TMD physics and implications at colliders

Valerio Bertone

IRFU, CEA, Université Paris-Saclay

October 10, 2024, EIC France workshop, IJCLab, Orsay

Introduction

- The **transverse momentum** (q_T) distribution of a **high-mass** (Q) system has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at *fixed perturbative order* is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

for q_T « Q transverse-momentum-dependent (TMD) factorisation at fixed logarithmic order is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$$

• Collinear and TMD factorisations may eventually be **matched** to produce accurate results over the full q_T spectrum.

Introduction

- The **transverse momentum** (q_T) distribution of a **high-mass** (Q) system has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at *fixed perturbative order* is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

 for q_T « Q transverse-momentum-dependent (TMD) factorisation at fixed logarithmic order is appropriate:

Main subject of this talk

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \quad \stackrel{\text{TMD}}{=} \quad \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$$

• Collinear and TMD factorisations may eventually be **matched** to produce accurate results over the full q_T spectrum.

- TMD factorisation introduces two independent scales:
 - **\bullet** the **renormalisation scale** μ , originating from the UV renormalisation,
 - the **rapidity scale** ζ , originating from the cancellation of rapidity divergences.
- The respective evolution equations are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu_0) - \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_K(\alpha_s(\mu'))$$

$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$

• At small $b_{\rm T}$, TMDs can be matched onto collinear distributions:

$$F(\mu,\zeta) = C(\mu,\zeta) \otimes f(\mu)$$

The solution final is:

$$F(\mu,\zeta) = \exp\left\{K(\mu_0)\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}C(\mu_0,\zeta_0)\otimes f(\mu_0)$$

Anomalous dims. and matching funcs. **perturbatively** computable. 4

- TMD factorisation introduces two independent scales:
 - **\bullet** the **renormalisation scale** μ , originating from the UV renormalisation,
 - the **rapidity scale** ζ , originating from the cancellation of rapidity divergences.
- The respective evolution equations are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu_0) - \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_K(\alpha_s(\mu'))$$

$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$

• At small $b_{\rm T}$, TMDs can be matched onto collinear distributions:

$$F(\mu,\zeta) = C(\mu,\zeta) \otimes f(\mu)$$

 $\mu_b = b_0 / b_{\rm T}$

The solution final is:

$$F(\mu,\zeta) = \exp\left\{K(\mu_0)\ln\frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu'))\ln\frac{\sqrt{\zeta}}{\mu'}\right]\right\}C(\mu_0,\zeta_0)\otimes f(\mu_0)$$

Anomalous dims. and matching funcs. **perturbatively** computable. ⁵

- When integrating over $b_{\rm T}$, **large values of** $b_{\rm T}$ give raise to low scales in the **non-perturbative** region. 1.2 $b_{max} = 1$
- Introduce the so-called **b***-**prescription**:

$$b_*(b_T) = \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

and rewrite:

1

0.8

0.6

0.4

b∗(b_T)

- When integrating over $b_{\rm T}$, **large values of** $b_{\rm T}$ give raise to low scales in the **non-perturbative** region.
- Introduce the so-called **b***-prescription:

$$b_*(b_T) = \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

and rewrite:

$$F(x, b_T, \mu, \zeta) = \begin{bmatrix} F(x, b_T, \mu, \zeta) \\ F(x, b_*(b_T), \mu, \zeta) \end{bmatrix} F(x, b_*(b_T), \mu, \zeta) \equiv f_{NP}(x, b_T, \zeta) F(x, b_*(b_T), \mu, \zeta)$$

Non-perturbative,
Properties of f_{NP} :

- has to go to **one** as b_T goes to zero: reproduce the fully perturbative regime,
- has to got to **zero** as $b_{\rm T}$ becomes large: mimic the Sudakov suppression.
- **§** Bottom line: avoidance of the non-perturbative region upon integration in $b_{\rm T}$ implies the presence of **both** *b**-prescription and *f*_{NP}. ⁷

• Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b) \qquad :A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\} \qquad :B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad :C$$

Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\} \qquad : B$$

$$\times \exp\left\{\frac{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad : C$$

• matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$,

• factorises as *hard* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).

Final expression:

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \underbrace{\sum_j C_{f/j}(x, b_*; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b)}_{j} : A$$

$$\times \exp\left\{K(b_*; \mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{\frac{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

• matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$,

- factorises as *hard* (perturbative) and *longitudinal* (*i.e.* collinear, non-perturbative).
- CS and RGE evolution,
- evolution in μ and ζ ,
- perturbative.

Final expression:

 $\sum C_{f/j}(x, b_{\mathbb{R}}; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b)$ $F_{f/P}(x, \mathbf{b}_T; \mu, \zeta)$: A $\begin{cases} K(b_{\mathfrak{F}};\mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu}^{\mu} \frac{d\mu'}{\mu'} \left| \gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'} \right| \end{cases}$: *B* exp $\exp\left\{\frac{g_{j/P}(x,b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F}}\right\}$: C \times matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$, \bigcirc factorises as hard (perturbative) and longitudinal (i.e. \bigcirc CS and RGE evolution,

- collinear, non-perturbative).
 - avoid the Landau pole,
 - $f_{\rm NP}$ accounts for the introduction of b_* ,
 - $f_{\rm NP}$ is non-perturbative thus **fit** to data.

• evolution in μ and ζ ,

operturbative.

Factorising processes

Processes for which leading-power TMD factorisation has been **proven**: Semi-inclusive DIS Drell-Yan

 ℓ^{\pm} P ℓ^{\mp}

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

Two TMD PDFs:

- Lots of data:
 - low-energy: FNAL,
 - mid-energy: RHIC,
 - igh-energy: Tevatron, LHC.
- Examples of other precesses:
 - thrust and p_{hT} distributions in single-hadron production in e^+e^- ,
 - hadron-in-jet production,

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h X$

- One TMD **PDF** one **FF**:
- many precise data points:
 - HERMES at DESY,
 - **©** COMPASS at CERN.
- **EIC** will deliver precise data.

 e^+e^- annihilation

 $\ell^{\pm}\ell^{\mp} \to h_1 h_2 X$

- Two TMD FFs:
- di-hadron prod. from:
 - **•** BELLE at KEK,
 - BABAR at SLAC.

Logarithmic counting

 $\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2)$

$$F_{i} = \sum_{j} \left(\frac{C_{i/j}}{\beta} \otimes f_{j} \right) \exp \left\{ K \ln \frac{\sqrt{\zeta}}{\mu_{b}} + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\}$$

Accuracy	γĸ	γF	K	C _{f/j}	H	FFs/PDFs/ α_s
LL	$lpha_s$	-	_	1	1	-
NLL	α_s^2	α_s	α_s	1	1	LO
NLL'	α_s^2	α_s	α_s	$lpha_s$	$lpha_s$	LO
N ² LL	$\alpha_s{}^3$	α_s^2	α_s^2	$lpha_s$	$lpha_s$	NLO
N ² LL'	$\alpha_s{}^3$	α_s^2	α_s^2	α_s^2	α_s^2	NLO
N ³ LL	$\alpha_s{}^4$	$\alpha_s{}^3$	$\alpha_s{}^3$	α_s^2	α_s^2	NNLO
N ³ LL'	α_s^4	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	$\alpha_s{}^3$	NNLO

Perturbative convergence

TMD, q_T resummation, SCET

Unpolarised TMD extractions A selection of fits

	Accuracy	SIDIS	Drell-Yan	N. of points	Flavour dep.
DWS 1984, <u>CERN-TH.3987/84</u>	NLL	×	~	a few	×
BLNY 2003, <u>hep-ph/0212159</u>	NLL'-NNLL	×	~	116	×
Pavia 2013, <u>1309.3507</u>	No evolution	~	×	1538 (HERMES)	~
Torino 2014, <u>1312.6261</u>	No evolution	~	×	576 (H) 6284 (C)	×
DEMS 2014, <u>1407.3311</u>	NNLL	NNLL	~	223	×
Pavia 2017, <u>1703.10157</u>	NLL	~	~	8059	×
SV 2017, <u>1706.01473</u>	N ³ LL	×	✓ (LHC)	309	×
BSV 2019, <u>1902.08474</u>	N ³ LL	×	✓ (LHC)	457	×
SV 2019, <u>1912.06532</u>	N ³ LL(-)	~	✓ (LHC)	1039	×
Pavia 2019, <u>1912.07550</u>	N ³ LL	×	✓ (LHC)	353	×
SV+ 2022, <u>2201.07114</u>	N ³ LL	×	✓ (LHC)	507	~
MAPTMD22, <u>2206.07598</u>	N ³ LL(-)	~	✓ (LHC)	2031	×
ART23, <u>2305.07473</u>	N4LL(-)	×	✓ (LHC)	627	 ✓
MAPTMD24, <u>2405.13833</u>	N ³ LL	~	✓ (LHC)	2031	~

Unpolarised TMD extractions Many more studies and extractions...

- TMD fragmentation functions from e^+e^- data [2108.04182, 1704.08882]
- W production in pp collisions [2011.05351]
- Di-jet and heavy-meson pair production in DIS [2008.07531, 2111.03703]
- Dijet production in *pp* collisions [e.g. 1807.07573]
- hadron-in-jet production [1612.04817]
- Model-independent prescription to extract TMDs [2201.07237]
- Parton-branching methods [e.g. 1804.11152]
- $\oint q_{\rm T}$ -resummation based extractions [2203.05394]
- Study of the Sivers TMDs [<u>1308.5003</u>, <u>2004.14278</u>, <u>2009.10710</u>, <u>2103.03270</u>,...]
- Pion TMDs [1907.10356, 2210.01733]
- TMD flavour dependence [1807.02101]

MAPTMD 2024	
Main settings	1.4 $- Q = 5 \text{ GeV}$ $ -$
b_* prescription:	1.0 -
$b_*(b_T) = b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}} \right)^{1/4} \text{with} \left\{ \begin{array}{c} b_T \\ b_T \end{array} \right\}$	$\max_{\text{max}} = 2e^{-\gamma_E} \begin{bmatrix} \widehat{\underline{b}}^{0.8} \\ \underline{\underline{b}}^{*} & 0.6 \\ \underline{\underline{b}}^{*} & 0.6 \end{bmatrix} $ $= b_{\text{max}}/Q 0.4 \end{bmatrix}$
• Non-perturbative function f_{NP} :	0.2 - b _{min} 0.0
• evolution (CS kernel): • $g_K(\boldsymbol{b}_T^2) = \frac{1}{2}$ • 5 PDFs ($u, \overline{u}, d, \overline{d}, sea$):	$-g_2^2 {b_T^2\over 2}$
$f_{1NP}(x,m{b}_T^2;\zeta,Q_0) = rac{g_1(x)e^{-g_1(x)rac{m{b}_T^2}{4}} + \lambda^2g_{1B}^2(x)\left[1-g_1(x)e^{-g_1(x)rac{m{b}_T^2}{4}} + g_1(x) ight]^2}{g_1(x) - g_1(x)}$	$\frac{-g_{1B}(x)\frac{\boldsymbol{b}_T^2}{4}\right]e^{-g_{1B}(x)\frac{\boldsymbol{b}_T^2}{4}} + \lambda_2^2 g_{1C}(x)e^{-g_{1C}(x)\frac{\boldsymbol{b}_T^2}{4}}}{\lambda^2 g_{1B}^2(x) + \lambda_2^2 g_{1C}(x)} \left[\frac{\zeta}{Q_0^2}\right]^{g_K(\boldsymbol{b}_T^2)/2}$
• 5 FFs (π and K): $D_{1 NP}(z, \boldsymbol{b}_T^2; \zeta, Q_0) = \frac{g_3(z) e^{-g_3(z) \frac{\boldsymbol{b}_T^2}{4z^2} + \frac{\lambda_F}{z^2} g_3^2}{g_3(z)}$	$\frac{1}{B} \left[1 - g_{3B}(z) \frac{\mathbf{b}_T^2}{4z^2} \right] e^{-g_{3B}(z) \frac{\mathbf{b}_T^2}{4z^2}} \left[\frac{\zeta}{Q_0^2} \right]^{g_K(\mathbf{b}_T^2)/2} \left[\frac{\zeta}{Q_0^2} \right]$
$g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}} (1-x)^{\alpha_{\{1,2,3\}}^2}}{\hat{x}^{\sigma_{\{1,2,3\}}} (1-\hat{x})^{\alpha_{\{1,2,3\}}^2}}$	$g_{\{3,3B\}}(z) = N_{\{3,3B\}} \frac{(z^{\beta_{\{1,2\}}} + \delta^2_{\{1,2\}})(1-z)^{\gamma^2_{\{1,2\}}}}{(\hat{z}^{\beta_{\{1,2\}}} + \delta^2_{\{1,2\}})(1-\hat{z})^{\gamma^2_{\{1,2\}}}}$

- **96 free parameters** to fit to data.
- Perturbative accuracies: N³LL.
- **Monte Carlo** method for the experimental error propagation.

18

MAPTMD 2024 *Dataset*

- 🍯 DY data:
 - fixed-target low-energy DY,
 - 🍯 RHIC data,
 - LHC and Tevatron data,
 - selection cut $q_{\rm T}$ / Q < 0.2,
 - 🍯 484 data points.
- 🍯 SIDIS data:
 - HERMES and COMPASS,
 - $\mathbf{\Phi} P_{hT}|_{\text{max}} = \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$

 - 🍯 1547 points.

	Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	$Q \; [{ m GeV}]$	$y ext{ or } x_F$	Lepton cuts	Ref.
	E605	50	$Ed^{3}\sigma/d^{3}q$	38.8	7 - 18	$x_F = 0.1$	-	[55]
	E772	53	$Ed^{3}\sigma/d^{3}q$	38.8	5 - 15	$0.1 < x_F < 0.3$	-	[51]
	$E288 \ 200 \ GeV$	30	$Ed^{3}\sigma/d^{3}q$	19.4	4 - 9	y = 0.40	-	[56]
	E288 300 GeV	39	$Ed^{3}\sigma/d^{3}q$	23.8	4 - 12	y = 0.21	-	[56]
	E288 400 GeV	61	$Ed^{3}\sigma/d^{3}q$	27.4	5 - 14	y = 0.03	-	[56]
	STAR 510	7	$d\sigma/d m{q}_T $	510	73 - 114	y < 1	$\begin{array}{c} p_{T\ell} > 25 \text{ GeV} \\ \eta_{\ell} < 1 \end{array}$	-
	PHENIX200	2	$d\sigma/d m{q}_T $	200	4.8 - 8.2	1.2 < y < 2.2	-	[52]
	CDF Run I	25	$d\sigma/d m{q}_T $	1800	66 - 116	Inclusive	-	[57]
	CDF Run II	26	$d\sigma/d m{q}_T $	1960	66 - 116	Inclusive	-	[58]
	D0 Run I	12	$d\sigma/d m{q}_T $	1800	75 - 105	Inclusive	-	[59]
	D0 Run II	5	$(1/\sigma)d\sigma/d m{q}_T $	1960	70 - 110	Inclusive	-	[60]
	D0 Run II (μ)	3	$(1/\sigma)d\sigma/d m{q}_T $	1960	65 - 115	y < 1.7	$p_{T\ell} > 15 \text{ GeV} \\ \eta_{\ell} < 1.7$	[61]
	LHCb 7 TeV	7	$d\sigma/d m{q}_T $	7000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ 2 < \eta_\ell < 4.5 \end{array}$	[62]
	LHCb 8 TeV	7	$d\sigma/d m{q}_T $	8000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ 2 < \eta_\ell < 4.5 \end{array}$	[63]
	LHCb 13 TeV	7	$d\sigma/d m{q}_T $	13000	60 - 120	2 < y < 4.5	$\begin{array}{l} p_{T\ell} > 20 \ {\rm GeV} \\ 2 < \eta_{\ell} < 4.5 \end{array}$	[64]
	CMS 7 TeV	4	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	7000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 20 \ \text{GeV} \\ \eta_{\ell} < 2.1 \end{array}$	[65]
	CMS 8 TeV	4	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	60 - 120	y < 2.1	$\begin{array}{c} p_{T\ell} > 15 \ \mathrm{GeV} \\ \eta_{\ell} < 2.1 \end{array}$	[66]
	CMS 13 TeV	70	$d\sigma/d oldsymbol{q}_T $	13000	76 - 106	$\begin{aligned} y &< 0.4 \\ 0.4 &< y &< 0.8 \\ 0.8 &< y &< 1.2 \\ 1.2 &< y &< 1.6 \\ 1.6 &< y &< 2.4 \end{aligned}$	$\begin{array}{l} p_{T\ell} > 25 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$	[53]
	ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/d oldsymbol{q}_T $	7000	66 - 116	y < 1 1 < y < 2 2 < y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_\ell < 2.4 \end{array}$	[67]
01	ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/d m{q}_T $	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$\begin{array}{l} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[68]
2]	ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	8000	46 - 66 116 - 150	y < 2.4	$\begin{array}{c} p_{T\ell} > 20 \ \mathrm{GeV} \\ \eta_{\ell} < 2.4 \end{array}$	[68]
	ATLAS 13 TeV	6	$(1/\sigma)d\sigma/d \boldsymbol{q}_T $	13000	66 - 113	y < 2.5	$\begin{array}{c} p_{T\ell} > 27 \ \text{GeV} \\ \eta_{\ell} < 2.5 \end{array}$	[54]
	Total	484						

Experiment	$N_{\rm dat}$	Observable	Channels	$Q \; [\text{GeV}]$	x	z	Phase space cuts	Ref.
HERMES	344	$M(x,z, oldsymbol{P}_{hT} ,Q)$	$\begin{array}{c} p \rightarrow \pi^+ \\ p \rightarrow \pi^- \\ p \rightarrow K^+ \\ p \rightarrow K^- \\ d \rightarrow \pi^+ \\ d \rightarrow \pi^- \\ d \rightarrow K^+ \\ d \rightarrow K^- \end{array}$	$1 - \sqrt{15}$	0.023 < x < 0.6 (6 bins)	0.1 < z < 1.1 (8 bins)	$W^2 > 10 \text{ GeV}^2$ 0.1 < y < 0.85	[46]
COMPASS	1203	$M(x,z, {oldsymbol P}_{hT}^2, Q)$	$d ightarrow h^+ \ d ightarrow h^-$	1 - 9 (5 bins)	0.003 < x < 0.4 (8 bins)	0.2 < z < 0.8 (4 bins)	$W^2 > 25 { m ~GeV}^2$ 0.1 < y < 0.9	[72]
Total	1547							

Kinematic coverage

Kinematic coverage

Fit quality

 $N^{3}LL$ χ^2_D χ^2_λ χ^2_0 Data set $N_{\rm dat}$ Tevatron total 711.100.071.17LHCb total 4.52213.560.96ATLAS total 0.824.36723.54CMS total 0.380.050.4378PHENIX 200 $\mathbf{2}$ 2.761.043.807 STAR 510 1.120.261.38DY collider total 1.370.281.65251E288 200 GeV 0.130.400.5330 E288 300 GeV 0.42390.160.26E288 400 GeV 0.080.19 610.11E772530.880.201.080.700.22E605500.92DY fixed-target total 2330.630.310.94DY total484 1.020.291.31HERMES total 3440.810.241.05COMPASS total 0.6712030.270.94SIDIS total 0.2615470.700.96Total $0.81 \left| 0.27 \left| 1.08 \right| \right|$ 2031

Correlation between fit parameters Correlation matrix

MAPTMD 2024 *Collins-Soper kernel*

MAPTMD 2024 *Collins-Soper kernel*

MAPTMD 2024 *Fit quality: SIDIS*

MAPTMD 2024Fit quality: DY

Perturbative convergence

	NLL'	NNLL	NNLL'	N ³ LL
Global χ^2	1126	571	379	360
				S 1

Perturbative convergence

TMDs at the LHC

• Measurements of $Z q_T$ distributions have reached **sub-percent level** uncs.:

State-of-the-art calculations are thus necessary to describe this data.

Non-perturbative corrections are *very* relevant a very low q_{T} .

TMDs at the LHC *The W mass*

- A precise determination of the *W* mass plays an important role in testing the Standard Model and thus for **BSM** physics.
- This is a central task of the **LHC physics programme**.
- In order to minimise experimental systematic effects, the most promising procedure relies on the measurement of the W/Z ratio cross section:
 - the W mass is basically determined through template fits of:

$$rac{d\sigma^W}{dq_T} = \left(rac{d\sigma^W/dq_T}{d\sigma^Z/dq_T}
ight)_{
m exp.} \left(rac{d\sigma^Z}{dq_T}
ight)_{
m th.}$$

- Therefore, an accurate and reliable prediction of the **Z** spectrum is essential.
- **TMD-based predictions** are currently playing an important role within the LHC electroweak working group along **other formalisms**.

TMDs at the EIC

TMDs at the EIC

- An important step is the definition of the relevant observables to be measure and the respective binning.
- TMDs are crucial to take this step.
- Binning in x and Q^2 under discussion:

TMDs at the EIC

Conclusions

- **TMD factorisation** provides a valuable tool to describe q_T distributions at small values of q_T (resummation of large logs),
 - written in terms of TMD distributions,
- Non-perturbative component of TMDs is to be determined from **data**.
- A lot of effort is being invested on the extraction of TMD PDFs and FFs:
 - tremendous progress made over the past few years,
 - wide and precise **datasets** (COMPASS, HERMES, LHC and Tevatron exps.),
 - more data to come from the LHC,
 - *state-of-the-art* **theoretical computation** moving to even higher accuracy,
 - looking forward to the **EIC** to pin down TMDs to unprecedented accuracy.

Gluon TMDs

• The *linearly polarised* (h_T) and *unpolarised* (f) gluon TMD PDFs contribute to the low- q_T spectrum of Higgs production in gluon fusion:

$$\frac{d\sigma}{dyd^2\boldsymbol{q}_T} = \frac{\sigma_{gg\to H}}{(2\pi)^2} \int d^2\boldsymbol{b} \ e^{-i(\boldsymbol{b}\boldsymbol{q}_T)} \Big(f_{1,g}(x_A, \boldsymbol{b}) f_{1,g}(x_B, \boldsymbol{b}) + h_{1,g}^{\perp}(x_A, \boldsymbol{b}) h_{1,g}^{\perp}(x_B, \boldsymbol{b}) \Big)$$

Despite linearly polarised gluons enter at NNLL, their effect on the cross section can be assessed but below current LHC data accuracy:

Logarithmic counting

- TMD factorisation provides **resummation** of large logs $L = \log(q_T/Q)$:
 - *implemented through the* **Sudakov** form fact *R*.
- A **perturbative expansion** in powers of α_s of *R* would give:

One Sudakov
for each TMD
$$R^2 = \sum_{n=0}^{\infty} a_s^n \sum_{k=1}^{2n} \widetilde{S}^{(n,k)} L^k$$
 Double-log expansion

that can be rearranged as:

$$R^{2} = \sum_{m=0}^{\infty} R_{\mathrm{N^{m}LL}}^{2} \quad \text{with} \quad R_{\mathrm{N^{m}LL}}^{2} = \sum_{n=\lfloor m/2 \rfloor}^{\infty} \widetilde{S}^{(n,2n-m)} a_{s}^{n} L^{2n-m}$$

• Therefore, multiplying R by a power p of α_s gives:

$$a_s^p R_{\rm N^mLL}^2 = \sum_{j=[(m+2p)/2]}^{\infty} \widetilde{S}^{(j-p,2j-(m+2p))} a_s^j L^{2j-(m+2p)} \sim R_{\rm N^m+2pLL}^2$$

Sottom line: any additional power of α_s causes a shift of two units in the logarithmic ordering.

MAPTMD 2022 Normalisation of SIDIS

 Description of SIDIS multiplicities considerably worsens moving from NLL to higher perturbative orders.

MAPTMD 2022 Normalisation of SIDIS

Mormalisation problem already observed in the literature.

Large perturbative corrections particularly to the hard function:

$$H_{\text{SIDIS}}(Q) = 1 + \frac{\alpha_s(Q)}{4\pi} C_F \left(-16 + \frac{\pi^2}{3}\right) + \mathcal{O}(\alpha_s^2)$$

Normalisation of SIDIS

SIDIS multiplicity: $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} / \frac{d\sigma}{dx dQ}$

• The SIDIS cross section integrated over $P_{hT}(d\sigma/dxdQdz)$ is ok.

• Normalise predictions such that integral over P_{hT} gives $d\sigma/dxdQdz$:

$$M(x, z, P_{hT}, Q) = \mathcal{N} \frac{\frac{d\sigma}{dx dQ dz dP_{hT}}}{\frac{d\sigma}{dx dQ}} \qquad \qquad \mathcal{N} = \frac{\frac{d\sigma}{dx dQ dz}}{\int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}}$$

Theoretically determined normalisation, not fitted.

MAPTMD 2022 Normalisation of SIDIS

Excellent agreement upon normalisation.

MAPTMD 2022 Normalisation of SIDIS

Agreement extends well above the expected validity region. To be clarified.

Pavia2019 Dataset

- DY data only:
 - fixed-target low-energy DY,
 - 🍯 STAR data
 - LHC and Tevatron data,
 - 353 data points,
 - selection cut $q_{\rm T}$ / Q < 0.2.

Experiment	$N_{\rm dat}$	Observable	\sqrt{s} [GeV]	Q [GeV]	$y \text{ or } x_F$	Lepton cuts	Ref.
E605	50	$Ed^3\sigma/d^3q$	38.8	7 - 18	$x_F = 0.1$	-	[79]
E288 200 GeV	30	$Ed^3\sigma/d^3q$	19.4	4 - 9	y = 0.40	-	[80]
E288 300 GeV	39	$Ed^3\sigma/d^3q$	23.8	4 - 12	y = 0.21	-	[80]
E288 400 GeV	61	$Ed^3\sigma/d^3q$	27.4	5 - 14	y = 0.03	-	[80]
STAR 510	7	$d\sigma/dq_T$	510	73 - 114	y < 1	$p_{T\ell} > 25 \text{ GeV}$ $ \eta_{\ell} < 1$	-
CDF Run I	25	$d\sigma/dq_T$	1800	66 - 116	Inclusive	-	[81]
CDF Run II	26	$d\sigma/dq_T$	1960	66 - 116	Inclusive	-	[82]
D0 Run I	12	$d\sigma/dq_T$	1800	75 - 105	Inclusive	-	[83]
D0 Run II	5	$(1/\sigma)d\sigma/dq_T$	1960	70 - 110	Inclusive	-	[84]
D0 Run II (μ)	3	$(1/\sigma)d\sigma/dq_T$	1960	65 - 115	y < 1.7	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 1.7$	[85]
LHCb 7 TeV	7	$d\sigma/dq_T$	7000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[86]
LHCb 8 TeV	7	$d\sigma/dq_T$	8000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[87]
LHCb 13 TeV	7	$d\sigma/dq_T$	13000	60 - 120	2 < y < 4.5	$p_{T\ell} > 20 \text{ GeV}$ $2 < \eta_{\ell} < 4.5$	[92]
CMS 7 TeV	4	$(1/\sigma)d\sigma/dq_T$	7000	60 - 120	y < 2.1	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.1$	[88]
CMS 8 TeV	4	$(1/\sigma)d\sigma/dq_T$	8000	60 - 120	y < 2.1	$p_{T\ell} > 15 \text{ GeV}$ $ \eta_{\ell} < 2.1$	[89]
ATLAS 7 TeV	6 6 6	$(1/\sigma)d\sigma/dq_T$	7000	66 - 116	y < 1 1 < y < 2 2 < y < 2.4	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[93]
ATLAS 8 TeV on-peak	6 6 6 6 6	$(1/\sigma)d\sigma/dq_T$	8000	66 - 116	$\begin{split} y < 0.4 \\ 0.4 < y < 0.8 \\ 0.8 < y < 1.2 \\ 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
ATLAS 8 TeV off-peak	4 8	$(1/\sigma)d\sigma/dq_T$	8000	46 - 66 116 - 150	y < 2.4	$p_{T\ell} > 20 \text{ GeV}$ $ \eta_{\ell} < 2.4$	[90]
Total	353	-	-	-	-	-	-

Pavia2019 Main settings 1.4 O = 5 GeV $1.2 \vdash b_{\text{max}}$ \bullet *b** prescription: 1.0 $b_{*}(b_{T}) = b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}} \right)^{1/4} \quad \text{with} \quad \begin{cases} b_{\max} = 2e^{-\gamma_{E}} & \hat{s}_{0.6} \\ b_{\min} = b_{\max}/Q & 0.4 \end{cases}$ 0.2 b_{\min} Non-perturbative function f_{NP} : 0.0 0.00 0.25 0 50 0.75 1.00 1.25 1.50 1.75 2 00 bт evolution: $g_K(b_T) = -\left(g_2 + g_{2B}b_T^2\right) rac{b_T^2}{2}$ PDFs: $\widetilde{f}_{\mathrm{NP}}(x,b_T) = \left| rac{1-\lambda}{1+a_1(x)rac{b_T^2}{2}} + \lambda \exp\left(-g_{1B}(x)rac{b_T^2}{4} ight) ight|$

$$g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\alpha}\right)\right] \qquad g_{1B}(x) = \frac{N_{1B}}{x\sigma_B} \exp\left[-\frac{1}{2\sigma_B^2} \ln^2\left(\frac{x}{\alpha_B}\right)\right]$$

- 9 free parameters to fit to data.
- Perturbative accuracies: NLL', NNLL, NNLL', N³LL
- **Monte Carlo** method for the experimental error propagation.

Pavia2019 *Fit quality*

 $q_{
m T} \stackrel{
m 10.0}{
m [GeV]}$

12.5

15.0 17.5

20.0

2.5

5.0

7.5

		$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$
	7 GeV < Q < 8 GeV	0.419	0.068	0.487
	$8 {\rm GeV} < Q < 9 {\rm GeV}$	0.995	0.034	1.029
E605	$10.5~{\rm GeV} < Q < 11.5~{\rm GeV}$	0.191	0.137	0.328
	$11.5~{\rm GeV} < Q < 13.5~{\rm GeV}$	0.491	0.284	0.775
	$13.5~{\rm GeV} < Q < 18~{\rm GeV}$	0.491	0.385	0.877
	4 GeV < Q < 5 GeV	0.213	0.649	0.862
	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.673	0.292	0.965
$E288 \ 200 \ GeV$	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.133	0.141	0.275
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.254	0.014	0.268
	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.652	0.024	0.676
	$4~{\rm GeV} < Q < 5~{\rm GeV}$	0.231	0.555	0.785
	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.502	0.204	0.706
F288 300 CAV	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.315	0.063	0.378
E288 500 Gev	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.056	0.030	0.086
	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.530	0.017	0.547
	$11~{\rm GeV} < Q < 12~{\rm GeV}$	1.047	0.167	1.215
	$5~{\rm GeV} < Q < 6~{\rm GeV}$	0.312	0.065	0.377
	$6~{\rm GeV} < Q < 7~{\rm GeV}$	0.100	0.005	0.105
	$7~{\rm GeV} < Q < 8~{\rm GeV}$	0.018	0.011	0.029
E288 400 GeV	$8~{\rm GeV} < Q < 9~{\rm GeV}$	0.437	0.039	0.477
	$11~{\rm GeV} < Q < 12~{\rm GeV}$	0.637	0.036	0.673
	$12~{\rm GeV} < Q < 13~{\rm GeV}$	0.788	0.028	0.816
	$13~{\rm GeV} < Q < 14~{\rm GeV}$	1.064	0.044	1.107
STAR		0.782	0.054	0.836
CDF Run I		0.480	0.058	0.538
CDF Run II		0.959	0.001	0.959
D0 Run I		0.711	0.043	0.753
D0 Run II		1.325	0.612	1.937
D0 Run II (μ)		3.196	0.023	3.218
LHCb 7 TeV		1.069	0.194	1.263
LHCb 8 TeV		0.460	0.075	0.535
LHCb 13 TeV		0.735	0.020	0.755
CMS 7 TeV		2.131	0.000	2.131
CMS 8 TeV		1.405	0.007	1.412
	0 < y < 1	2.581	0.028	2.609
ATLAS 7 TeV	1 < y < 2	4.333	1.032	5.365
	2 < y < 2.4	3.561	0.378	3.939
	0 < y < 0.4	1.924	0.337	2.262
	0.4 < y < 0.8	2.342	0.247	2.590
	0.8 < y < 1.2	0.917	0.061	0.978
ATLAS 8 TeV		0.012	0.095	1 006
ATLAS 8 TeV on-peak	1.2 < y < 1.6	0.912	0.000	1.000
ATLAS 8 TeV on-peak	1.2 < y < 1.6 1.6 < y < 2	0.312 0.721	0.092	0.814
ATLAS 8 TeV on-peak	$egin{array}{llllllllllllllllllllllllllllllllllll$	0.912 0.721 0.932	$0.092 \\ 0.348$	0.814 1.280
ATLAS 8 TeV on-peak ATLAS 8 TeV	1.2 < y < 1.6 1.6 < y < 2 2 < y < 2.4 46 GeV < Q < 66 GeV	0.912 0.721 0.932 2.138	0.092 0.348 0.745	0.814 1.280 2.883
ATLAS 8 TeV on-peak ATLAS 8 TeV off-peak	$\begin{array}{c c} 1.2 < y < 1.6 \\ 1.6 < y < 2 \\ 2 < y < 2.4 \\ \hline 46 \ \text{GeV} < Q < 66 \ \text{GeV} \\ 116 \ \text{GeV} < Q < 150 \ \text{GeV} \end{array}$	0.912 0.721 0.932 2.138 0.501	0.092 0.348 0.745 0.003	0.814 1.280 2.883 0.504

SV2019 Dataset

Both DY and SIDIS data:

- fixed-target low-energy DY,
- 🍯 PHENIX data,
- LHC and Tevatron data,
- HERMES and COMPASS,

457 + 582 = 1039 data points.

$$eV \quad \delta \equiv \frac{\langle q_T \rangle}{\langle Q \rangle} < 0.25$$

[]	1			1
Experiment	Reaction	ref	Kinematics	$N_{ m pt}$
Exponnent		1011		after cuts
	$p \to \pi^+$			24
	$p \to \pi^-$		$0.023{<}\mathrm{x}{<}0.6~(6~\mathrm{bins})$	24
	$p \to K^+$		$0.2{<}z{<}0.8~(6~{ m bins})$	24
HEDMES	$p \to K^-$		$1.0 {<} \mathrm{Q} {<} \sqrt{20} \mathrm{GeV}$	24
IIERMES	$D \to \pi^+$			24
	$D \to \pi^-$		$W^2 > 10 \text{GeV}^2$	24
	$D \to K^+$		$0.1 {<} y {<} 0.85$	24
	$D \to K^-$			24
COMPASS	$d \to h^+$	[50]	$0.003 {<} x {<} 0.4 \ (8 \ bins)$	195
COMPASS	$d \rightarrow h^{-}$		$0.2{<}z{<}0.8~(4~{ m bins})$	195
			$1.0 {<} Q \simeq 9 \text{GeV} (5 \text{ bins})$	
Total				582

DY
$$\delta \equiv \frac{\langle q_T \rangle}{\langle Q \rangle} < 0.1$$
 $\delta < 0.25$ if $\delta^2 < \sigma$

Experiment	ref.	√s [GeV]	Q [GeV]	u/x_F	fiducial	$N_{\rm pt}$
Laperiment	101.	Valuevi		<i>9/ wr</i>	region	after cuts
E288 (200)	[64]	19.4	4 - 9 in 1 GeV bins [*]	$0.1 < x_F < 0.7$	-	43
E288 (300)	[64]	23.8	4 - 12 in 1 GeV bins*	$-0.09 < x_F < 0.51$	-	53
E288 (400)	[64]	27.4	5 - 14 in 1 GeV bins*	$-0.27 < x_F < 0.33$	-	76
E605	[65]	38.8	7 - 18 in 5 bins*	$-0.1 < x_F < 0.2$	-	53
E772	[66]	38.8	5 - 15 in 8 bins*	$0.1 < x_F < 0.3$	-	35
PHENIX	[67]	200	4.8 - 8.2	1.2 < y < 2.2	-	3
CDF (run1)	[68]	1800	66 - 116	-	-	33
CDF (run2)	[69]	1960	66 - 116	-	-	39
D0 (run1)	[70]	1800	75 - 105	-	-	16
D0 (run2)	[71]	1960	70 - 110	-	-	8
D0 $(run2)_{\mu}$	[72]	1960	65 - 115	y < 1.7	$p_T > 15 \text{ GeV}$ $ \eta < 1.7$	3
ATLAS (7TeV)	[45]	7000	66 - 116	y < 1 1 < y < 2 2 < y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	15
ATLAS (8TeV)	[46]	8000	66 - 116	y < 2.4in 6 bins	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	30
ATLAS (8TeV)	[46]	8000	46 - 66	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	3
ATLAS (8TeV)	[46]	8000	116 - 150	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$	7
CMS (7TeV)	[47]	7000	60 - 120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$	8
CMS (8TeV)	[48]	8000	60 - 120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$	8
LHCb (7TeV)	[73]	7000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	8
LHCb (8TeV)	[74]	8000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	7
LHCb (13TeV)	[75]	13000	60 - 120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$	9
Total						457

*Bins with $9 \leq Q \leq 11$ are omitted due to the Υ resonance.

SV2019

Kinematic coverage

SV2019 *Main settings ⓑ b*∗ prescription:

$$b_*(b_T) = \sqrt{\frac{b_T^2 B_{\rm NP}^2}{b_T^2 + B_{\rm NP}^2}}$$

- Non-perturbative function f_{NP} :
 - evolution: $g_K(b_T) = -c_0 b_T b_*(b_T) \rightarrow \begin{cases} -c_0 b_T^2 & \text{for } b_T \rightarrow 0 \\ -c_0 B_{\text{NP}} b_T & \text{for } b_T \rightarrow \infty \end{cases}$
 - PDFs and FFs:

$$f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_3 x^{\lambda_4} b^2}} b^2\right)$$

$$D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_3(b/z)^2}}\frac{b^2}{z^2}\right)\left(1+\eta_4\frac{b^2}{z^2}\right)$$

- **11 free parameters** to fit to data.
- Perturbative accuracies: NNLL'(NNLO), N³LL(-) (N³LO)
- **Monte Carlo** method for the experimental error propagation.

SV2019 *Fit quality*

- \oint Remarkably good total χ^2 ,

Important achievement:

simultaneous description of SIDIS and DY data within the same fit at high perturbative order.

		NN	LO	N ³ I	0
Data set	N_{pt}	χ^2/N_{pt}	$\langle d/\sigma \rangle$	χ^2/N_{pt}	$\langle d/\sigma \rangle$
CDF run1	33	0.66	8.4%	0.67	7.8%
CDF run2	39	1.28	2.8%	1.41	2.1%
D0 run1	16	0.72	0.1%	0.78	-0.5%
D0 run2	8	1.38	-	1.64	-
D0 run2 (μ)	3	0.62	-	0.69	-
Tevatron total	99	0.97		1.06	
ATLAS 7TeV 0.0< y <1.0	5	1.66	-	0.81	-
ATLAS 7TeV 1.0< y <2.0	5	5.94	-	4.09	-
ATLAS 7TeV 2.0< y <2.4	5	1.49	-	1.26	-
ATLAS 8TeV $0.0 < y < 0.4$	5	2.51	3.5%	3.40	2.8%
ATLAS 8TeV $0.4 < y < 0.8$	5	2.95	3.5%	3.03	2.7%
ATLAS 8TeV 0.8< y <1.2	5	1.30	3.7%	1.45	2.9%
ATLAS 8TeV 1.2< y <1.6	5	2.03	4.2%	1.53	3.4%
ATLAS 8TeV 1.6< y <2.0	5	1.47	4.9%	0.70	4.1%
ATLAS 8TeV 2.0< y <2.4	5	2.64	5.6%	2.10	4.8%
ATLAS 8 TeV $46 < Q < 66 GeV$	3	0.31	1.1%	0.31	0.2%
ATLAS 8TeV $116 < Q < 150 GeV$	7	0.84	1.9%	0.97	1.2%
ATLAS total	55	2.12		1.82	
CMS 7TeV	8	1.25	-	1.24	-
CMS 8TeV	8	0.77	-	0.76	-
CMS total	16	1.01		1.00	
LHCb 7TeV	8	2.68	5.8%	2.37	5.2%
LHCb 8TeV	7	4.81	5.8%	4.16	5.1%
LHCb 13TeV	9	0.91	6.4%	0.81	5.7%
LHCb total	24	2.63		2.31	
High energy DY total	194	1.51		1.42	
PHE200	3	0.28	0.2%	0.29	-0.3%
E228-200	43	1.00	35.7%	1.12	35.0%
E228-300	53	0.90	29.2%	1.01	28.3%
E228-400	76	0.86	20.6%	0.96	19.5%
E772	35	1.84	9.5%	1.91	8.5%
E605	53	0.57	21.3%	0.60	20.1%
Low energy DY total	263	0.96		1.04	
HERMES $(p \rightarrow \pi^+)$	24	2.20	1.7%	3.06	2.2%
HERMES $(p \rightarrow \pi^{-})$	24	1.12	0.6%	1.45	0.9%
HERMES $(p \to K^+)$	24	0.71	-0.1%	0.66	0.0%
HERMES $(p \to K^-)$	24	0.69	0.0%	0.66	0.0%
HERMES $(d \rightarrow \pi^+)$	24	0.57	0.3%	0.78	0.8%
HERMES $(d \rightarrow \pi^{-})$	24	0.74	0.5%	0.96	0.7%
HERMES $(d \to K^+)$	24	0.52	-0.1%	0.53	0.0%
HERMES $(d \to K^-)$	24	1.27	0.0%	1.17	0.1%
HERMES total	192	0.98		1.16	
COMPASS $(d \to h^+)$	195	0.61	3.3%	0.76	5.1%
COMPASS $(d \rightarrow h^{-})$	195	0.68	-2.3%	0.92	-0.5%
COMPASS total	390	0.65	2.070	0.84	0.070
SIDIS total	580	0.76		0.05	
Total	1039	0.95		1.06	

SV2019 *Fit quality*

