

A novel grain calorimeter: GRAINITA

Yingrui Hou (LPCA-IN2P3-CNRS)

On behalf of the GRAiNITA group:

IJCLab: S.Barsuk, I.Boyarintseva, D.Breton, G.Hull, J.Lefrançois, J.Maalmi, MH.Schune

ISMA: A.Boyarintsev, I.Tupitsyna,

LPCA: H.Chanal, Y.Hou, M.Magne, S.Monteil, D.Picard, M.Yeresko,

TSNUK: O.Bezshyyko, A.Dubovik, D.Kleklots, A.Kotenko, N.Semkiv

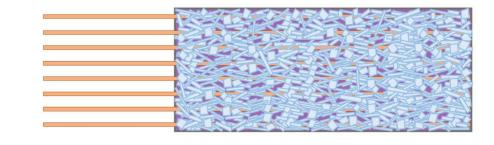
FCC activities @ LPCA

- Feasibility studies
 - Branching fraction of $B^0 \to K^* \tau^+ \tau^- (3\pi \nu)$ and the resolution requirements to the tracking system.
 - Exclusive R_b measurement and the requirements to the detectors.
 - CKM profile studies and V_{ch} measurement
- Detetor(GRAiNITA) (collaborate with IJCLab, ISMA and TSNUK)
 - Contribution to the proof of concept of GRAiNITA.
 - Cosmic muon test and testbeam test bench (electronics and data analysis)

Proof of pulse shape discrimination (PSD) with the prototype.

The concept of GRAiNITA

- Shashlik-like sampling:
 - Energy resolution: $(\sim 10\%/\sqrt{E})$



Better resolution

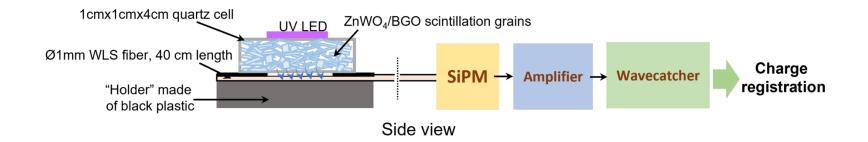
Lower cost (vs homogeneous)

• GRAINITA:

- Mixture of scintillator grains and heavy liquid
- Extremely fine sampling
- + Energy resolution ($\sim 2\%/\sqrt{E}$)

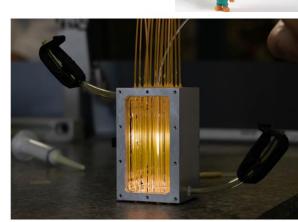
The concept of GRAINITA

- The grains (produced by *ISMA)
 - Cadidates:
 - ZnWO₄ and BGO (reference)
 - Size:~1 mm
 - ZnWO₄: produced via flux method by ISMA
 - BGO: produced via mechanical crushing

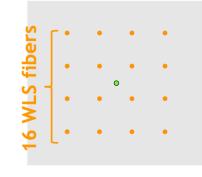

	BGO	ZnWO ₄
Effective Z	74	61
Density (g/cm^3)	7.13	7.87
Refractive index	2.15	2.0 - 2.3
Light yield (photons/MeV)	~ 9000	~ 9000
Peak emission wavelength (nm)	480	480
Decay time (μs)	0.3	20
Radiation length (cm)	1.12	1.20
Molière radius (cm)	2.26	1.98

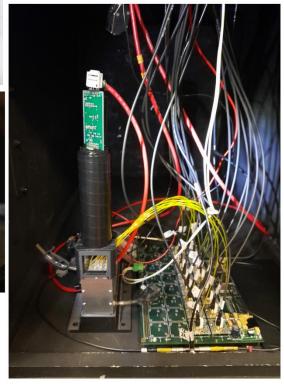
^{*}ISMA: Institute for Scintillation Materials, Kharkiv, Ukraine

The concept of GRAiNITA

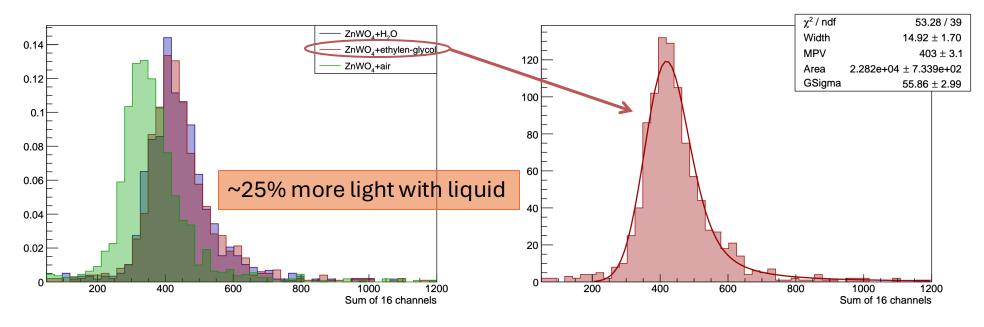

- Wave length shifting fiber (WLS)
 - 4 types of WLS are tested with a UV LED
 - O-2(200) is the preferred choice for the prototype

	Relative efficiency (%)		
Fiber type	ZnWO ₄ grains	BGO grains	
O-2(300)	100	100	
O-2(200)	104	104	
Y-11(200)	44	98	
R-3(100)	60	n.a.	



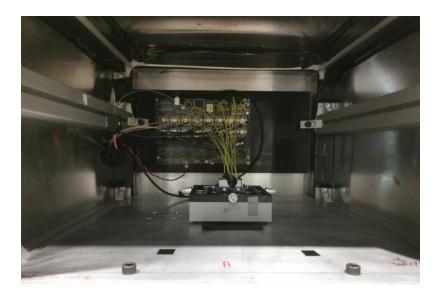

The prototype "Troll"

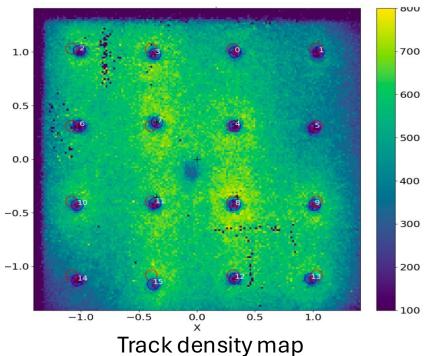
- Size: 28x28x55 mm³
 - ~200g ZnWO₄
- 16 WLS fibers read-out by SiPM
 - +1 clear fiber (depolished) in the middle to inject blue/green LED for light propagation study
 - Spacing: 7 mm
- The "liquid" for cosmic rays test-bench:
 - Air / water / ethylene glycol



Top view

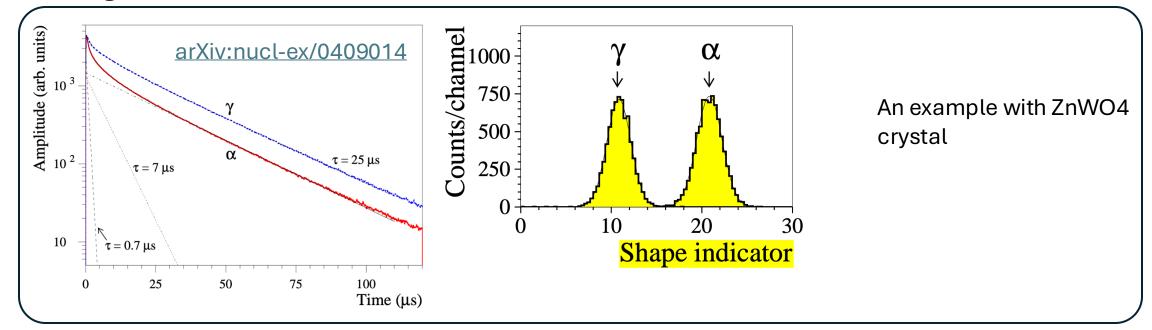
Cosmic ray test result


- The signal yield is larger when the medium refractive index is better matched with the grains.
- ~10000 PE/GeV is expected based on the result.
- Opens the road to a statistical fluctuation of $1\%/\sqrt{E}$ due to photon statistics


Testbeam @ CERN

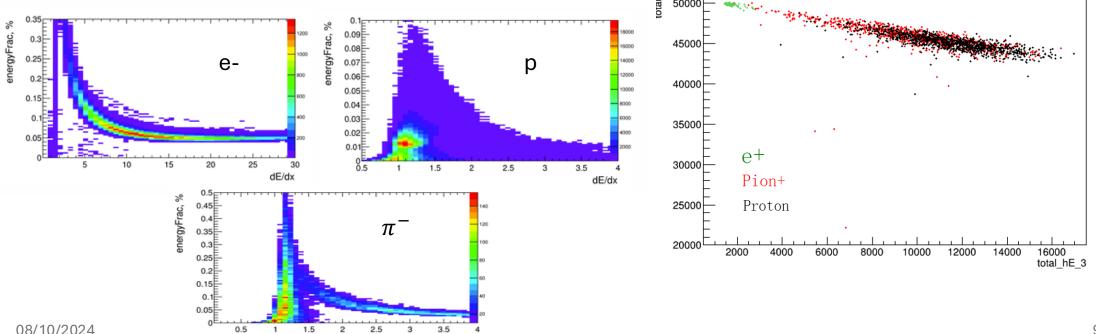
- With the same prototype
 - With water / heavy liquid

Muon and pion runs were taken in 48h.


• Data analysis is ongoing, more details can be found in Marie-Helene's talk

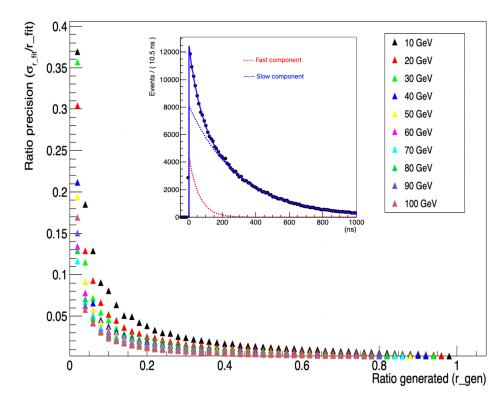
Possible improvement of hadron showers

- Pulse Shape Discrimination (PSD)
 - Using the decay time shape difference (fractions of fast and slow components) to separate the hadronic and electromagnetic scintillation light.



Towards applying PSD on GRAiNITA

• Simple simulation with different kinds of input particles


• To check the correlations between deposit energy corresponding to the low momenta high dE/dx particles and the initial energy for different

particles

Towards applying PSD on GRAiNITA

- Is it precise enough to measure the fraction and decay time constants with 10k PE/GeV?
 - Checked with simple toys
 - The fraction of fast components are varied from 2% to 98%
- When having ~10% of fast component, the σ_f/f is less than 10%, precise enough to identify the decay time shape difference
- Next step: complete G4 simulation with the adequate optical model ongoing

Conclusions

- The light yield of GRAiNITA prototype, measured with cosmic rays, indicates the energy resolution of 1% at 1GeV can be achieved
 - Next to start assessing the constant term in the energy resolution
 - The non-uniformities can be determined with the data collected during the testbeam
- The capability to use PSD with GRAINITA is under study
 - First steps with simple toys and simulations are promising
 - A low energy test beam with materials is planned to get the optical properties
 - A better simulation with actual optical model is ongoing