout strips

Design Goals

- Spread charge over multiple strips to improve spatial resolution by a weighted average
- Share charge equally between top and bottom strips

Developing and Optimizing 2D Detector Design

Developing and Optimizing 2D Detector Design

Developing and Optimizing 2D Detector Design

Developing and Characterizing Prototypes

Two Options for Testing Prototypes

Beam Test

- Key Measurements
- Time resolution
- Spatial Resolution
- Efficiency
- Charge sharing
- Cluster Size
- Gain Curves

Cosmics

- Mainz test in July 2023
 - Limited results due to multiple scattering
- Possible future test at CERN

- Test bench set up at CEA-Saclay
- **Pro** Can quickly test new detectors
- **Con** Limited statistics for precise measurements

10/10/2024

- What fraction of the charge is collected on the Top vs Bottom strips?
- Most of charge collected on **Top** strips for **D2**

- What fraction of the charge is collected on the Top vs Bottom strips?
- Most of charge collected on **Top** strips for **D2**
- More equal sharing in **D1** where **Top** strip width reduced 0.2
 - Can tune **Top** strip width to optimize charge sharing

- Cluster Size: Number of adjacent strips above threshold
 - For cluster size > 2, a weighted average can improve spatial resolution. Larger cluster size desirable
- Smaller pitch increases cluster size
- Wider **Top** strips (**D2**) increase cluster sizes

Spatial Resolution

- Residuals: Difference between a track's true position and measured position
- Finer pitch gives better (smaller) residuals at the expense of more readout channels
- Residuals under **200µm** for 0.5 and 1.0 mm pitch

- CyMBaL will provide a reliable and fast tracking point between the Silicon Vertex Tracker (SVT) and the Barrel Time Of Flight (BTOF)
 Will also help cover rapidity gap in the SVT
- Mainz beam test showed that 200µm spatial resolution possible with 1mm 2D strip readout
- Work ongoing to characterize other prototype detectors and determine optimal 2D readout for CyMBaL

- CyMBaL will provide a reliable and fast tracking point between the Silicon Vertex Tracker (SVT) and the Barrel Time Of Flight (BTOF)
 Will also help cover rapidity gap in the SVT
- Mainz beam test showed that 200µm spatial resolution possible with 1mm 2D strip readout
- Work ongoing to characterize other prototype detectors and determine optimal 2D readout for CyMBaL

Thanks for your attention!

Backup

- Choice of the 2D readout pattern
- Large scale prototype
- Design of the final module
- First production of few modules Production of 32 modules
- Adjustment of the design
- Test of components from vendors
- Test of assembly line ٠
- Start procurement for prod
- Validation of detector . mechanics with ePIC support structure

- Validation of modules with cosmics and with Fe55
- Shipments to BNL .

Dylan Neff - EIC France 2024

lu/10/2024

10/10/2024

Dylan Neff - EIC France 2024

Dimensions:

- Size: 65 x 46 cm²
- Active area: 59x44 cm²
- r/o strips: ~1 mm pitch in both directions
- Readout strips per module: 1024
- 32 channels per connector \rightarrow 32 connectors

Services:

- HV: 2 channels (drift and resistive layer)
- Gas: 2 tubes (in and out)
 - Two tiles can be in series
- 4 FEBs per module
- 4 ASICs per FEB:
 - 1x8ch FireFly per FEB to the RDO or optical fiber FreFly
 - 2 short flex cables per ASIC
 - Low voltages: 2 voltages and 2 grounds
 - Cooling in and out, possibly in series

The final decision on the readout pattern design is pending the completion of the R&D

A track passes through (hits) a detector

Detector
Track
True Hit
Measured Hit

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position Residual: Difference between true and measured hit position

dx

(x_M,

у_М)

Residual distribution can tell us resolution of detector: → precision of tracking

A track passes through (hits) a detector

The detector measures position of hit Not necessarily in the true hit position Residual: Difference between true and measured hit position

