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Generalised Parton Distributions

Generalised Parton Distributions (GPDs):

▶ “hadron-parton” amplitudes which depend on three variables (x , ξ, t)
and a scale µ,

▶ are defined in terms of a non-local matrix element,
▶ can be split into quark flavour and gluon contributions,
▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
▶ are universal, i.e. are related to the amplitude of various exclusive

processes through convolutions
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D. Müller et al., Fortsch. Phy. 42 101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)

A. Radyushkin, Phys. Lett. B380, 417 (1996)

4 GPDs without helicity transfer + 4 helicity flip GPDs

▶ can be split into quark flavour and gluon contributions,
▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
▶ are universal, i.e. are related to the amplitude of various exclusive

processes through convolutions

Cédric Mezrag (Irfu-DPhN) GPDs at EIC October 9th , 2024 3 / 26



Generalised Parton Distributions

Generalised Parton Distributions (GPDs):
▶ “hadron-parton” amplitudes which depend on three variables (x , ξ, t)

and a scale µ,
▶ are defined in terms of a non-local matrix element,
▶ can be split into quark flavour and gluon contributions,

▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
▶ are universal, i.e. are related to the amplitude of various exclusive

processes through convolutions

Cédric Mezrag (Irfu-DPhN) GPDs at EIC October 9th , 2024 3 / 26



Generalised Parton Distributions

Generalised Parton Distributions (GPDs):
▶ “hadron-parton” amplitudes which depend on three variables (x , ξ, t)

and a scale µ,
▶ are defined in terms of a non-local matrix element,
▶ can be split into quark flavour and gluon contributions,
▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)

▶ are universal, i.e. are related to the amplitude of various exclusive
processes through convolutions

Cédric Mezrag (Irfu-DPhN) GPDs at EIC October 9th , 2024 3 / 26



Generalised Parton Distributions

Generalised Parton Distributions (GPDs):
▶ “hadron-parton” amplitudes which depend on three variables (x , ξ, t)

and a scale µ,
▶ are defined in terms of a non-local matrix element,
▶ can be split into quark flavour and gluon contributions,
▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
▶ are universal, i.e. are related to the amplitude of various exclusive

processes through convolutions

H(ξ, t) =

∫
dx C (x , ξ)H(x , ξ, t)

−q2 = Q2

q′e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x − ξ)P+

p1 = P − ∆
2

p2 = P + ∆
2GPDs

DA
−q2 = Q2

Cédric Mezrag (Irfu-DPhN) GPDs at EIC October 9th , 2024 3 / 26



Properties

Polynomiality Property:

∫ 1

−1
dx xmHq(x , ξ, t;µ) =

[m2 ]∑

j=0

ξ2jCq
2j(t;µ)+mod(m, 2)ξm+1Cq

m+1(t;µ)

X. Ji, J.Phys.G 24 (1998) 1181-1205
A. Radyushkin, Phys.Lett.B 449 (1999) 81-88

Special case : ∫ 1

−1
dx Hq(x , ξ, t;µ) = F q

1 (t)

Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
Relativistic quantum mechanics

Continuity at the crossover lines
Factorisation theorem

Scale evolution property
Renormalization

Problem
There is hardly any model fulfilling a priori all these constraints.
Lattice QCD computations remain very challenging.
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Polynomiality Property:
Lorentz Covariance

Positivity property:
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Support property:
Relativistic quantum mechanics

Continuity at the crossover lines
→ GPDs are continuous albeit non analytical at x = ±ξ

J. Collins and A. Freund, PRD 59 074009 (1999)
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Continuity at the crossover lines
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Scale evolution property
→ generalization of DGLAP and ERBL evolution equations

D. Müller et al., Fortschr. Phys. 42, 101 (1994)
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Interpretation of GPDs I
2+1D structure of the nucleon

In the limit ξ → 0, one recovers a density interpretation:
▶ 1D in momentum space (x)
▶ 2D in coordinate space b⃗⊥ (related to t)

M. Burkardt, Phys. Rev. D62, 071503 (2000)

Possibility to extract density from experimental data
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figure from H. Moutarde et al., EPJC 78 (2018) 890

Correlation between x and b⊥ → going beyond PDF and FF.
Caveat: no experimental data at ξ = 0
→ extrapolations (and thus model-dependence) are necessary
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Interpretation of GPDs II
Connection to the Energy-Momentum Tensor

energy 
density 

momentum 
flux 

shear  
stress 

pressure 

momentum 
density c −2 

momentum 
density 

How energy, momentum, pressure are
shared between quarks and gluons
Caveat: renormalization scheme and scale dependence

C. Lorcé et al., PLB 776 (2018) 38-47,
M. Polyakov and P. Schweitzer,
IJMPA 33 (2018) 26, 1830025

C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

⟨p′, s′|Tµν
q,g |p, s⟩ = ū

[
P{µγν}Aq,g (t;µ) +

∆µ∆ν − gµν∆2

M
Cq,g (t;µ)

+Mgµν C̄q,g (t;µ) +
P{µiσν}∆

2M
Bq,g (t;µ) +

P [µiσν]∆

2M
Dq,g (t;µ)

]
u

∫ 1

−1
dx x Hq(x , ξ, t;µ) = Aq(t;µ) + (2ξ)2Cq(t;µ)∫ 1

−1
dx x Eq(x , ξ, t;µ) = Bq(t;µ)− (2ξ)2Cq(t;µ)

Ji sum rule

Fluid mechanics analogy
X. Ji, PRL 78, 610-613 (1997)

M.V. Polyakov PLB 555, 57-62 (2003)
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Accessing GPDs from experimental data
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PARTONS and Gepard
Integrated softwares as a mandatory step for phenomenology

PARTONS
partons.cea.fr

B. Berthou et al., EPJC 78 (2018) 478

Gepard
gepard.phy.hr

K. Kumericki, EPJ Web Conf. 112 (2016) 01012

Similarities : NLO computations, BM formalism, ANN, . . .
Differences : models, evolution, . . .

Physics impact
These integrated softwares are the mandatory path toward reliable
multichannel analyses.
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EpIC Monte carlo generator
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Experimental connection to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

1/Q2

expansion,
. . .

αS

expansion and
convolution

CFFs play today a central role in our understanding of GPDs
Extraction generally focused on CFFs
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Deep Virtual Compton Scattering

−q2 = Q2

q′e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x − ξ)P+

q2 = −Q2

e− e−

p1 p2

k k′

FF

q2 = −Q2

e− e−

p1 p2

k k′

FF

Best studied experimental process connected to GPDs
→ Data taken at Hermes, Compass, JLab 6, JLab 12

Interferes with the Bethe-Heitler (BH) process
▶ Blessing: Interference term boosted w.r.t. pure DVCS one
▶ Curse: access to the angular modulation of the pure DVCS part difficult

M. Defurne et al., Nature Commun. 8 (2017) 1, 1408
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Recent CFF extractions
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Ẽ

M. Cuic̀ et al., PRL 125, (2020), 232005

PARTONS Fits NN 2019
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H. Moutarde et al., EPJC 79, (2019), 614

Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001

Studies of ANN architecture to fulfil GPDs properties (dispersion
relation,polynomiality,. . . )
Recent efforts on propagation of uncertainties (allowing impact studies
for JLAB12, EIC and EicC)

see e.g. H. Dutrieux et al., EPJA 57 8 250 (2021)
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The DVCS deconvolution problem I
From CFF to GPDs

Observables
(cross sections,

asymmetries . . . )

Compton
Form Factors
H,E, H̃, . . .

GPDs
H,E , H̃, . . .

Assuming
this step is

under control

Can we
unambiguously

get GPDs?

It has been known for a long time that this is not the case at LO
Due to dispersion relations, any GPD vanishing on x = ±ξ would not
contribute to DVCS at LO (neglecting D-term contributions).

Are QCD corrections improving the situation?
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Introducing shadow GPDs

CFF Definition

H(ξ, t,Q2)︸ ︷︷ ︸
Observable

=

∫ 1

−1

dx
ξ

T

(
x

ξ
,
Q2

µ2 , αs(µ
2)

)

︸ ︷︷ ︸
Perturbative DVCS kernel

H(x , ξ, t, µ2)

Shadow GPD definition
We define shadow GPD H(n) of order n such that when T is expanded in
powers of αs up to n one has:

0 =

∫ 1

−1

dx
ξ
T (n)

(
x
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0
, αs(µ

2
0)

)
H(n)(x , ξ, t, µ2

0) invisible in DVCS

0 = H(n)(x , 0, 0) invisible in DIS

A part of the GPD functional space is invisible to DVCS and DIS combined
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The DVCS deconvolution problem II
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NLO analysis of shadow GPDs:
▶ Cancelling the line x = ξ is necessary

but no longer sufficient
▶ Additional conditions brought by

NLO corrections reduce the size of
the “shadow space”...

▶ ... but do not reduce it to 0
→ NLO shadow GPDs

H. Dutrieux et al., PRD 103 114019 (2021)

Evolution
▶ it was argued that evolution would

solve this issue
A. Freund PLB 472, 412 (2000)

E. Moffat et al., PRD 108 (2023)

▶ but in practice it is not the case
H. Dutrieux et al., PRD 103 114019 (2021)

Theoretical uncertainties promoted
to main source of GPDs uncertainties
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Improving the deconvolution problem

Introduce theoretical inputs coming from QCD constraints
▶ Change of methods with introduction of theoretical bias
▶ Positivity is going to play an important role

Go to multichannel analysis
▶ Shadow GPDs are process-dependent, i.e. some processes can see the

shadow GPDs of others
▶ Some exclusive processes are expected not to have shadow GPDs at all

(but they are harder to measure).
⋆ Double DVCS is the most obvious one

K. Deja et al.,PRD 107 (2023) 9, 094035

⋆ New 2 → 3 exlusive processes are also good candidates
R. Boussarie et al., JHEP 02 (2017) 054

O. Grocholski et al.,Phys.Rev.D 104 (2021) 11,
J.-W. Qiu and Z. Yu, JHEP 08 (2022) 103

▶ View lQCD Ioffe-time ratios as an additional process to be included in
a global fit
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Deconvolution-proof results
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CFF Zero crossing

Quarks and gluons CFFs interfere destructively, i.e. there is a minus
sign between their contributions at NLO.

So, for a given scale Q2, reducing ξ one will strenghten the gluon
contribution compared to the quark one, similarly to what happens
with PDFs.
At some point, the gluon might become so strong that the amplitude
vanishes.
Can such a turning point be possible and seen at EIC ? It would be a
smoking gun of “gluon dominance”.
This is maintained, and even slightly amplified at NNLO.

V. Braun et al., JHEP 09 (2020) 117
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Example on a Pion model
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J.-M. Morgado CHavez et al., Phys.Rev.D 105 (2022) 9, 094012

In such a model, the sign change is clear at the level of the amplitude
No experimental guidance on the pion, so reality may be different
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Impact on observables
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J.-M. Morgado CHavez et al., Phys.Rev.Lett. 128 (2022) 20, 202501

The beam spin asymetry is directly sensitive
to the relative strength of quarks and gluons
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The nucleon case
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figure from M. Cuic et al., JHEP 12 (2023) 192
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The nucleon case

The results are given here for DVMP, not DVCS

The zero crossing happens in a region unconstrained by data
⇒ Extrapolation uncertainties (unshowed) might change the picture
In fact, it has been argued that such a sign change might be also a
sign of breaking of twist-two dominance (Q2 too small)

figure from M. Cuic et al., JHEP 12 (2023) 192

EIC data promise to be interesting, even independently of the
deconvolution problem !
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Taming the deconvolution problem
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Double DVCS and the deconvolution problem

DDVCS : ep → epµ+µ−

Main difference : H(ρ, ξ, t,Q2)
⇒ this additional kinematic variable give a new level-arm to improve
the ill-posed charatere of the deconvolution problem
However, measuring it requires both a high-luminosity, and an
excellent ability to detect the final muon pair
Can it be seen at EIC ?
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DDVCS at EIC
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figures from K. Deja et al., Phys.Rev.D 107 (2023) 9, 094035

Measuring DDVCS observable may be possible at EIC (2.6/2.1 fb−1

necessary for 104 events)
However, no detector acceptance nor efficiency was taken into account
here
Deeper studies are needed to assess the feasibility of measuring
DDVCS at EIC
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Conclusions

Summary
A new experimental era is starting with very precise data coming
It is triggering a precision leap in phenomenology
The question of theoretical uncertainties (and how to reduce them)
becomes crucial

Perspectives
Efforts in phenomenology remain to be done (CFF/TFF and GPD)
Multichannel analysis could help solving the deconvolution problem
Ab-initio computations will provide insights in the next decade
No golden solution, at least for now...

The perspective of new and precise data is a real challenge and will trigger
leaps in our knowledge of the 3D structure of the nucleon.
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Thank you for your attention
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Back up slides
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A word about evolution

Could evolution solve the issue ?

We define Γ(µ2, µ2
0) the GPD evolution operator expanded as:

Γ(µ2, µ2
0) = 1 + αs(µ

2)K (0) ln

(
µ2

µ2
0

)
+ O(α2

s )

Because observables do not depend of the scale, we have :

C coll + C 0 ⊗ K (0) = 0

We expect CFF computed from evolved NLO shadow GPDs to exhibit
an α2

s behaviour under evolution (provided that the logs remain small
enough).
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Sullivan process and access to pion GPDs
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Sullivan Process

Can we measure DVCS on a virtual pion ?
D. Amrath et al., EPJC 58 (2008) 179-192

J. M. Morgado Chavez et al., PRL 128 202501

If yes, it is a good way to challenge many computations in the literature.

e−(l)

e−(l ′)

p

n

γ (q′)

π+

γ∗ (q) DVCS

tπ

π+ (pπ)

t

e−p → e−γπ+n

kinematical cuts to avoid
N∗ resonances
Already used to extract
pion EFF at JLab
Considered for pion
structure function at EIC
and EicC

EIC Yellow report, Nucl.Phys.A 1026
(2022) 122447

EicC white paper, Front.Phys.(Beijing)
16 (2021) 6, 64701
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An example on the pion

J. M. Morgado Chavez et al., PRL 128 202501
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DVCS off virtual pion may be measurable at EIC and EicC
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