

Y angle measurement in $B^{\pm} \rightarrow D^0 (\rightarrow K^0_s \pi^+ \pi^- \pi^0) h^{\pm}$ decays using BPGGSZ method, at LHCb

Jessy DANIEL, On behalf of the LHCb collaboration Université Clermont-Auvergne, LPC

GDR-Inf Annual Workshop

Cabourg - 06-08 November 2024

Introduction

- To be compared with indirect measurements (with potential new physics in loop level) -> Possible BSM sensitivity in case of discrepancy
- A 1° precision on direct measurements -> Test the global validity of CKM formalism up to at least 17 TeV <u>Phys.Rev.D 89 (2014) 3, 033016</u>

$$\gamma\equiv arg(-rac{V_{ud}V^*_{ub}}{V_{cd}V^*_{cb}})\equiv arg(ar{
ho}+iar{\eta})$$
 = CKM Matrix complex phase = The parameter to access CPV !

Introduction

- To be compared with indirect measurements (with potential new physics in loop level) -> Possible BSM sensitivity in case of discrepancy
- A 1° precision on direct measurements -> Test the global validity of CKM formalism up to at least 17 TeV <u>Phys.Rev.D 89 (2014) 3, 033016</u>
- Directly measurable in interference between $b \to u\bar{c}s$ and $b \to c\bar{u}s$ processes (golden channel is $B^{\pm} \to D^0 K^{\pm}$).

Generalized BPGGSZ formalism

γ measurement depends on $\Delta \delta_D$, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$ Varies on Phase–Space of the 4–body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$

Similar method to the one in <u>IHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

-> Binned map of strong phase from <u>IHEP 10 (2018) 178</u> (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c) (with 0.82fb⁻¹ $\Psi(3770)$ dataset)

	Bin	Bin region	$m_{ m L}$	m_{U}
			(GeV/c^2)	(GeV/c^2)
	1	$\mathrm{m}_{\pi^+\pi^-\pi^0}pprox\mathrm{m}_\omega$	0.762	0.802
	2	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-}}$ &	0.790	0.994
	3	${ m m}_{\pi^+\pi^0}pprox { m m}_{ ho^+}$	0.610	0.960
		$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$ &	0.790	0.994
Exclusively		${ m m}_{\pi^-\pi^0}pprox { m m}_{ ho^-}$	0.610	0.960
defined	4	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-1}}$	0.790	0.994
	5	$\mathrm{m}_{K^0_S\pi^+} pprox \mathrm{m}_{K^{*+}}$	0.790	0.994
	6	$\mathrm{m}_{K^0_S\pi^0}pprox \mathrm{m}_{K^{st 0}}$	0.790	0.994
	7	${ m m}_{\pi^+\pi^0}pprox { m m}_{ ho^+}$	0.610	0.960
	8	$\mathrm{m}_{\pi^-\pi^0}pprox\mathrm{m}_{ ho^-}$	0.610	0.960
	9	Remainder	-	-

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

• $F_i = \frac{\int_{\mathcal{D}_i} P\eta d\mathcal{D}}{\sum_i \int_{\mathcal{D}_i} P\eta d\mathcal{D}}$ are fractions of $D^0/\bar{D^0}$ in bin i (η = efficiency at a given point in phase-space \mathcal{D}) $\begin{cases} N_{i,DK}^{-} = f_{DK}^{-} (F_i + r_B^{DK^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{DK} + s_i y_-^{DK})) \\ N_{i,DK}^{+} = f_{DK}^{+} (\overline{F_i} + r_B^{DK^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{DK} - s_i y_+^{DK})) \\ N_{i,D\pi}^{-} = f_{D\pi}^{-} (F_i + r_B^{D\pi^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{D\pi} + s_i y_-^{D\pi})) \\ N_{i,D\pi}^{+} = f_{D\pi}^{+} (\overline{F_i} + r_B^{D\pi^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{D\pi} - s_i y_+^{D\pi})) \end{cases}$ • *f*± is a normalisation factor • $r_B = \frac{|A_{B \to \bar{D^0}K}|}{|A_{B \to D^0K}|} \checkmark$ Drives statistical precision on **Y** • $c_i = \frac{\int_{\mathcal{D}_i} |A| |\bar{A}| C d\mathcal{D}}{\sqrt{\int_{\mathcal{D}_i} |A|^2 d\mathcal{D} \int_{\mathcal{D}_i} |\bar{A}|^2 d\mathcal{D}}} \qquad C = cos(\Delta \delta_D)$ $S = sin(\Delta \delta_D)$ $\bullet \ x_{\pm} = r_B cos(\delta_B \pm \gamma) \qquad \bullet \ y_{\pm} = r_B sin(\delta_B \pm \gamma)$ = "Cartesian coordinates" or "CP-observables"

One can then deduce N_i^{\pm} the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

• $F_i = \frac{\int_{\mathcal{D}_i} P\eta d\mathcal{D}}{\sum \int_{\mathcal{D}_i} P\eta d\mathcal{D}}$ are fractions of $D^0/\bar{D^0}$ in bin i (η = efficiency at a given point in phase-space \mathcal{D}) $\begin{cases} N_{i,DK}^{-} = f_{DK}^{-} (F_i + r_B^{DK^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{DK} + s_i y_-^{DK})) \\ N_{i,DK}^{+} = f_{DK}^{+} (\overline{F_i} + r_B^{DK^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{DK} - s_i y_+^{DK})) \\ N_{i,D\pi}^{-} = f_{D\pi}^{-} (F_i + r_B^{D\pi^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{D\pi} + s_i y_-^{D\pi})) \end{cases}$ • *f*± is a normalisation factor • $r_B = \frac{|A_{B \to \bar{D^0}K}|}{|A_{B \to D^0K}|} \checkmark$ Drives statistical precision on **Y** • $c_i = \frac{\int_{\mathcal{D}_i} |A| |\bar{A}| C d\mathcal{D}}{\sqrt{\int_{\mathcal{D}_i} |A|^2 d\mathcal{D} \int_{\mathcal{D}_i} |\bar{A}|^2 d\mathcal{D}}} \qquad C = cos(\Delta \delta_D)$ $S = sin(\Delta \delta_D)$ $N_{i,D\pi}^{+} = f_{D\pi}^{+} (\overline{F_i} + r_B^{D\pi^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{D\pi} - s_i y_+^{D\pi}))$ • $x_{\pm} = r_B cos(\delta_B \pm \gamma)$ • $y_{\pm} = r_B sin(\delta_B \pm \gamma)$

= "Cartesian coordinates" or "CP-observables"

 $F_{i}^{DK} = F_{i}^{D\pi} \text{ if } \circ B^{\pm} \rightarrow D^{0}\pi^{\pm} \text{ and } B^{\pm} \rightarrow D^{0}K^{\pm} \text{ have a similar selection and efficiency mapping through } \mathcal{D}$ $\circ PID \text{ cut efficiency is the same for all of the 9 bins}$ $\circ 9 \times 9 \text{ Migration matrix is similar between } B^{\pm} \rightarrow D^{0}\pi^{\pm} \text{ and } B^{\pm} \rightarrow D^{0}K^{\pm}$

All those hypothesis have been tested and validated !

Strategy

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

$$\begin{cases} N_{i,DK}^{-} = f_{DK}^{-} (F_i + r_B^{DK^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{DK} + s_i y_-^{DK})) \\ N_{i,DK}^{+} = f_{DK}^{+} (\overline{F_i} + r_B^{DK^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{DK} - s_i y_+^{DK})) \\ N_{i,D\pi}^{-} = f_{D\pi}^{-} (F_i + r_B^{D\pi^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{D\pi} + s_i y_-^{D\pi})) \\ N_{i,D\pi}^{+} = f_{D\pi}^{+} (\overline{F_i} + r_B^{D\pi^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{D\pi} - s_i y_+^{D\pi})) \end{cases}$$

- → Simultaneous fit on 36 categories :
 - o 2 channels
 - o 2 charges
 - o 9 bins

- $\implies c_i$ and s_i are taken as inputs from CLEO-c paper <u>IHEP 10 (2018) 178</u>
- $\implies N_i^{\pm}$ are observables measured in LHCb
- $\Rightarrow x_{\pm}, y_{\pm}$ are CP-observables fitted with the simultaneous fit
- \implies $F_i \& \bar{F}_i$ are free independent parameters in the simultaneous fit

$$\implies r_B^+ = \sqrt{x_+^2 + y_+^2}$$
 , $r_B^- = \sqrt{x_-^2 + y_-^2}$

<u>Note</u> : In principle $r_B^+ \equiv r_B^-$ but left independent in Simultaneous fit

Strategy

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

$$\begin{cases} N_{i,DK}^{-} = f_{DK}^{-} (F_i + r_B^{DK^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{DK} + s_i y_-^{DK})) \\ N_{i,DK}^{+} = f_{DK}^{+} (\overline{F_i} + r_B^{DK^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{DK} - s_i y_+^{DK})) \\ N_{i,D\pi}^{-} = f_{D\pi}^{-} (F_i + r_B^{D\pi^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{D\pi} + s_i y_-^{D\pi})) \\ N_{i,D\pi}^{+} = f_{D\pi}^{+} (\overline{F_i} + r_B^{D\pi^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{D\pi} - s_i y_+^{D\pi})) \end{cases}$$

- → Simultaneous fit on 36 categories :
 - o 2 channels
 - o 2 charges
 - o 9 bins

\Longrightarrow Extraction of physics parameters from $x_{\pm},\,y_{\pm}$

- $\implies c_i$ and s_i are taken as inputs from CLEO-c paper <u>JHEP 10 (2018) 178</u>
- $\implies N_i^{\pm}$ are observables measured in LHCb
- $\Rightarrow x_{\pm}, y_{\pm}$ are CP-observables fitted with the simultaneous fit
- \implies $F_i \& \bar{F}_i$ are free independent parameters in the simultaneous fit

$$\implies r_B^+ = \sqrt{x_+^2 + y_+^2}$$
, $r_B^- = \sqrt{x_-^2 + y_-^2}$

<u>Note</u> : In principle $r_B^+ \equiv r_B^-$ but left independent in Simultaneous fit

- Use of the reference mode B[±] → D⁰π[±] that is topologically identical, statistically more interesting and less sensible to CP asymmetry
 B(B[±] → D⁰π[±]) = (12.67 ± 0.43) × B(B[±] → D⁰K[±]) = (4.61 ± 0.10) × 10⁻³
- Selection adapted for Runs 1 vs 2 and for $K_{\rm S}^0$ DD vs LL
- Selection based on **2 Multivariate-Analysis** and **unidimensional cuts on particle masses** :
 - First MVA : MLP method on geometrical and topological variables from D and its daughters (impact parameters, vertex quality, vertex relative position, photons identification, etc)
 - Unidimensional cuts on $K^0_{
 m S}$, π^0 and D^0 masses
 - Second MVA : MLP method on geometrical and topological variables from B decay
- Cut on **PID likelihood** difference to limit bachelor track misID
- Choosing the best candidate in case of multiplicity (mainly due to π^0), thanks to a MVA trained on MC, discriminating true signal events

Selection : Summary

Background Study

A complete study of physical background has been processed, using full simulation of >20 modesHere is a list of studied backgrounds. Non-negligeable ones are surrounded for $B^{\pm} \rightarrow D^{0}\pi^{\pm}$ and $B \rightarrow D^{0}K^{\pm}$ $B^{\pm} \rightarrow D^{*0}[\rightarrow D^{0}(\rightarrow K_{s}\pi\pi)\pi^{0}]\pi^{\pm}$ $B^{\pm} \rightarrow D^{*0}[\rightarrow D^{0}(\rightarrow K_{s}\pi\pi\pi^{0})\pi^{0}]\pi^{\pm}$ $B^{\pm} \rightarrow D^{*0}[\rightarrow D^{0}(\rightarrow K_{s}\pi\pi\pi)\gamma]\pi^{\pm}$ $B^{\pm} \rightarrow D^{*0}[\rightarrow D^{0}(\rightarrow K_{s}\pi\pi\pi^{0})\gamma]\pi^{\pm}$ $B^{0} \rightarrow D^{*\pm}[\rightarrow D^{0}(\rightarrow K_{s}\pi\pi\pi^{0})\pi^{\pm}]\pi^{\pm}$

 $B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi) \pi^{0}] K^{\pm}$ $B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi) \gamma] K^{\pm}$ $B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi) \pi^{0}] \rho^{\pm} (\to \pi^{\pm} \pi^{0})$ $B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi) \gamma] \rho^{\pm} (\to \pi^{\pm} \pi^{0})$ $B^{\pm} \to D^{0} (\to K_{s} \pi \pi) \rho^{\pm} (\to \pi^{\pm} \pi^{0})$

 $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi) K^{*\pm} (\rightarrow K^{\pm} \pi^0)$

 $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \pi^0] K^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \gamma] K^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \pi^0] \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \gamma] \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \to D^{*0} [\to D^0 (\to K_s \pi \pi \pi^0) \pi^0] K^{*\pm} (\to K^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \gamma] K^{*\pm} (\rightarrow K^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) K^{*\pm} (\rightarrow K^{\pm} \pi^0)$

- Additional study has been made in K⁰_S and D⁰ sidebands, limiting impact of K_s-less and charm-less backgrounds to less than 0.66% and 0.15% on the signal respectively at 90% CL.
- Background components are included in global mass fit through parametric PDFs "RooKeyPDF" objects (after a smearing to adapt MC to DATA signal width)

Global Fit

CP-fit on DATA

Run simultaneous unbinned minos CP-fit on DATA (**36 categories**):

- All shapes fixed by global fits (signal, physical and combinatorial backgrounds, cross-feed)
- Sum of the yields (integrated over bins) constrained to the yields in the global fits
- For fit stability, CP-observables $x_{\pm}^{D\pi}$ and $y_{\pm}^{D\pi}$ are fixed for $B \to D\pi$ channel, according to LHCb combination (-> systematic uncertainty)
- Consider two separate values for $r_B^{DK,-} = \sqrt{(x_-^{DK})^2 + (y_-^{DK})^2}$ and $r_B^{DK,+} = \sqrt{(x_+^{DK})^2 + (y_+^{DK})^2}$

CP-fit on DATA

Run simultaneous unbinned minos CP-fit on DATA (**36 categories**):

- All shapes fixed by global fits (signal, physical and combinatorial backgrounds, cross-feed)
- Sum of the yields (integrated over bins) constrained to the yields in the global fits
- For fit stability, CP-observables $x_{\pm}^{D\pi}$ and $y_{\pm}^{D\pi}$ are fixed for $B \to D\pi$ channel, according to LHCb combination (-> systematic uncertainty)
- Consider two separate values for $r_B^{DK,-} = \sqrt{(x_-^{DK})^2 + (y_-^{DK})^2}$ and $r_B^{DK,+} = \sqrt{(x_+^{DK})^2 + (y_+^{DK})^2}$
- Fit method validated by Toy Study

$$\begin{aligned}
x_{-}^{DK} &= XX_{-0.066}^{+0.063} \\
y_{-}^{DK} &= XX_{-0.148}^{+0.125} \\
x_{+}^{DK} &= XX_{-0.092}^{+0.084} \\
y_{+}^{DK} &= XX_{-0.178}^{+0.225}
\end{aligned}$$
Statistical \bigwedge uncertainty only
For Comparison, see Belle results:

$$\underbrace{\frac{x_{-} \quad y_{-} \qquad x_{+} \qquad y_{+}}{0.095 \pm 0.121 \quad 0.354_{-0.197}^{+0.144} -0.030 \pm 0.121 \quad 0.220_{-0.541}^{+0.182}}
\end{aligned}$$
14

Interpretation : p-profile of the physics parameters

• Statistical uncertainty only 🛕

Prob = minimization of global χ^2 **Plugin** = frequency computed on simulated toys (1k toys per value)

Prob:Plugin: $\gamma = (XX_{-25}^{+19})^{\circ}$ $\gamma = (XX_{-30}^{+22})^{\circ}$ $r_B^{DK} = XX_{-0.092}^{+0.083}$ $r_B^{DK} = XX_{-0.092}^{+0.102}$ $\delta_B^{DK} = (XX_{-25}^{+19})^{\circ}$ $\delta_B^{DK} = (XX_{-30}^{+21})^{\circ}$

• Precision on r_B improved by ~30% wrt Belle (2019)

The latest LHCb combination (Summer 2024):

Deve meter	Value	68.3 % CL		95.4 % CL		
Parameter	varue	Uncertainty	Interval	Uncertainty	Interval	
$\gamma[^{\circ}]$	64.6	± 2.8	[61.8, 67.4]	$+5.5 \\ -5.7$	[58.9, 70.1]	
r_B^{DK} [%]	9.73	$^{+0.21}_{0.20}$	[9.53, 9.94]	$^{+0.42}_{-0.40}$	[9.33, 10.15]	
$\delta_B^{DK}[^\circ]$	127.4	$^{+2.8}_{-3.0}$	[124.4, 130.2]	$^{+5.6}_{-6.2}$	[121.2, 133.0]	

- Most of the analysis is now done (selection, background analysis, global fit, CP-fit, most cross-checks and systematics, etc)
- >2.5× Belle statistics -> A statistical sensitivity of about 20°
- An Analysis Note under WG review + Presented as blinded results in a plenary talk at LHCb June 2024 week in Glasgow -> First steps towards the journal publication for this pioneer measurement in LHCb
- Expect improvements with the upcoming BESIII strong-phase measurement (20fb⁻¹ dataset on tape at $\Psi(3770)$ resonance) -> Planned collaboration with Oxford team to update this analysis with Run 3 and BESIII inputs
- This mode can also be used later to participate to an Amplitude Analysis of this D^o decay (good purity)
 - Foreseen analysis combined with measurements using decay $B \rightarrow D^*(2010)^+ \mu^- X$
 - Quick and dirty feasibility study for BR measurement of $D^0 o K^{*-}
 ho^+$ already made
 - Not measured since Mark III in 1994 ... 30 years ago !
 - Possible model-dependent analysis following the amplitude model

LHCb Experiment

- One of the four main experiments at LHC (with ATLAS, CMS and ALICE)
- 20m forward spectrometer $(2 < \eta < 5)$: general detector specialized in beauty and charm study
- Physics program involves flavour physics, CP violation measurements, EW, exotic particles, heavy ion physics, ...
 -> Initially designed to study CPV and rare decays in beauty and charm sectors -> Extended program
- Excellent vertexing, tracking, momentum resolution and particle identification (K vs π)+photons reconstruction

→ Almost all the sub-detectors are useful for my complicated mode

LHCb Experiment

→ Almost all the sub-detectors are useful for my complicated mode

LHCb Experiment

- 9 fb⁻¹ integrated luminosity during Runs 1+2 -> More to come with run 3+4 (50 fb⁻¹) and HL-LHC (300 fb⁻¹)
- Already ~8 fb⁻¹ in 2024
- High statistics for high precision measurements

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda \\ -\lambda & 1 - \frac{\lambda^2}{2} \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

CKM Matrix describes <u>transition between quarks</u> through weak interaction -> the source of CPV in SM
 + Predicts 3 families of quarks ('73)! → ③ ('08)

Its elements can been determined from experiment
 -> Parameterization with 4 independent parameters

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda \\ -\lambda & 1 - \frac{\lambda^2}{2} \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

Unitary equations and triangle : $VV^{\dagger} = I_3$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> the source of CPV in SM
- + Predicts 3 families of quarks ('73)! → ③ ('08)
 Its elements can been determined from experiment
 - -> Parameterization with 4 independent parameters

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda \\ -\lambda & 1 - \frac{\lambda^2}{2} \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

Unitary equations and triangle :
$$VV^{\dagger}=I_{3}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

+ Predicts 3 families of quarks ('73)!
$$\rightarrow$$
 \bigotimes ('08)

- Its elements can been determined from experiment
 -> Parameterization with 4 independent parameters
- Goal : **Sensitivity to BSM effects** if unitarity triangle is broken by discrepancy between direct and indirect measurements
- The current state of γ measurements (<u>LHCb-CONF-2024-004</u>):

23

Direct : $\gamma = (64.6 \pm 2.8)^{\circ}$ -> Tree Level = standard candle Indirect : $\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$ -> Loops / Penguin diagrams

 $\gamma \equiv arg(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}) \equiv arg(\bar{\rho} + i\bar{\eta}) = \text{CKM Matrix complex phase} = \frac{\text{The parameter to access CPV !}}{\frac{1}{23}}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda \\ -\lambda & 1 - \frac{\lambda^2}{2} \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

Couplings	NP loop	Scales (in TeV) probed by			
Couplings	order	B _d mixing	B_s mixing		
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19		
(CKM-like)	one loop	1.4	1.5		
$ C_{ij} = 1$	tree level	2×10^3	5×10^2		
(no hierarchy)	one loop	2×10^2	40		

TABLE II. The scale of the operator in Eq. (2) probed by B_d and B_s mixings at Stage II (if the NP contributions to them are unrelated). The impact of CKM-like hierarchy of couplings and/or loop suppression is indicated.

Phys. Rev. D 89 (2014) 033016

-> Test of global validity of the CKM formalism in tree level diagrams

- CKM Matrix describes <u>transition between quarks</u> through weak interaction -> the source of CPV in SM
 Predicts 2 families of quarks ((72) | ...) (20)
- + Predicts 3 families of quarks ('73)! → ③ ('08)
 Its elements can been determined from experiment
 - -> Parameterization with 4 independent parameters
- Goal : **Sensitivity to BSM effects** if unitarity triangle is broken by discrepancy between direct and indirect measurements
- The current state of γ measurements (<u>LHCb-CONF-2024-004</u>):

Direct : $\gamma = (64.6 \pm 2.8)^{\circ}$ -> Tree Level = standard candle Indirect : $\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$ -> Loops / Penguin diagrams

 <u>According to CKMfitter group</u>, a sub-degree precision on direct measurement would test SM up to dozens of TeV energy scales
 -> Only possible in association of multiple analysis

The golden channel to measure y angle

- Relative weak phase $_{\rm Y}$ measured in the interference between $b \to c \bar{u} s$ and $b \to u \bar{c} s$ transitions by amplitude modulation
- Golden channel = $B^{\pm}
 ightarrow D^0 K^{\pm}$

The golden channel to measure y angle

B-

11

Same final state $\overline{D}^0 = [D^0/D^0]$

 \bar{u}

K(*)-

D(*)0

- Relative weak phase χ measured in the interference • between $b \to c \bar{u} s$ and $b \to u \bar{c} s$ transitions by amplitude modulation
- Golden channel = $B^{\pm}
 ightarrow D^0 K^{\pm}$
- Possible analogy with Young slits with a slit thinner than the other

26

D(*)0

K(*)-

Generalized BPGGSZ* formalism

*BPGGSZ = Bondar, Poluektov (<u>Eur. Phys. J. C 55 (2008) 51</u>) Giri, Grossman, Soffer, Zupan (<u>Phys. Lett. B 253 (1991) 483</u>)

With :

The Amplitude A_B for the decay from B^+ to final state (at a given point in the D decay phase-space D) is :

$$A_B = \bar{A} + r_B e^{i(\delta_B + \gamma)} A$$
 (1)

-> δ_B = strong-phase difference between $B^{\pm} \to D^0 K^{\pm}$ and $B^{\pm} \to \bar{D}^0 K^{\pm}$ -> A (resp \bar{A}) = Amplitudes for $D^0 \to f$ (resp $\bar{D}^0 \to f$)

→
$$r_B = \frac{|A_{B \to \bar{D^0}K}|}{|A_{B \to D^0K}|}$$
 → Drives statistical precision on **Y**

The probability density for a decay at a point in \mathcal{D} : $P_B = |A_B|^2 = |\bar{A}|^2 + r_B^2 |A|^2 + 2r_B \Re[\bar{A}^* A e^{i(\delta_B + \gamma)}]$

As
$$\bar{A}^*A = |\bar{A}||A|e^{i\Delta\delta_D}$$
, we obtain : $P_B = \bar{P} + r_B^2 P + 2\sqrt{P\bar{P}}[x_-C - y_-S]$ (2)

• $C = cos(\Delta \delta_D)$ • $P = |A|^2$

•
$$S = sin(\Delta \delta_D)$$
 • $\bar{P} = |\bar{A}|^2$

= "Cartesian coordinates" or "CP-observables" Similar formalism for B^- , with : $A \leftrightarrow \bar{A}$ and $\gamma \leftrightarrow -\gamma$

• $y_{\pm} = r_B sin(\delta_B \pm \gamma)$ • $x_{\pm} = r_B cos(\delta_B \pm \gamma)$

 $f_D K^-$

27

Generalized BPGGSZ formalism

γ measurement depends on $\Delta \delta_D$, the strong phase difference between $D^0 \to f(\delta_D)$ and $\overline{D^0} \to f(\delta_{\overline{D}})$ Varies on Phase–Space of the 4–body decay $D^0 \to K_s^0 \pi^+ \pi^- \pi^0$

Similar method to the one in <u>IHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

-> Binned map of strong phase from <u>IHEP 10 (2018) 178</u> (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c) (with 0.82fb⁻¹ $\Psi(3770)$ dataset)

	Bin	Bin region	$m_{ m L}$	$m_{ m U}$
			(GeV/c^2)	(GeV/c^2)
	1	${ m m}_{\pi^+\pi^-\pi^0}pprox { m m}_\omega$	0.762	0.802
	2	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-}}$ &	0.790	0.994
		${ m m}_{\pi^+\pi^0}pprox { m m}_{ ho^+}$	0.610	0.960
	3	$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$ &	0.790	0.994
ely		${ m m}_{\pi^-\pi^0}pprox { m m}_{ ho^-}$	0.610	0.960
d	4	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-1}}$	0.790	0.994
	5	$\mathrm{m}_{K^0_S\pi^+} pprox \mathrm{m}_{K^{*+}}$	0.790	0.994
	6	$\mathrm{m}_{K^0_{\mathrm{S}}\pi^0} pprox \mathrm{m}_{K^{*0}}$	0.790	0.994
	7	$\mathrm{m}_{\pi^+\pi^0}pprox\mathrm{m}_{ ho^+}$	0.610	0.960
	8	$\mathrm{m}_{\pi^-\pi^0}pprox\mathrm{m}_{ ho^-}$	0.610	0.960
	9	Remainder	-	_ 28

28

Exclusivel defined

Generalized BPGGSZ formalism

 $\begin{array}{l} \text{Y measurement depends on } \Delta \delta_D \text{, the strong phase difference between } D^0 \to f(\delta_D) \text{ and } \overline{D^0} \to f(\delta_{\overline{D}}) \\ \hline & & \\ \text{Varies on Phase-Space of the 4-body decay } D^0 \to K_s^0 \pi^+ \pi^- \pi^0 \\ \hline & & \\ \Gamma_i^- = h \left(K_i + r_B^2 \overline{K}_i + 2\sqrt{K_i \overline{K}_i} (c_i x_- + s_i y_-) \right) \\ \Gamma_i^+ = h \left(\overline{K}_i + r_B^2 K_i + 2\sqrt{K_i \overline{K}_i} (c_i x_+ - s_i y_+) \right) \\ \hline & \\ \end{array}$

Similar method to the one in <u>JHEP 01 (2019) 82</u> (Belle, from Resmi P.K thesis)

- -> Binned map of strong phase from <u>JHEP 10 (2018) 178</u> (Resmi P.K, J. Libby, S. Malde, & G. Wilkinson-CLEO-c) (with 0.82fb⁻¹ $\Psi(3770)$ dataset)
 - K_i and \bar{K}_i are fractions of $D^0/\bar{D^0}$ in bin i
 - h is a normalisation factor

• $r_B = \frac{|A_{B \to D^0 K}|}{|A_{B \to D^0 K}|}$ Drives statistical precision on **Y** • $c_i = \frac{\int_{\mathcal{D}_i} |A| |\bar{A}| C d\mathcal{D}}{\sqrt{\int_{\mathcal{D}_i} |A|^2 d\mathcal{D} \int_{\mathcal{D}_i} |\bar{A}|^2 d\mathcal{D}}}$ $C = cos(\Delta \delta_D)$ • $x_{\pm} = r_B cos(\delta_B \pm \gamma)$ • $y_{\pm} = r_B sin(\Delta \delta_B \pm \gamma)$ = "Cartesian coordinates" or "CP-observables"

100.000	99/9-000 Gb		
Bin	Bin region	$m_{ m L}$	$m_{ m U}$
		(GeV/c^2)	(GeV/c^2)
1	$m_{\pi^+\pi^-\pi^0}pprox m_\omega$	0.762	0.802
2	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-}}$ &	0.790	0.994
	${ m m}_{\pi^+\pi^0}pprox{ m m}_{ ho^+}$	0.610	0.960
3	$\mathrm{m}_{K^0_S\pi^+}pprox\mathrm{m}_{K^{*+}}$ &	0.790	0.994
	${ m m}_{\pi^-\pi^0}pprox { m m}_{ ho^-}$	0.610	0.960
4	$\mathrm{m}_{K^0_S\pi^-}pprox\mathrm{m}_{K^{st-1}}$	0.790	0.994
5	$\mathrm{m}_{K^0_S\pi^+}^{\ \ imes}pprox\mathrm{m}_{K^{st+}}$	0.790	0.994
6	$\mathrm{m}_{K^0_S\pi^0}^{\mathrm{S}}pprox \mathrm{m}_{K^{st 0}}$	0.790	0.994
7	$m_{\pi^+\pi^0}pprox m_{ ho^+}$	0.610	0.960
8	$\mathrm{m}_{\pi^-\pi^0}pprox\mathrm{m}_{ ho^-}$	0.610	0.960
9	Remainder	-	_ 2

LHCh

• The 3-body decay mode used in BPGGSZ, with Run 1+2 dataset is currently the most precise $_{\rm Y}$ measurement. The 4-body decay with π^0 still not measured in LHCb

State of the art : Belle Results

Strategy

One can then deduce N_i^{\pm} , the measured yields (cf paper <u>LHCb-PAPER-2020-019</u>):

$$\begin{cases} N_{i,DK}^{-} = f_{DK}^{-} (F_i + r_B^{DK^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{DK} + s_i y_-^{DK})) \\ N_{i,DK}^{+} = f_{DK}^{+} (\overline{F_i} + r_B^{DK^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{DK} - s_i y_+^{DK})) \\ N_{i,D\pi}^{-} = f_{D\pi}^{-} (F_i + r_B^{D\pi^2} \overline{F_i} + 2\sqrt{F_i \overline{F_i}} (c_i x_-^{D\pi} + s_i y_-^{D\pi})) \\ N_{i,D\pi}^{+} = f_{D\pi}^{+} (\overline{F_i} + r_B^{D\pi^2} F_i + 2\sqrt{F_i \overline{F_i}} (c_i x_+^{D\pi} - s_i y_+^{D\pi})) \end{cases}$$

•
$$F_i = \frac{\int_{\mathcal{D}_i} P\eta d\mathcal{D}}{\sum_j \int_{\mathcal{D}_j} P\eta d\mathcal{D}}$$

• η = efficiency at a given point in phase-space

• Hypothesis :
$$F_i^{DK} = F_i^{D\pi}$$

 $F_i^{DK} = F_i^{D\pi} \text{ if } \left[\begin{array}{c} \circ \ B^{\pm} \to D^0 \pi^{\pm} \text{ and } B^{\pm} \to D^0 K^{\pm} \text{ have a similar selection and efficiency mapping through } \mathcal{D} \\ \\ \circ \ P \text{ID cut efficiency is the same for all of the 9 bins} \\ \\ \circ \ 9 \times 9 \text{ Migration matrix is similar between } B^{\pm} \to D^0 \pi^{\pm} \text{ and } B^{\pm} \to D^0 K^{\pm} \end{array} \right]$

All those hypothesis have been tested and validated !

- Use of the reference mode B[±] → D⁰π[±] that is topologically identical, statistically more interesting and less sensible to CP asymmetry
 B(B[±] → D⁰π[±]) = (12.67 ± 0.43) × B(B[±] → D⁰K[±]) = (4.61 ± 0.10) × 10⁻³
- Selection adapted for Runs 1 vs 2 and for $K_{\rm S}^0$ DD vs LL
- Selection based on **2 Multivariate-Analysis** and **unidimensional cuts on particle masses** :
 - First MVA : MLP method on geometrical and topological variables from D and its daughters (impact parameters, vertex quality, vertex relative position, photons identification, etc)
 - Unidimensional cuts on $K^0_{
 m S}$, π^0 and D^0 masses
 - Second MVA : MLP method on geometrical and topological variables from B decay
- Cut on **PID likelihood** difference to limit bachelor track misID
- Choosing the best candidate in case of multiplicity (mainly due to π^0), thanks to a MVA trained on MC, discriminating true signal events

Stripping selection

Table 7.6: Stripping selections of B2D0PiD2KSPi0HHLLResolvedBeauty2CharmLine, B2D0KD2KSPi0HHLLResolvedBeauty2CharmLine, B2D0PiD2KSPi0HHDDResolvedBeauty2Charm B2D0KD2KSPi0HHDDResolvedBeauty2CharmLine lines.

BPVVDCHI2 > 1000

...and

Particle	Quantity	Criteria			
Event	#PV	> 0			
	#long tracks	< 500			
	HLT2IncPhi	True			
or D ⁺	HLT2Topo(2 3 4)Body	True			
B^{\pm}	Invariant Reconstructed Mass	$\in [4750, 7000] \text{ MeV}/c^2$			
	$\sum p_{\rm T}$	> 5000 MeV/c			
	Vertex : $\chi^2/nDof$	< 10 > 0.2 pc			
	(ns(found)(BPVDIBA)	> 0.2 ps			
	BPVIPCHI2	< 25	· · · · · · · · · · · · · · · · · · ·	10000.0	
At least one daughter	HasTrack	= True	Qua	ntity	Description
	p_{T}	$> 1700 \mathrm{MeV}/c$	#	PV	Number of Primary Vertices in the beam collision (Pile-up)
	p	$> 10000 \mathrm{MeV}/c$	<i>π</i> -		it and of a final state of the search constant (if he up)
	Track : $\chi^2/nDof$	< 4.0	#long	tracks	Number of tracks reconstructed in the whole tracking system
	Min $IP\chi^2$	> 16	HLT2	IncPhi	Trigger line reconstructing vertices that can originate from a ϕ meson
	Min IP	> 0.1 mm		allall 4) D 1	
Bachelor π/K	HasTrack	= True	HL121opo((2 3 4)Body	Ingger line on multi-body topology (based on BD1 classifier)
	IFACK : $\chi^2/nDof$	< 4.0 > 500 MeV/c	Σ	p_{T}	Sum of daughters transverse momentum
	p_{Γ}	> 500 MeV/c	Vertex ·	$\sqrt{2}/nDof$	Control the quality of the vertex
	Min $\operatorname{IP}_{\chi^2}$	> 4.0			
D^0	$\Sigma p_{\rm T}$	$> 1800 \mathrm{MeV}/c$	BPV	DIRA	Angle between particle momentum and topological direction
	Reconstructed Mass	\in [1614.84, 2114.84] MeV/ c^2	BPVIPCH	$12 \ \operatorname{MinIP} \chi^2$	χ^2 of the impact parameter with primary vertex (see Fig. 8.3)
	Vertex : $\chi^2/nDof$	< 0.5 mm < 10	$\mathrm{Track}:$	$\chi^2/nDof$	Control the quality of the reconstructed track
	BPVVDCHI2	> 36	DC	CA	Distance of closest approach with primary vertex
	$cos(\theta_{DIRA})$ (BPVDIRA)	> 0		Dan	Distance of closest approach with primary vertex
π^{+}/π^{-}	p_{T}	> 100 MeV/c > 1000 M AV/-	BPVC	DCHI2	χ^2 while determining distance between PV and decaying vertex
	Track : $v^2/nDof$	< 4.0	CL p	hoton	Confidence level for the particle to be a photon
	χ^2 Min IP χ^2	> 4.0	IsB	asic	return True if the particle doesn't have children
π^0	Mass	$\in [105, 165] \mathrm{MeV}/c^2$			Totali Trao i dio Porticio doom o mutori
	p_{T}	$> 500 \mathrm{MeV}/c$			
	p	$> 1000 \mathrm{MeV}/c$			
$K_{\rm S}^0$	Mass	$\in [467, 527] \mathrm{MeV}/c^2$			
	p_{T}	$> 250 \mathrm{MeV}/c$			
	+ N: $p(\pi^+)$	> 2 GeV/c			
	π^{-} : Min IP χ^{2} CL photon 12	> 9. (case LL) > 4. (DD)			
At least one daugther	CL photon 12	> 0.20 > 500 MeV/c			
At least one daugther	p_{T}	> 500 MeV/c			
with either	IsBasic & HasTrack	= True			
and	Track : $\chi^2/nDof$	< 4.0			
or	Is_Ks0	= True			

Selection

MVA1				
Variable name	Description			
Log_D0PT	D ⁰ transverse momentum			
Log_DDIRA	Alignment between D^0 flight direction (from B^{\pm} and D^0 vertices position) and reconstructed momentum			
Log_D0FDChi2	Statistical significance of the distance between D^0 vertex and PV			
Log_D0maxDOCA	Maximum distance of the closest approach to the PV for all possible pairs of daughters			
Log_Delta_KsD_ZERR	Distance between D^0 and K^0_s vertices along the beam axis			
Log_KsD_DIRA	Alignment between K ⁰ _s flight direction and reconstructed momentum			
DdaughtMinsIP	Minimal Impact parameter of D ⁰ daughters			
Log_KsLTSignif	Statistical significance of K ⁰ _s life-time			
Log_KS_BPVIPCHI2MinDaught	Minimal Impact parameter of K ⁰ _s daughters			
Log_ET_gam_Moy	Mean transverse energy of photons from π^0			
IdgamE et IDgamH	Probability for both photons not to be electrons (resp, hadrons)			
DProbChi2Vtx	D ⁰ vertex quality			
DDaughtMinPT	Minimal transverse momentum of charged pions in D ⁰ decay			

Selection : First MVA

- First MVA on D decay geometrical and topological parameters using a MLP method \bullet
 - **Signal** = Simulated phase-space signal with $BKGCAT \in \{0, 10\}$ + meson masses conditions **Background** = Data events in m(B[±]) upper side-band and neutral mesons side-bands 0
 - 0
- 4 independent categories : Run1/2 with KsLL/KsDD samples

Selection : First MVA

- First MVA on D decay geometrical and topological parameters using a MLP method
 - Signal = Simulated phase-space signal with $BKGCAT \in \{0, 10\}$ + meson masses conditions
 - Background = Data events in m(B[±]) upper side-band and neutral mesons side-bands
- 4 independent categories : Run1/2 with KsLL/KsDD samples
- Tested 5 methods : Fisher, MLP, BDT, BDTD, BDTG -> retained MLP

Category	Selection	Signal efficiency $(\%)$	Background rejection $(\%)$
$\operatorname{Run1}$ DD	MLP > 0.938	97.0	91.7
$\operatorname{Run1}$ LL	MLP > 0.319	98.0	97.7
$\operatorname{Run2}$ DD	MLP > 0.885	97.0	90.5
Run2 LL	MLP > 0.301	98.0	97.5

Selection : mass cuts

• $m(K_s^0)$ selection by optimisation of $\frac{S}{\sqrt{S+B}}$ in left and right sides of the peak on DATA

Selection : mass cuts

 m(π⁰) selection by optimisation of S/√S + B in left and right sides of the peak on DATA Combinatorial Background modelled with a technique where signal PDF is driven by MC
 Exemple with Run 2 KsDD (Similar in other categories) :

Selection : mass cuts

*m*_{*DTF*}(*D*⁰) selection by optimisation of ^S/_{√S+B} in right side on DATA (arbitrary cut at 2.5σ for left side, with test on tighter cuts)
 Sum over the 4 categories :

Selection

MVA2				
Variable name	Description			
cosThetaHely	Helicity angle between B^{\pm} and D^{0} in B^{\pm} rest-frame			
CosD_bachT_xy	Angle between D ⁰ and bachelor track in transverse plan			
BDIRA	Alignment between B^{\pm} flight direction and reconstructed momentum			
The_MLP_D	Output of he first MVA			
log_DiffZ_DvsB_Err	Distance between B^{\pm} and D^{0} vertices along the beam axis			
log_B_IPchi2	χ^2 of the B [±] impact parameter			
BProbChi2Vtx	B [±] vertex quality			
BFDChi2	Statistical significance of the distance between PV and B^{\pm} vertex			
bachPT	Transverse momentum of the bachelor track			

- Second MVA on B decay geometrical and topological parameters using a MLP method
 - Signal = Simulated phase-space signal with BKGCAT $\in \{0, 10\}$ + m(B⁺) within 50 MeV around PDG value
 - **Background** = Data events in m(B[±]) upper side-band
- Cut position chosen to maximize the statistical significance

Category	Selection	Signal efficiency $(\%)$	Background efficiency $(\%)$
$\operatorname{Run1}$ DD	MLP > 0.985	86.1	8.0
$\operatorname{Run1}$ LL	MLP > 0.948	89.0	7.7
$Run2 \ DD$	MLP > 0.940	90.2	6.3
Run2 LL	$\mathrm{MLP} > 0.927$	90.8	6.1

Selection : bachelor PID

- To limit misidentification of the bachelor track, we discriminate using a PID Likelihood Difference
- ~70.7% signal efficiency / ~2.6% misidentification efficiency for $B \to D^0 K^{\pm}$
- For MC, Δ LL(K) variable corrected with PIDcorr tool

Selection

 Multiple candidates (~6%) are filtered, choosing the best candidate thanks to a MVA trained on MC, discriminating BKGCAT=0 and BKGCAT>0 (Variables uncorrelated to B mass)

Selection

Figure 8.41: Distributions of $m_{DTF}(B^{\pm})$ for the lowest (black) and highest (red) BKGCAT for simulated events with multiplicity.

Figure 8.42: Distributions of $m_{DTF}(B^{\pm})$ for simulated events with multiplicity. Best candidates are selected by the MVA method (black) or randomly (red).

Selection : Summary

Background Study

A complete study of physical background has been processed, using **full simulation of >20 modes** Here is a list of studied backgrounds. **Non-negligeable ones are surrounded** for $B^{\pm} \to D^0 \pi^{\pm}$ and $B \to D^0 K^{\pm}$

 $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \pi^0] \pi^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \gamma] \pi^{\pm}$ $B^{\pm} \rightarrow D^{*0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow K_{s} \pi \pi) \pi^{0} K^{\pm}$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \gamma] K^{\pm}$ $B^{\pm} \rightarrow D^{*0} \rightarrow D^{0} \rightarrow K_s \pi \pi) \pi^0 \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$ $B^{\pm} \rightarrow D^{*0} [\rightarrow D^0 (\rightarrow K_s \pi \pi) \gamma] \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi) \rho^{\pm} (\rightarrow \pi^{\pm} \pi^0)$ $B^{\pm} \rightarrow D^0 (\rightarrow K_s \pi \pi) K^{*\pm} (\rightarrow K^{\pm} \pi^0)$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \pi^{0}] \pi^{\pm}$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \gamma] \pi^{\pm}$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \pi^{0}] K^{\pm}$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \gamma] K^{\pm}$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \pi^{0}] \rho^{\pm} (\to \pi^{\pm} \pi^{0})$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \gamma] \rho^{\pm} (\to \pi^{\pm} \pi^{0})$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \pi^{0}] K^{*\pm} (\to K^{\pm} \pi^{0})$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \gamma] K^{*\pm} (\to K^{\pm} \pi^{0})$$

$$B^{\pm} \to D^{*0} [\to D^{0} (\to K_{s} \pi \pi \pi^{0}) \gamma] K^{*\pm} (\to K^{\pm} \pi^{0})$$

$$B^{\pm} \to D^{0} (\to K_{s} \pi \pi \pi^{0}) \rho^{\pm} (\to K^{\pm} \pi^{0})$$

 $B^0 \to D^{*\pm} [\to D^0 (\to K_s \pi \pi \pi^0) \pi^{\pm}] \pi^{\mp}$ $B^0 \to D^{*\pm} [\to D^0 (\to K_s \pi \pi \pi^0) \pi^{\pm}] K^{\mp}$ $B_s^0 \rightarrow D^0 (\rightarrow K_s \pi \pi \pi^0) K^{\mp} \pi^{\pm}$ MC produced in Square-Dalitz + weighted with Laura++ to account for resonances (LHCb amplitude model LHCb-PAPER-2014-036) No peaking background !

- Additional study has been made in K⁰_S and D⁰ sidebands, limiting impact of K_s-less and charm-less backgrounds to less than 0.66% and 0.15% on the signal respectively at 90% CL.
- Background components are included in global mass fit through parametric PDFs "RooKeyPDF" objects (after a smearing to adapt MC to DATA signal width)

Charm-less background

Charmless background has been studied :

5.1 5.2 5.3 5.4 $m(B^{\pm})$ [GeV/c²]

Ks-less background

→ Only for $K_s^0 LL$ (D^0 and K_s^0 vertexes are mingled -> K_s^0 candidate vertex in VELO) → Measured in K_s^0 sidebands ($m(K_s^0) \notin [480, 515] MeV/c^2$) with $Z_{vtx}(K_s^0) - Z_{vtx}(D^0) < 3\sigma$

→ A portion of this peak (~4 evts) is residual signal (estimated from MC signal)

→ Counting for this, there still is a significant Ks-less background

→ Renormalising with the side-band width and to the total data sample (including $K_s^0 DD$), this leads to a proportion of signal of :

 $0.52 \pm 0.11\,\%$

→ Small enough not to be considered -> Only in systematics

$B^0_s ightarrow D^0 K \pi$ background

-> MC produced in Square-Dalitz + **weighted with Laura++** for resonances

→ Not a peaking background

 \rightarrow Has to be considered in the partially reconstructed backgrounds

→ For nominal fit, yield will be fixed compare to signal yield. The ratio between both has been calculated taking into account efficiency ratio and BF ratio.
→ Fixed yield to 4.82+-0.9% of signal yield

Global Fit

- Signal : double-sided Crystal-Ball function
 - Left tail fixed from MC
 - Right tail, mean, width are free
- **Combinatorial** : free Chebychev polynomial of order 2
- **Cross-Feed** : Shape from MC (RooKeyPdf)
 - Yield constrained from $B \rightarrow DK$ signal yield (see next slide)
- **Partially-reconstructed backgrounds** : Shape from parametric PDFs ("RooKeyPDFs") to MC
 - Most of individual components yields constrained one to the other from relative BRs and selection efficiencies
- -> Validated with toy simulation studies !

 $\frac{Reminder}{\rightarrow}:9981\pm134 \text{ events at Belle} \\ \rightarrow \text{ Statistics } \times 3$

Global Fit

61.3%

- **Signal** : double-sided Crystal-Ball function
 - Parameters fixed to $B \rightarrow D\pi$ fit ones
- Cross-feed :
 - Shape from $B \rightarrow D\pi$ data sample with misID mass hypothesis
 - Yield constrained from $B \rightarrow D\pi$ signal yield and MC efficiencies
- **Combinatorial** : free Chebychev polynomial of order 2
- Partially-reconstructed background :
 - Shapes from parametric PDFs on MC
 - Relative yields constrained from BRs and efficiencies
- -> Validated with toy simulation studies !

Reminder: 815±51 events at Belle \rightarrow Statistics ×2.5

CP-fit on DATA

Run simultaneous unbinned minos CP-fit on DATA (**36 categories**):

- All shapes fixed by global fits (signal, physical and combinatorial backgrounds, cross-feed)
- Sum of the yields (integrated over bins) constrained to the yields in the global fits
- For fit stability, CP-observables $x_{\pm}^{D\pi}$ and $y_{\pm}^{D\pi}$ are fixed for $B \to D\pi$ channel, according to LHCb combination (-> systematic uncertainty)
- Consider two separate values for $r_B^{DK,-} = \sqrt{(x_-^{DK})^2 + (y_-^{DK})^2}$ and $r_B^{DK,+} = \sqrt{(x_+^{DK})^2 + (y_+^{DK})^2}$

Cross-check : measure the yields in each bin in DATA through **individual fits per bins**

- Shapes are taken from global fit
- Free signal yields

CP-fit Toy Study

Toy study on 2000 pseudo-experiments to test the extraction of **CP-observables** \mathbf{x}_{\pm} , \mathbf{y}_{\pm} from simultaneous fit to the **36 categories**

- Pseudo-experiments signal yields generated from the formalism **with inputs from LHCb combination** <u>CONF-2022-003-001</u>.
 - F_i fractions from first estimation on $B \rightarrow D\pi$ data sample
- Combinatorial yields according to estimation in $B \rightarrow D\pi$ data sample
- Partially reconstructed BKG yields to follow F_i fractions.

CP-fit Toy Study

- c_i/s_i inputs -> Measured with 2000 pseudo-experiments : <20% of statistical uncertainty on x_± and y_±
 <u>Should be the main systematic</u>
- c_i/s_i from CLEO-c are efficiency corrected -> we have effective c_i/s_i due to efficiency variation across phase-space ! -> To be computed
 - In standard GGSZ : measured using amplitude model -> very small uncertainty
 - > Can use first amplitude model version from Tomaso Pajero (CERN fellow) with $B \rightarrow D^*(2010)^+ \mu^- X$
- $B \rightarrow D\pi$ physics input ($r_B^{D\pi}$, $\delta_B^{D\pi}$, γ) -> << statistical uncertainty (~1%)
- Uncertainty on first bin redefinition (detector resolution) -> To be computed
- Uncertainty on bias correction (see Pull study)
- **CPV and matter regeneration** for $K_{\rm S}^0$ meson system -> negligible in <u>similar studies</u> with low statistics
- Mass-shape parameterisation for signal and backgrounds
 - → Measured at first level using a bootstrapping procedure -> a few % of stat. unc.
 - → Impact from the shape variation between bins to be studied

Selection efficiency consistency

-> Project efficiency on each phase-space dimension for both channels :

c_i/s_i input uncertainties

• Generate 2000 toys in signal only (10000 events B->DK / 164000 events B->D π per toy), with physics parameters set to the LHCb combination while varying c_i/s_i input (Correlation taken into account with Cholesky method)

Sigma

0.00830159

0.00984546

0.0343804

0.0210182

- Toys fitted with the nominal simultaneous fit (fixed CLEO-c c_i/s_i)
- Smaller uncertainty than the one estimated by BELLE analysis

Mean error

0.000194079

0.000227879

0.000795734

0.000491541

Mean

0.0436745

-0.0953942

0.0880574

-0.0199105

Parameter

XM

XD

VM

VD

<u>Remainder Stat :</u> ^y

$$\begin{aligned} {}^{DK}_{-} &= X X^{+0.063}_{-0.066} \\ {}^{DK}_{-} &= X X^{+0.125}_{-0.148} \\ {}^{DK}_{+} &= X X^{+0.084}_{-0.092} \\ {}^{DK}_{+} &= X X^{+0.225}_{-0.178} \end{aligned}$$

Correlation matrix :

-0.285719	-0.146204	-0.489463	1
0.334292	0.0627223	1	-0.489463
-0.178205	1	0.0627223	-0.146204
1	-0.178205	0.334292	-0.285719

Sigma Error

0.000148708

0.000174369

0.000396295

tatistic

0.00060065

Systematic from physics input to $B^\pm o D^0 \pi^\pm$ decay

- Generate 2000 toys in signal only (10000 events B->DK / 164000 events B->D π per toy), with physics parameters set to the LHCb combination while varying D π physics input (Correlation taken into account with Cholesky method)
- Toys fitted with the nominal simultaneous fit (fixed $D\pi$ physics inputs)

Parameter	Mean	Mean error	Sigma	Sigma Error				
XM	0.0431416	1.19166e-05	0.000507137	9.16551e-06	1	-0.0205235	-0.533831	0.629314
хр	-0.0957948	1.45436e-05	0.000622265	1.17844e-05	-0.0205235	1	-0.818923	0.529908
ym	0.0858445	1.71341e-05	0.000739769	1.35529e-05	-0.533831	-0.818923	1	-0.784929
УР	-0.0196209	2.84873e-05	0.00117878	2.17046e-05	0.629314	0.529908	-0.784929	1
1. Sec. 1				· · Ctatistics				

Statistics

Correlation matrix :

Systematic from mass-shape parameterisation

Figure 12.7: Distribution of the CP observables fitted for the bootstrap procedure repeated 1000 times.

0	Uncer	rtainty ($(\times 10^{-2})$	
	x_{-}^{DK}	y_{-}^{DK}	x_+^{DK}	y_+^{DK}
σ	0.09	0.47	0.17	0.50
	C	orrelati	ons	
	x_{-}^{DK}	y_{-}^{DK}	x_+^{DK}	y_+^{DK}
x_{-}^{DK}	1.000	0.488	0.037	-0.610
y^{DK}		1.000	-0.369	-0.754
x_+^{DK}			1.000	-0.115
y_{\pm}^{DK}				1.000

Table 12.7: Systematic uncertainties due to the mass-shape parameterisation and corresponding correlation matrix.

- sPlot method (statistical subtraction) to project signal from global fit into two or three bodies mass resonances
- Use $D^0 \to K^0_S \omega$ as normalisation channel

Parenthesis : Measure BF of $D^0 o K^{*-}
ho^+$ For your eyes only

$${\cal B}(D^0 o K^{*-}
ho^+) = (7.43 \pm 0.48)\,\%$$

 \bar{u}

<u>Troubles with Non-leptonic Charm Decays</u> (H. Lipkin 1980, i.e colours suppressed/favoured D decays)

 $ar{u}$

$$egin{aligned} &rac{\mathcal{B}(D^0 o ar{K^0} \pi^0)}{\mathcal{B}(D^0 o K^- \pi^+)}_{Lipkin} = rac{1}{8} = rac{12.5\ \%}{= 9\ (3\ ext{colors})} \ &rac{\mathcal{B}(D^0 o ar{K^0} \pi^0)}{\mathcal{B}(D^0 o K^- \pi^+)}_{PDG} = (56 \pm 1)\ \% \ &rac{\mathcal{B}(D^0 o ar{K^{*0}}
ho^0)_{PDG}}{\mathcal{B}(D^0 o K^{*-}
ho^+)_{this\ meas.}} = (20 \pm 2)\ \% \end{aligned}$$

The $D \to K^* \rho$ systems seems to have less final state interactions, as expected due to the larger masses