

Flavours (and opportunities) at FCC-ee

3rd ECFA Workshop — Paris

Lars Röhrig^{1,2}, Kevin Kröninger¹, Stéphane Monteil², Dominik Mitzel¹ 08/10/2024

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

heinrichhertzstiftung

Université franco-allemande Deutsch-Französische Hochschule

- FCC-ee Tera-Z programme provides unique opportunities for flavour physics
- + About 15 times more B^0 and B^+ mesons compared to Belle II
- + Quark boost at $\sqrt{s} = 91 \text{ GeV}$: topological reconstruction of the decays
- But flavours drive the detector requirements: vertexing, tracking, calorimetry, particle-ID
- Vertexing requirements driven by modes with missing energy in the FS

	Belle	LHC(b)	FCC-ee	NN A. Is	
All hadron species		\checkmark	\checkmark		the tot
Boost		\checkmark	\checkmark		The the
High production σ		\checkmark			
Negligible trigger losses	\checkmark		\checkmark		
Low backgrounds	\checkmark		\checkmark		
Initial energy constraint	\checkmark		(\checkmark)		LHCb
				Belle	

Disclaimer: All presented results have been obtained with the IDEA detector concept

L. Röhrig | 08/10/2024 © S. Monteil & G. Wilkinson [2106.01259], S. Cunliffe [1708.09423]

- **Beauty physics:** selected studies at hand $(b \rightarrow s\tau^+\tau^-, b \rightarrow s\nu\bar{\nu}, b \rightarrow \tau\nu, CP \text{ sector})$
- Stringent (transverse) vertex-resolution requirements from $B_d^0 \to K^* \tau^+ \tau^-$: $\mathcal{O}(5 \,\mu\text{m})$

© T. Miralles & S. Monteil Ref.

- **Beauty physics:** selected studies at hand $\overline{(b \to s\tau^+\tau^-, b \to s\nu\bar{\nu}, b \to \tau\nu, CP}$ sector)
- Stringent (transverse) vertex-resolution requirements from $B^0_d \to K^* \tau^+ \tau^-$: $\mathcal{O}(5 \,\mu\text{m})$
- Radiative quark transition separation $b \rightarrow s/d\gamma$ requires **ECAL resolution** well below $10 \% / \sqrt{E_{\gamma}}$

- **Beauty physics:** selected studies at hand $(b \rightarrow s\tau^+\tau^-, b \rightarrow s\nu\bar{\nu}, b \rightarrow \tau\nu, CP$ sector)
- Stringent (transverse) vertex-resolution requirements from $B_d^0 \to K^* \tau^+ \tau^-$: $\mathcal{O}(5 \,\mu\text{m})$
- Radiative quark transition separation $b \rightarrow s/d\gamma$ requires **ECAL resolution** well below $10 \% / \sqrt{E_{\gamma}}$

- **Beauty physics:** selected studies at hand $\overline{(b \to s\tau^+\tau^-, b} \to s\nu\bar{\nu}, b \to \tau\nu, CP$ sector)
- Stringent (transverse) vertex-resolution requirements from $B_d^0 \to K^* \tau^+ \tau^-$: $\mathcal{O}(5 \,\mu\text{m})$
- Radiative quark transition separation $b \rightarrow s/d\gamma$ requires **ECAL resolution** well below $10 \% / \sqrt{E_{\gamma}}$
- Charm physics: studies ramping up (e.g. $c \to u\nu\bar{\nu}, D^0 \to \pi^0\pi^0$)
- \rightarrow Detector requirements to be defined (if any)
 - NP potential in $D^0 o
 ho/\phi\gamma$ requires exquisite π^0/γ separation

New synergies at the horizon

- Z-pole statistics allow to go beyond established concepts
- → E.g.: *b*-tagging for **EWPO** measurements for $R_b = \frac{\Gamma(Z \rightarrow b\bar{b})}{\Gamma(Z \rightarrow hadrons)}$ and A_{FB}^b
 - Usual approach: use *b*-hadron specific kinematic properties in MVA (SV masses, flight distances, etc.)
 - New hemisphere tag: Exclusively reconstructed *b*-hadron of the event

New synergies at the horizon

- Z-pole statistics allow to go beyond established concepts
- → E.g.: *b*-tagging for **EWPO** measurements for $R_b = \frac{\Gamma(Z \rightarrow b\bar{b})}{\Gamma(Z \rightarrow hadrons)}$ and A_{FB}^b
 - Usual approach: use *b*-hadron specific kinematic properties in MVA (SV masses, flight distances, etc.)
 - New hemisphere tag: Exclusively reconstructed *b*-hadron of the event... with a **pu**rity of 100 %

+ 5/200 more **representative** *b*-hadron decay modes validated \checkmark

- Implications of 100 % purity:
 - $\varepsilon_{udsc} = \varepsilon_{udsc}^{udsc} = 0\% \Rightarrow \text{significant } \sigma_{\text{syst.}}(R_b) \text{ redux}$
 - $\varepsilon_b \approx 1\% \Rightarrow \sigma_{\text{stat.}}(R_b) = 2 \cdot 10^{-5}$

\dots and A^b_{FB}

- In addition to R_b, A^b_{FB} needs a charge- and direction tag of the b-hemisphere
- Implications of 100 % purity:

 \rightarrow Leading $\sigma_{\text{syst.}}(A^b_{\text{FB}}):$ *b*-quark direction distortion from gluon radiations

- Reconstructed b-hadron provides everything:
 - Charge-unambigious hemisphere tag (B^+ and Λ_b^0 decays \rightarrow no mixing dilution)
 - *b*-quark direction estimate from \vec{p}_{B^+} and $\vec{p}_{\Lambda_b^0}$
 - Handle on QCD corrections via b-hadron energy
- $\rightarrow \text{ With } \sigma(C_{\text{QCD}})/C_{\text{QCD}} = 5 \%: \\ \sigma_{\text{stat.}}(A^b_{\text{FB}}) = \sigma_{\text{syst.}}(A^b_{\text{FB}}) = 5.6 \cdot 10^{-5}$
 - Even more: $\sin^2(\theta_W)$ measurement at the 0.002 % level

Outlook for exclusive tagger

Charm:

- $D_{(s)}^{0,+}$ decays with sufficiently high **branching** ratios
- \blacksquare However: c-tag contamination from $b \to c$
- $\sigma_{\rm stat.}(R_c) = 3 \cdot 10^{-5}$

Outlook for exclusive tagger

Charm:

- $D_{(s)}^{0,+}$ decays with sufficiently high **branching** ratios
- \blacksquare However: c-tag contamination from $b \to c$
- $\sigma_{\rm stat.}(R_c) = 3 \cdot 10^{-5}$

Strange:

Beam-like *s*-hadrons (require excellent PID):

$$R_s: \phi \to K^+ K^- \to \sigma_{\text{stat.}}(R_s) = 2 \cdot 10^{-5}$$

7/8

Outlook for exclusive tagger

Charm:

- $D_{(s)}^{0,+}$ decays with sufficiently high **branching** ratios
- \blacksquare However: c-tag contamination from $b \to c$

 $\sigma_{\rm stat.}(R_c) = 3 \cdot 10^{-5}$

Beam-like *s*-hadrons (require excellent PID):

•
$$R_s: \phi \to K^+ K^- \to \sigma_{\text{stat.}}(R_s) = 2 \cdot 10^{-5}$$

• $A_{\text{FB}}^s: \Xi^- \to \Lambda \pi^-$ (challenging reco. due to
 Ξ^- lifetime) $\to \sigma_{\text{stat.}}(A_{\text{FB}}^s) = 2 \cdot 10^{-4}$

© S. Monteil & LR Ref.

Conclusions

- Potentially exciting times for a rich flavour-physics programme at FCC-ee
- Unique opportunities for rare/radiative/v modes in the b- and c-sectors
- 6 · 10¹² Z-decays even allow to go beyond established concepts (see, e. g. EWPOs)

Lab activities (TU Dortmund University):

- Just started activities on charm with a student
- Possibly in collaboration with BNL

Vertex requirements: $b \rightarrow s \nu \bar{\nu}$

- Effective-operator coupling to 3rd generation **poorer constrained**, e.g. in ν_{τ}
- $\rightarrow B^0 \rightarrow K^* \nu \bar{\nu}$ experimentally cleaner than $B^0 \rightarrow K^* \tau^+ \tau^-$ (+ theoretically immune to *c*-quark loops)
- Particle-ID ($2\sigma \ K/\pi$ separation) + SV resolution ($\mathcal{O}(10^{-1} \text{ mm})$) not limiting! ... but

 \rightarrow Systematic uncertainties significant if no improvement on *b*-fragmentation functions

© Y. Amhis et. al [2309.11353]

Vertex requirements from and for $R_{D^{(*)}}$

- $R_{D^{(*)}} = \frac{Br(\bar{B} \to \bar{D}^{(*)} \tau^+ \nu_{\tau})}{Br(\bar{B} \to \bar{D}^{(*)} \ell^+ \nu_{\ell})}$ recently raised 3.2 σ combined LFU discrepancy with SM prediction
- $\rightarrow |B_c^+ \rightarrow [2\pi^+\pi^-\bar{\nu}_{\tau}]_{\tau^+}\nu_{\tau}|$ same **quark-level process**, but theoretically simpler + clean probe for $|V_{cb}|$
- Large missing momentum at Z pole: overcomes $\sqrt{s} \otimes \text{pile-up} (\text{LHCb}) + \beta_c^{*} (\text{Belle})$ limitations

• So far: vertex MC-seeded, but imperfection (\rightarrow background inflation) has negligible impact on Br & $|V_{ub}| \rightarrow$ However: $|V_{cb}|$ only possible with improvement on hadronisation fraction $f(\bar{b} \rightarrow B_c^+)$

© X. Zuo et. al [2305.02998] [:]

Vertex requirements from decay time

- Probes of the CP sector of the SM from $B_s \rightarrow D_s^- K^+$ time-dependent CP asymmetry
- Experimental precision relies on wrong-tagging efficiency of initial flavour (b or \bar{b}), $\sigma_{syst.}$ sources:
- $\rightarrow\,$ PV and $\mathit{B_s}$ decay-vertex position
 - Fully charged: O(20 μm)
 - Including neutrals in $B_s \rightarrow [K^+K^-]_{\phi}K_{\rm S}$: $\mathcal{O}(70\,\mu{\rm m})$
- $\rightarrow\,$ IDEA baseline sufficient to derive CKM phase Φ_s with 0.5 % precision at SM level

© R. Aleksan et. al [2107.02002]