PERER

UNIVERSITY of WASHINGTON

Prospects for a V_{ud} measurement with the PIONEER Experiment

Quentin Buat (University of Washington)

Workshop on Vud from pion, neutron and nuclear beta decay Nov 5-6, 2024 — GANIL, Caen, France

PIONEER Physics Case

Lepton Flavor Universality

 $R_{e/\mu} = \Gamma(\pi \to e\nu(\gamma)) \div \Gamma(\pi \to \mu\nu(\gamma))$

 $R_{e/\mu}$ [Exp.] = 1.23270(230) × 10⁻⁴ $R_{e/\mu}$ [SM] = 1.23524(015) × 10⁻⁴

Goal of PIONEER 15-fold improvement over the current world best

BSM constraints: EFT analysis (JHEP. **2013**, 46 (2013)) ~330 TeV (pseudo scalar) ~5.5 TeV (axial currents)

Phase I of the project

PIONEER Physics Case

Exotic decays of the charged pion

W. Altmannshofer, J. Dror, and S. Gori Phys. Rev. Lett. **130**, 241801

Goal of PIONEER Increase reach of the global search program for feeble interactions (ie ALPs, sterile neutrinos) in the 10–100 MeV range

Searches profit from the very large datasets needed for $R_{e/\mu}$ measurement

Phase I of the project

PIONEER Physics Case

piBeta measurement and Vud extraction

 $R_{\pi\beta}[\text{Exp.}] = 1.036(0.006) \times 10^{-8}$ $V_{ud}^{\pi} = 0.97386(283)$

Goal of PIONEER

Reduce the uncertainty as much as possible to be relevant in comparison to super-allowed beta decays and neutron measurements

Landscape of V_{ud} measurements

Data Source

The pion beta decay: Theory

Speaker: Marc KNECHT (CNRS)

3:20 PM

$$V_{ud}^{0^+ \to 0^+} = 0.97367 \,(11)_{\exp} \,(13)_{\Delta_V^R} (27)_{NS} \,[32]_{\text{total}}$$
$$V_{ud}^{n,\text{PDG}} = 0.97430 \,(2)_{\Delta_f} \,(13)_{\Delta_R} \,(82)_{\lambda} \,(28)_{\tau_n} [88]_{\text{total}}$$
$$V_{ud}^{\pi} = 0.97386 \,(281)_{\text{BR}} \,(9)_{\tau_{\pi}} \,(14)_{\Delta_R^{\pi}} \,(28)_{\Delta_f} \,[283]_{\text{total}}$$
Pion lifetime

Radiative corrections

Phase space dominated by exp. uncertainty on pion mass splitting

5

Role of piBeta measurement

Vus vs Vud Representation

- Now: not competitive
- x3 improvement: nice, maybe it gets added to the plot
- x6 improvement: competitive with neutron estimates, useful crosscheck
- x10 improvement: become the reference

$$\pi^+ \to \pi^0 e^+ \nu_e$$

$$m_{\pi^+} = 139.6 \text{ MeV}$$

 $m_{\pi^0} = 135.0 \text{ MeV}$
 $\tau_{\pi^0} = 0.084 \text{ fs}$

Two back-to-back photons Very low energy positron

FIG. 5. Histogram of the γ - γ opening angle in π_{β} decay.

$R_{\pi\beta}$ measurement The PiBeta Experiment Approach

Measure ratio to $\pi^+ \rightarrow e^+ \nu_e \, \mathrm{BR}$

Alleviates the need to count every pion (difficult in high rate experiment)

Requires to control relative acceptance of $\pi^+ \to \pi^0 e^+ \nu_e$ and $\pi^+ \to e^+ \nu_e$ events in the piBeta run

$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu_e)}{\Gamma(\pi^+ \to e^+ \nu_e)} \times R_{e/\mu}$$

The piBeta experiment

http://pibeta.phys.virginia.edu/

PSI π E1 Beam Line at **110 MeV/c** 10^6 **pions/s** stopped in active target

Gamma and positron energy measured by CsI calorimeter

Plastic Scintillator Hodoscope (PV) and Multi-Wire Proportional Chambers (MWPC) for tracking and particle identification

The piBeta experiment

Uncertainty budget

Phys.	Rev.	Lett.	93,	181	803
-------	------	-------	-----	-----	-----

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)
External	$R_{\pi e2}^{\exp}$	$1.230 imes 10^{-4}$	0.33 External inpu
	$R_{\pi^0 \rightarrow \gamma\gamma}^{\exp^2}$	0.9880	0.03
	π^+ lifetime	26.033 ns	0.02
Combined external			0.33
Internal	$N_{\pi e^2}^{\rm tot}$ (syst)	6.779×10^{8}	0.19 Relative
	$A_{\pi\beta}^{\rm HT}/A_{\pi e2}^{\rm HT}$	0.9432	$0.12 \qquad \pi^+ \to \pi^0 e^+ \nu$
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	0.26 and $\pi^+ \rightarrow e^+$
	$N_{\pi\beta}^{\rm accid}$	0	< 0.1
	$f_{\rm CPP}$ correction	0.9951	0.10
	$f_{\rm ph}$ correction	0.9980	0.10
Combined internal	- 1		0.38
Statistical	$N_{\pi\beta}$	64 047	0.395 Statistical uncertainties

Equal contributions from statistical uncertainty (size of the piBeta decay sample) and systematic uncertainties (acceptance effects)

The piBeta experiment Uncertainty budget

Phys.	Rev.	Lett.	93,	181	803
-------	------	-------	-----	-----	-----

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)
External	$R_{\pi e^2}^{\exp}$	1.230×10^{-4}	0.33
	$R_{\pi^0 \rightarrow \gamma\gamma}^{\exp^2}$	0.9880	0.03
	π^+ lifetime	26.033 ns	0.02
Combined external			0.33
Internal	$N_{\pi e2}^{\rm tot}$ (syst)	$6.779 imes 10^{8}$	0.19
	$A_{\pi\beta}^{\rm HT}/A_{\pi e^2}^{\rm HT}$	0.9432	0.12
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	0.26
	$N_{\pi\beta}^{\rm accid}$	0	< 0.1
	$f_{\rm CPP}$ correction	0.9951	0.10
	$f_{\rm ph}$ correction	0.9980	0.10
Combined internal	- 1		0.38
Statistical	$N_{\pi\beta}$	64 047	0.395

Can we collect enough $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ events?

Birmingham Cambridge

PAUL SCHERRER INSTITUT

Located near Zurich, Switzerland World most intense low-energy pion beamline

The world's brightest pion beam line

oulouse Giión 0 Bilbao Santandero Donostia-San Sebastian Carcassonne Oviedo Pamplona Perpignan Vitoria-Gasteiz León Andorra Burgos Girona Zaradoza Vall

Pion Beamline at PSI

Beam properties	Phase I	Phase II-III
Pion Decay of Interest	$\pi^+ \rightarrow e^+ \nu_e$	$\pi^+ \rightarrow \pi^0 e^+ \nu_e$
Rate (pions/s)	3 .10 ⁵	3.107
Momentum (MeV/c)	65	85
Momentum bite —Δp/p (%)	1	3
Statistics (events/year)	10 ⁸	106

Collecting $\pi^+ \to \pi^0 e^+ \nu_e$ events

Assumes detector efficiency of 20% and typical PSI experiment runtime

Improvement over piBeta	Targeted statistical	Required number of	+ Number of years
Baseline	0.4	64047	N/A
x3	0.1	10 ⁶	1
x6	0.05	4 .10 ⁶	4
x10	0.01	10 ⁷	10

But this requires handling the beam at a rate of 3.10⁷ pions / s

PIONEER Detector concept

PIONEER Detector conceptS

Two calorimeter options

LYSO Crystals

Liquid Xenon

Size driven by shower containment By far the priciest component of the system Will build **one** for the entire life of the experiment (PHASE I-III)

Detecting $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ events

The importance of segmentation

- Segmentation is necessary to distinguish gammas from each other and coincident particles
- A high density is necessary to limit pileup events that cannot be distinguished from the gammas
- Given the high probability of spatial overlap, a Liquid Xenon calorimeter is not favoured*

Calorimeter	Inner Radius	Molière Radius	Calo Surface Area*	pi-beta Area	Overlap Probability
PIBETA CsI	26 cm	3.5 cm	8495 cm ²	308 cm^2	3.6%
PIONEER LYSO	15 cm	2.07 cm	2827 cm^2	108 cm^2	3.8%
PIONEER LXe	15 cm	5.22 cm	2827 cm^2	685 cm^2	24.2%

Detecting $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ events

Charge exchange process

Pion charge exchange $\pi^+ + n \rightarrow \pi^0 + p$ looks like the pion beta decay in the calorimeter

These charge exchange events occur promptly

A 1 (2) ns cut around RF times would remove 100% of charge exchange events

Such a cut would retain 77 (95)% of the pion beta decay events

Detecting $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ **events**

Mass reconstruction

- Mixed Michel events:
 - $\pi \rightarrow \mu (\rightarrow e \nu \nu) \nu$ is 10⁸ more frequent than $\pi^+ \rightarrow \pi^0 e^+ \nu$
 - Muon life time is 2.2 µs while the pion lifetime is 26 ns
 - We expect a continuum of positron (ranging from 0 to 53 MeV) in the detector
 - Many will happen in time coincidence
- Ability to reconstruct the photon pair invariant mass alleviate the issue for collecting $\pi^+ \to \pi^0 e^+ \nu$ events

Invariant Mass of 'pi-beta' Events

areno

19

The piBeta experiment Uncertainty budget

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)	
External	$R_{\pi e2}^{\exp}$	$1.230 imes 10^{-4}$	0×3	0.01%
	$R_{\pi^0 \rightarrow \gamma\gamma}^{exp}$	0.9880	0.03	
	π^+ lifetime	26.033 ns	0.02	
Combined external			0.33	Fliase
Internal	$N_{\pi e^2}^{\rm tot}$ (syst)	$6.779 imes 10^{8}$	0.19	
	$A_{\pi\beta}^{\rm HT}/A_{\pi e^2}^{\rm HT}$	0.9432	0.12	
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	0.26	
	$N_{\pi\beta}^{\rm accid}$	0	< 0.1	
	$f_{\rm CPP}$ correction	0.9951	0.10	
	$f_{\rm ph}$ correction	0.9980	0.10	
Combined internal	• F		0.38	
Statistical	$N_{\pi\beta}$	64 047	0.205	0.04%

PIONEER will be able to collect

 $\pi^+ \rightarrow \pi^0 e^+ \nu$ efficiently

The piBeta experiment Uncertainty budget

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)	
External	$R_{\pi e2}^{\exp}$	$1.230 imes 10^{-4}$	0×3	0.01%
	$R^{exp}_{\pi^0 \rightarrow \gamma\gamma}$	0.9880	0.03	
	π^+ lifetime	26.033 ns	0.02	
Combined external			0.33	
Internal	$N_{\pi e^2}^{\rm tot}$ (syst)	$6.779 imes 10^{8}$	0.19	
	$A_{\pi\beta}^{\rm HT}/A_{\pi e^2}^{\rm HT}$	0.9432	0.12	
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	0.26	
	$N_{\pi\beta}^{\text{accid}}$	0	< 0.1	
	$f_{\rm CPP}$ correction	0.9951	0.10	
	$f_{\rm ph}$ correction	0.9980	0.10	
Combined internal	~ F		0.38	_
Statistical	$N_{\pi\beta}$	64 047	0.25	0.04%

Gate Fraction Ratio $(r_{\pi G} = f_{\pi G}^{\pi\beta} / f_{\pi G}^{\pi e2})$

- 0.26% Uncertainty in PiBeta Experiment
- This is the probability the decay occurs in some data collection window
- The uncertainty is primarily from determining window opening
 - PiBeta triggered on the beam and the calorimeter and used a 10ns hardware veto
 - Some delay is needed to remove charge exchange events
 - Thus, the gate opening time needed to be determined from experimental data
 - This method includes more $\pi\beta$ events, maximising useful statistics
- PIONEER timing resolution should be much better and alleviate this issue

LYSO Test beam result: https://arxiv.org/abs/2409.14691

The piBeta experiment Uncertainty budget

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)	
External	$R_{\pi e2}^{\exp}$	1.230×10^{-4}	0×3	0.01%
	$R^{exp}_{\pi^0 \rightarrow \gamma\gamma}$	0.9880	0.03	
	π^+ lifetime	26.033 ns	0.02	
Combined external			0.33	
Internal	$N_{\pi e^2}^{\rm tot}$ (syst)	$6.779 imes 10^{8}$	0.19	
	$A_{\pi\beta}^{\rm HT}/A_{\pi e^2}^{\rm HT}$	0.9432	0.12	
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	026	
	$N_{\pi\beta}^{\rm accid}$	0	< 0.1	
	$f_{\rm CPP}$ correction	0.9951	0.10	
	$f_{\rm ph}$ correction	0.9980	0.10	
Combined internal	~ F		0.38	_
Statistical	$N_{\pi\beta}$	64 047	0.25	0.04%

The piBeta experiment Uncertainty budget

Uncertainty type	Quantity	Value	$\Delta R_{\pi\beta}$ (%)	
External	$R_{\pi e^2}^{\exp}$	1.230×10^{-4}	0×3	0.01%
	$R_{\pi^0 \rightarrow \gamma\gamma}^{cxp}$	0.9880	0.03	•
	π^+ lifetime	26.033 ns	0.02	
Combined external			0.33	
Internal	$N_{\pi e^2}^{\rm tot}$ (syst)	$6.779 imes 10^{8}$	0.19 🗲	
	$A_{\pi\beta}^{\rm HT}/A_{\pi e^2}^{\rm HT}$	0.9432	0.12 🗲	
	$r_{\pi G} = f_{\pi G}^{\pi \beta} / f_{\pi G}^{\pi e^2}$	1.130	026	
	$N_{\pi\beta}^{\rm accid}$	0	< 0.1	
	$f_{\rm CPP}$ correction	0.9951	0.10	
	$f_{\rm ph}$ correction	0.9980	0.10	
Combined internal	~ F		0.38	_
Statistical	$N_{\pi\beta}$	64 047	0.25	0.04%

 $\pi^+ \rightarrow e^+ \nu_{\rho} \operatorname{Count}(N_{\pi\rho}^{tot})$

- 0.19% Uncertainty in PiBeta Experiment
- Uncertainty primarily from measuring the tail of $\pi^+ \rightarrow e^+ \nu_e$ The PiBeta experiment used Monte Carlo estimates
 - PIONEER should have a better understanding of the tail fraction from Phase
 I — the fraction will change if the target is changed for phase II
 - PIONEER's increased calorimeter depth will greatly decrease the tail size compared to PiBeta (20 RL vs 12 RL)
- The **PIONEER ATAR** will provide a huge performance boost to reveal the tail
- More quantitative estimates needed

Events 0000 $\pi \rightarrow e\nu$ DATA — GEANT MC Number of B 40 50 55 60 65 70 75 80 85 45 E(Csl) (MeV)

PiBeta Experiment

Acceptance Ratio $(A_{\pi\beta}^{HT} / A_{\pi e2}^{HT})$

- 0.12% Uncertainty in PiBeta Experiment
- Acceptance uncertainty dominated by uncertainty in **pion stop distribution**
- PiBeta backtracked charged particles from their trackers to the target to determine the pion stop distribution (50 micron uncertainty)
- The **PIONEER ATAR** and tracker should be able to improve this precision
- More quantitative estimates needed

PIONEER's Active Target (ATAR)

The heart of the experiment

Active Target Deliverables

- Thick and highly segmented target to
 - stop the pion
 - tag and measure the decay chain
- Measure time, position, and energy

Pion stop determined with 1 µm precision piBeta had a precision of 50 µm

Opportunities to redesign the measurement strategy and count all the stopping pions?

PIONEER Timeline

Detector R&D in calorimetry and tracking

Simulation studies to model a high precision experiment

Putting an experiment together from concept to first data *Civil engineering, beam optics, detector manufacturing, LXe/LYSO acquisition, electronics, ...*

A growing collaboration

Project approved by PSI in 2022

October 2023 collaboration meeting in Seattle

Opportunities for $R_{\pi\beta}$

Presented preliminary studies on piBeta

Most of them carried by Bradley Taylor, a junior PhD student at UW

Many opportunities to get involved!

Simulations Measurement strategy Detector drawing (CAD, ...) Beam design

. . .

Get in touch: Quentin Buat: <u>qbuat@uw.edu</u>, Chloé Malbrunot: <u>cmalbrunot@triumf.ca</u>, David Hertzog: <u>hertzog@uw.edu</u>, Doug Bryman: <u>doug@triumf.ca</u>

Data Source