Superallowed $0^+ \rightarrow 0^+$ beta decay studies at GANIL

Bernadette REBEIRO

Workshop on V_{ud} from pion, neutron and nuclear beta decay

05-06 November 2024

Reminder ...

Ft> from superallowed $0^+ \rightarrow 0^+$ decays indicate **unitarity** is **violated** at **2\sigma level**

High precision on *ft*^{0+ → 0+}

- Half-life of the decaying state, $\Delta t_{\frac{1}{2}} < 0.03\%$
- SA beta branching ratio, $\Delta BR < 0.3\%$
- Total transition energy $\Delta Q_{EC} < 0.02\%$

Experimental precision 🏏

Theoretical corrections 💡

δ_c corrections: role of experimental data

Hardy & Towner, PRC **102**, 045501 (2020).
Satula *et al.*, PRC 94, 024306 (2016).
J.C. Hardy, *et al.*, Nucl. Phys. A246, **61** (1975).

δ_c corrections: role of experimental data

Current scenario ...

23 known cases, but precision $\approx 0.3\%$ or better for **only** 15 transitions

Superallowed program @ GANIL

23 known cases, but precision $\approx 0.3\%$ or better for **only** 15 transitions

https://www.ganil-spiral2.eu/scientists/ganil-spiral-2-facilities/accelerators

7 Image credits: J.-C. Thomas & GANIL

SA decays @ GANIL:LISE (38Ca, 30S, 42Ti)

- 3 stages selection: B_{ρ1} ~p/Z (DP1); degrader + B_{ρ2} ~A³/Z² (DP2); velocity filter (v) ++ a number of slits
- Identification: ΔE , ToF (+XY)
- Experimental areas: D4 (+ LISE2K), D6

Slide credit: J.-C. Thomas

B. Rebeiro - Vud Workshop - 5-6 Nov 2024 - GANIL, Caen

□ $B_{\rho 2} \le 3.2$ T.m (4.3 T.m on LISE 2K) □ $\Delta p/p \le \pm 2.5$ % □ Angular acceptance: 1 msr (3.5 on LISE2K)

SA decays @ GANIL:LISE (38Ca, 30S, 42Ti)

SA decays @ GANIL:LISE (³⁸Ca, ³⁰S, ⁴²Ti)

10 counts

10

10³

 10^{2}

10

1568

wylwiewayallynydwydwydwaullawdananiananana

2000

way way and a state of the strategy of the strategy of the state of the strategy of the strate

1000

~99.5 % purity, ~10⁴ pps @ 2 eµA

 $t_{1/2} = 443.63(35) \text{ ms} => 0.08 \% \text{ precision}$ BR = 77.14(35)% => 0.4% precision

First SA beta decay studied at GANIL

3000

B. Blank et al., Eur. Phys. J. A **51**, 8 (2015)

B. Rebeiro – Vud Workshop – 5-6 Nov 2024 – GANIL, Caen

3848

4000

energy (keV)

SA decays @ GANIL:LISE (³⁸Ca, ³⁰S, ⁴²Ti)

140

120

00

80

60

40

20

³⁰S

011

 \simeq

uncertainty

40

⁷⁴Rb

• Fragmentation of ${}^{32}S \otimes 50MeV/A => few 10^4 pps {}^{30}S$

⁶²Ga

30

35

⁵⁴Co

25

- Wein filter issues
 - ~99% purity when operating
 - ~ 60% otherwise
- Analysis ongoing

△....△ TH08WS (2008)

□--□ TH09HF (2009)

◇---◇ OB95HF (1995)

↓-↓ LVM09PK (2009)

CGS09PR (2009)

← * SAT12SV (2012)

LVM09DD (2009)

10

2.5

2.0

1.5

1.0

0.5

0.0

0

Image: J.-C. Thomas

Calculated $\delta_{\rm C}$ (%)

 $\delta_{\rm C}$ - $\delta_{\rm NS}$

B. Rebeiro – Vud Workshop – 5-6 Nov 2024 – GANIL, Caen

20

Z of Daughter

SA decays @ GANIL:LISE (³⁸Ca, ³⁰S, ⁴²Ti)

- Fragmentation ⁴⁶Ti@70 MeV/A -> ⁴²Ti@35 MeV/A
 - 4.10⁴ pps ~99 % purity expected
- Concern about the LISE++ reliability
 - Scan of momentum distributions with CAVIAR

0

Oe=7016.48 22

42 22 Ti20

 $\%\epsilon + \%\beta^{+} = 100.0$

208.65 ms 80

SA decays @ GANIL:SPIRAL1 (18Ne)

Beam

- 25 keV ¹⁸Ne²⁺ beam
- Implanted on movable aluminized mylar tape
- Plastic scintillator + HPGe
- FASTER DAQ (2ns time resolution)

Hardy 1975

B. Rebeiro – Vud Workshop – 5-6 Nov 2024 – GANIL, Caen

SA decays @ **GANIL** : What's next??

SA decays @ GANIL : What's next??

Test CVC and ISB corrections on a larger scale : heavier super allowed β^+ emitters

- → At LISE3: approaching limits on attainable purity required for SA studies
- At SPIRAL1: next SA elements refractory => release times $> t_{\frac{1}{2}}$

Solution: Change RIB production method or improve purification

DESIR (Désintégration, excitation et stockage d'ions radioactifs)

Images from: J.-C. Thomas

B. Rebeiro – Vud Workshop – 5-6 Nov 2024 – GANIL, Caen

New beams

- S^3 beams: fusion evaporation => no problem releasing refractory elements
- Cocktail beam laser ionized => improved selection
- NEWGAIN : A/Q = 3-7 (existing A/Q=1,2)

Beam purity

Additional beam purification at entrance of DESIR hall

- General Purpose Ion Buncher (GPIB)
- High Resolution Separator (HRS)
- Double penning trap (PIPERADE)
- (MR-TOF-MS)

DESIR - multi experiment setup

DESIR (MORA): Towards SA mirror decays

Mirror decays

- $J_i = J_f \neq 0$
- $T = \frac{1}{2}$ isospin multiplet

p = Gamow-Teller/Fermi mixing ratio

- **Requires correlation measurements**
- Beta asymmetry (A_{β}) : sensitive to right-handed currents

B. Rebeiro - Vud Workshop - 5-6 Nov 2024 - GANIL, Caen

Some challenges

DESIR beams via S³-LEB

- 1. $t_{1/2}$ for know (heavier) SA emitters ⁵⁴Ni ⁷⁰Br : **115 ms and less**
 - Current gas cell extraction time 300-600 ms (projected to 50 ms)

22.9

85.4

Fr

[22]

- O Could be a major bottleneck
- LASER ionization schemes currently not available for all SA emitters
 - Need support from LASER community to develop efficient laser ionization schemes

8	2		Studied by laser spectroscopy									13	14	15	16	17	2 He 4.003
1	4 Be 9.012		To be studied in the current/new RI facilities								5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.999	10 Ne 20.180	
) 20	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.065	17 Cl 35.453	18 Ar 39.948
98	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.789
58	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc [98]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.43	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
21	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [209]	85 At [210]	86 Rn [222]
]	88 Ra [226]	89-103 #	104 Rf [265]	105 Db [268]	106 Sg [271]	107 Bh [270]	108 Hs [277]	109 Mt [276]	110 Ds [281]	111 Rg [280]	112 Cn [285]	113 Nh [286]	114 Fl [289]	115 Mc [289]	116 Lv [293]	117 Ts [294]	118 Og [294]
Lanthanide series		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm [145]	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.91	68 Er 167.26	69 Tm 168.91	70 Yb 173.05	71 Lu 174.97	
# Actinide series		89 Ac [227]	90 Th 232.01	91 Pa 231.04	92 U 238.03	93 Np [237]	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]	

X.F. Yang, et al. Prog. Part. Nucl. Phys. **129** (2023) 104005.

DESIR is getting ready ...

- Next month... installation of building utilities, ventilation, electricity, water supply, etc.
- Bare bones beam operation: May 2025
- First experiment with decay station : December 2027
- Others May 2028++

B. Rebeiro – Vud Workshop – 5-6 Nov 2024 – GANIL, Caen

Thank you for your attention!

Same experimental data corrected by different dC calculations

Slide courtesy: J. Grinyer, J.-C. Thomas

Perspective: ⁴²Ti -> ⁴²Sc

Production: ⁴⁶Ti@70 MeV/A -> ⁴²Ti@35 MeV/A -> 4e3 pps/eµA, ~99 % purity expected

However: concern about the LISE++ reliability -> Scan of momentum distributions with CAVIAR (ongoing analysis)

³⁶S -> ³²⁻³⁴S momentum scans

J.-C. Thomas, LISE Workshop – 23-24/05/2023 – GANIL/LPCC

27

What are Superallowed beta decays?

 β^+ decays between isobaric analog states (IAS) in mirror nuclei => $J_i = J_f$

Two class of SA decays

Fermi decays

- ► $J_i = J_f = 0^+$
- ► T = 1 isospin multiplet

Mirror decays

- ► $J_i = J_f \neq 0$
- > $T = \frac{1}{2}$ isospin multiplet

Located on the neutron deficit side of the nuclear chart

